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ABSTRACT
Land-use history is the template upon which contemporary plant and tree populations
establish and interact with one another and exerts a legacy on the structure and
dynamics of species assemblages and ecosystems.We use the first census (2010–2014) of
a 35-ha forest-dynamics plot at the Harvard Forest in central Massachusetts to describe
the composition and structure of the woody plants in this plot, assess their spatial
associations within and among the dominant species using univariate and bivariate
spatial point-pattern analysis, and examine the interactions between land-use history
and ecological processes. The plot includes 108,632 live stems≥ 1 cm in diameter (2,215
individuals/ha) and 7,595 standing dead stems ≥ 5 cm in diameter. Live tree basal
area averaged 42.25 m2/ha, of which 84% was represented by Tsuga canadensis (14.0
m2/ ha), Quercus rubra (northern red oak; 9.6 m2/ ha), Acer rubrum (7.2 m2/ ha) and
Pinus strobus (eastern white pine; 4.4 m2/ ha). These same four species also comprised
78% of the live aboveground biomass, which averaged 245.2 Mg/ ha. Across all species
and size classes, the forest contains a preponderance (> 80,000) of small stems (<10-
cm diameter) that exhibit a reverse-J size distribution. Significant spatial clustering
of abundant overstory species was observed at all spatial scales examined. Spatial
distributions of A. rubrum and Q. rubra showed negative intraspecific correlations in
diameters up to at least a 150-m spatial lag, likely indicative of crowding effects in dense
forest patches following intensive past landuse. Bivariatemarkedpoint-pattern analysis,
showed that T. canadensis and Q. rubra diameters were negatively associated with one
another, indicating resource competition for light. Distribution and abundance of the
commonoverstory species are predicted best by soil type, tree neighborhood effects, and
two aspects of land-use history: when fields were abandoned in the late 19th century
and the succeeding forest types recorded in 1908. In contrast, a history of intensive
logging prior to 1950 and a damaging hurricane in 1938 appear to have had little effect
on the distribution and abundance of present-day tree species. Our findings suggest
that current day composition and structure are still being influenced by anthropogenic
disturbances that occurred over a century ago.
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INTRODUCTION
In forested landscapes around the world, legacies of human activities have shaped the
composition, size structure, and spatial patterns of trees, understory vegetation, and
associated ecosystem processes (Birks et al., 1988; Turner et al., 1990; Russell, 1997; Foster
& Aber, 2004; Ellison et al., 2014). The extent of the interactions between anthropogenic
effects and abiotic factors such as climate, soils, and episodic disturbances in shaping
vegetation patterns depends on the intensity of the effects and the spatial scale of analysis
(Rackham, 1986; Glitzenstein et al., 1990; Zimmerman et al., 1995). A complex interplay
of succession, competition, disturbance, environment, and land use shape dynamics and
patterns of forests at local-to-regional scales (Condit et al., 2000; Thompson et al., 2002;
Chazdon, 2003; Van Gemerden et al., 2003).

By further examining the spatial patterns of trees within a forest, ecologists can begin
to uncover the underlying processes and mechanisms that led to those patterns (e.g., are
species randomly distributed, aggregated, or dispersed in space and why? (Wiegand, He &
Hubbell, 2013)). A growing number of studies have used point pattern analysis to examine
the spatial structure of forests by using fully mapped plots, as each tree, or point, has a
mapped location (Zhang et al., 2010; Wang et al., 2011; Lutz et al., 2013; Fibich et al., 2016;
Nguyen, Uria-Diez & Wiegand, 2016). A variety of univariate and bivariate point-pattern
analysis methods and summary characteristics have been used to characterize the spatial
patterning of trees (Wiegand & Moloney, 2004; Wiegand & Moloney, 2014). Since each
method tells something different about the spatial structure of the data within a forest, it
is more desirable to use multiple summary characteristics to better describe the patterns
of tree species and among species associations (Illian et al., 2008; Wiegand, He & Hubbell,
2013).

The forests of New England, USA have been shaped by a variety of natural and
anthropogenic factors. As in other forests, the geology and climate of New England
define the broad patterns of current forest composition (Foster et al., 1992; Hall et al.,
2002), but the shifts in species abundance and distribution patterns that have occurred
since Europeans colonized New England more than 400 years ago have resulted in a
relatively homogenous assemblage of young, even-aged stands with fewer late-successional
species (Thompson et al., 2013). In Massachusetts, modern vegetation exhibits only weak
relationships to broad climatic gradients because of the overwhelming influence of past
land use (Foster, Motzkin & Slater, 1998). An increasing emphasis in ecological studies
is evaluating the relative importance of historic land-clearing, agriculture, intensive
harvesting (Foster, 1992; Thompson et al., 2002; Rhemtulla, Mladenoff & Clayton, 2009;
Hogan et al., 2016), and natural episodic storms (Foster & Boose, 1992; Zimmerman et al.,
1995) on current-day structure and species composition of forest stands (Motzkin et al.,
1996; Motzkin et al., 1999; Bürgi, Östlund & Mladenoff, 2017). Although evaluating which
of these variables are most important in shaping current day structure and composition is
challenging, the development and use of statistical approaches like recursive partitioning
and conditional inference trees has aided the interpretation and prediction of these types
of analyses (Hothorn, Hornik & Zeileis, 2006).
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Harvard Forest is an ideal location to investigate how spatial patterns and composition
of woody plants are influenced by land-use history. For more than a century, Harvard
Forest (HF) researchers have investigated and recorded impacts of land use on forests
and how New England’s forests are continuing to change as the regional climate changes,
populations of large herbivores wax and wane, and nonnative insects and pathogens
establish, irrupt, and kill tree species (Foster & Aber, 2004).

Here, we describe the results of the first census of a fully mapped 35-ha forest-dynamics
plot at the Harvard Forest and examine how its structure and composition relates to
interactions between land-use history and ecological processes. We first describe the
composition and structure of the woody plants in this plot and assess spatial associations
within and among the dominant species using univariate and bivariate spatial point-pattern
analysis. Second, we uncover the influence of historical land use and natural disturbances on
the current-day structure and composition of this forest plot. We pay particular attention
to patterns of distribution and abundance of Tsuga canadensis (eastern hemlock) and
its relationship to other species in the plot because previous work has shown it to be a
foundation species in this forest (e.g., a species that defines ecosystems, controlling the
biological diversity of associated species and modulating critical ecosystem processes; sensu
(Ellison, 2019)). Tsuga canadensis is currently threatened and declining throughout much
of the HF plot and its range due to a nonnative insect, Adelges tsugae (hemlock woolly
adelgid; HWA) and its decline and loss are likely to have profound impacts on forest
structure and composition (Orwig et al., 2013; Foster, 2014).

MATERIALS & METHODS
Site description
The 35-ha (500 × 700 m) HF forest-dynamics plot is part of a global network of
Forest Global Earth Observatory (ForestGEO) plots established to monitor, understand,
and predict forest dynamics and responses to global change (Anderson-Teixeira et al.,
2015). The HF ForestGEO plot (southwest corner at 42.5386◦N, 72.1798◦W) is located
within the 380-ha HF Prospect Hill tract in Petersham, Massachusetts, USA within
the Worcester/Monadnock Plateau ecoregion (Griffith, Omernik & Kiilsgaard, 1994) of
Transition Hardwoods-White Pine-Hemlock forests (Westveld, 1956) (Fig. 1). Elevations
in the plot range from 340.2 to 367.8 m a.s.l. Soils include Gloucester stony loam, Acton
stony loam andWhitman very stony silt loams, all of which are gravelly and fine sandy loam
soils that developed in glacial tills overlying gneiss and schist bedrock (Simmons, 1941).
The north-central portion of the plot contains a 3-ha peat swamp with muck soils that
has been colonized at intervals by Castor canadensis (beaver). Average (1964-2019) annual
temperature at the site is 7.9 ◦C and the annual precipitation of 1090 mm is distributed
evenly throughout the year (Boose & Gould, 2019).

Land-use history
We examined the influence of past land-use history (derived from forest stand descriptions
of dates of field abandonment, areas used as woodlot, pasture, or cultivation; presence of
distinct plow horizon; silviculture treatments; and salvage operations); historical events
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Figure 1 The 500× 700 m ForestGEO plot located in the town of Petersham, MA on the Prospect Hill
tract of HF (upper right panel). Locations of three eddy-flux towers (that measure net ecosystem ex-
change of carbon and water between the atmosphere and the ecosystem), old forest roads, stone walls (de-
noted by dotted lines), and the central swamp area are superimposed on topographic contour lines (lower
panel).

Full-size DOI: 10.7717/peerj.12693/fig-1
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(e.g., insect outbreaks, storms and associated degree of forest damage Rowlands, 1941); and
biophysical attributes (roads, soil type, slope, aspect, elevation, and distance to streams)
on current forest composition and species distribution within the plot by using data from
the document archives at HF (http://harvardforest.fas.harvard.edu/document-archive).
Original maps of activity were manually transcribed to standardized base maps and
then scanned and digitized as shapefiles in ArcView GIS 3.2. The shapefiles were then
transformed to Massachusetts State Plane Meters (NAD83 projection) in ArcGIS to align
better with aerial photographs and linear features (trails, stonewalls, etc.) downloaded from
MassGIS (Hall, 2005) and used in spatial analyses (see below).

Pollen evidence suggests that prior to European settlement, Prospect Hill was a mixture
of old-growth northern hardwoods, T. canadensis, and Pinus strobus (eastern white pine).
Following European arrival, the site then experienced complex ownership and intensive
land-use over the next few centuries, both of which are largely representative of the
New England region (Ellison et al., 2014). Forest clearing began in 1750 and reached a
maximum in the 1840s, by which time close to 80% of the original forests had been cleared
for agriculture (Fisher, 1933; Raup & Carlson, 1941). Field abandonment began in 1850
and continued through 1905 in the southern half of the plot (Fig. 2A). Reforestation of
those fields continued through the 20th century (Foster, 1992). The western, northern, and
northeastern areas of the plot remained permanently wooded, but experienced various types
of selective cutting in the 1790s and 1870s (Foster, 1992). The firstmaps characterizing forest
types of individual stands were completed in 1908 and classified the permanent woodlots
in the western third of the plot as being comprised of hardwoods, white pine-hardwoods,
hemlock, and red maple (Fig. 2B). Many Castanea dentata (American chestnut) died in
1912–1914 from infection by Endothia parasitica (chestnut blight) (McLachlan, Foster &
Menalled, 2000) and forests were damaged by natural disturbances including an ice storm in
1921 and one of the most damaging hurricanes to hit New England in 1938. The hurricane
and subsequent salvage logging resulted in the loss of as much as 70% of the standing
timber on HF properties (Foster & Boose, 1992).

The central sections of the plot, containing mostly stony loam soils and no visible
signs of a plow layer, were unimproved pastures abandoned in the mid-19th century
(Motzkin et al., 1999) (Fig. 2C). These areas reforested and were classified as cordwood
(poor hardwood) in 1908 (Fig. 2B), except for an area classified as open, which is the
beaver swamp. Much of the cordwood section was subsequently clear-cut in the 1920s and
then thinned or salvaged in the late 1940s following the 1938 hurricane. Pinus resinosa (red
pine) and Picea abies (Norway spruce) plantations were established in portions of these
abandoned pastures in the mid-1920s and early 1930s. The southcentral area of the plot
contained areas of improved pasture and cultivation and was classified as containing white
pine in 1908. This area was clear-cut in the 1920s and a portion of it was clear-cut again
in 1980, resulting in many small diameter, multi-stemmed trees. Additional biotic changes
that impacted the plot included the exotic Lymantria dispar (gypsy moth), which lead
to widespread defoliation of hardwoods during 1944–45 and 1981; Cryptococcus fagisuga
(beech scale insect) combined with Neonectria fungal spp. (beech-bark disease), which
has led to the decline and death of larger Fagus grandifolia (American beech); and Adelges
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Figure 2 Historical GIS layers of the HF ForestGEO plot. Location of (A) historical fields and their agri-
cultural date of abandonment, (B) forest stands as described in 1908, and (C) soil type. GIS layers ob-
tained from Harvard Forest Data Archive HF 110.

Full-size DOI: 10.7717/peerj.12693/fig-2
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tsugae, which was first observed in the plot in 2008 and then rapidly spread throughout the
plot, subsequently killing hundreds of T. canadensis stems and threatening the rest.

Plot establishment and woody stem census
During March 2010, professional surveyors delineated the plot boundaries, established a
continuous grid of 20 × 20-m quadrats, and measured the elevation at each post using
a Sokkia SET600 Total Station (Olathe, Kansas, USA). During the summers of 2010 and
2011, all woody stems ≥ 1 cm in diameter at breast height (dbh; 1.3 m above the ground
level) were uniquely tagged, identified (nomenclature followsHaines, 2011), and measured
to the nearest 0.1 cm dbh (Condit, 1998). All dead stems ≥ 5 cm diameter that were
standing and >45 degrees from horizontal also were tagged, identified, and measured.
The swamp located in the center of the plot was sampled when the ground was frozen
during the winter months of 2012–2014. Each tagged stem was mapped within one of
four 10 × 10 m subquadrats within each quadrat on a scale-drawn map data sheet. Each
map was then scanned and individual stems were digitized using the ImageJ processing
program (Rasband 2012), and converted to local (x, y) coordinates within a quadrat using
R (v.3.6.1) (R Core Team, 2013) and the CTFS R package (Condit, 2014).

Forest species composition and stand structure
Estimates of stem densities were derived from total counts in which multi-stemmed
individuals were considered as a single stem, whereas estimates of basal area and biomass
were derived from the sum of all stems ≥ 1 cm dbh (Gilbert et al., 2010). Biomass of living
woody stems was estimated from dbh using allometric equations (Table S1).

Spatial analysis
We assessed the spatial patterns of all stems of the seven most abundant overstory tree
species across the entire plot using the pair-correlation function (g (r);Wiegand & Moloney,
2014), for which the value of the function represents the degree of clustering (g (r) > 1) or
overdispersion (g (r) < 1) at a given spatial lag (distance between neighboring trees). We
compared the observed pair-correlation statistic to that expected if trees were distributed
randomly (g (r) = 1) within the plot using 199 Monte Carlo CSR (complete spatial
randomness) simulations of the tree map for each species.

To test for the effects of intraspecific competition we used the univariate mark-
correlation function (kmm(r); Wiegand & Moloney, 2004; Wiegand & Moloney, 2014)
to test whether the size (dbh) of each of the seven most abundant tree species depended on
its proximity to neighbors of its own species. The value of kmm(r) represents the relative
sizes of trees at a given spatial lag and indicates if trees are larger or smaller than expected
at a given spatial lag. We compared the observed univariate mark-correlation function
statistic to that expected if the sizes of trees were randomly assigned across individuals
using 199 Monte Carlo simulations for each species, i.e., the spatial pattern of the trees
remained the same, but their sizes were shuffled (Jacquemyn et al., 2010). Spatial analyses
were not conducted on shrub species as many only occurred in the central swamp area.

Prior work has shown that the shade-tolerant T. canadensis is an important foundation
tree species, creating and strongly controlling the microenvironment, understory
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vegetation, and ecosystem dynamics (Ellison et al., 2005; Orwig et al., 2013). Thus, we
assessed the potential influence of T. canadensis on the sizes of each of the other most
common tree species in the plot using a bivariatemarked point-pattern analysis (Schlather’s
version of Moran’s I mark-correlation function (Im1m2(r); Wiegand & Moloney, 2014).
This statistic determines if tree sizes are spatially correlated: individuals are smaller or larger
than expected at various distances from a neighbor. We compared the observed Im1m2(r)
to that expected if the sizes of trees were randomly assigned across individuals using
199 Monte Carlo simulations for each species (Jacquemyn et al., 2010). All spatial pattern
analyses were performed using the 2018 version of the software Programita (Wiegand &
Moloney, 2004; Wiegand & Moloney, 2014).

GIS overlays of past land use, historical events, and biophysical attributes were used
as covariates in a conditional inference regression-tree model to predict diameter and
abundance of the most common overstory species in the plot (Table 1). Species-specific
abundances or sizes were predicted for each of the seven most abundant overstory species
conditional on their observed locations. A mean relative abundance (stems/ha) associated
with each tree location was calculated using raster-based tools within the GIS. First,
a 3×3 cell moving focal window analysis was used to generate a surface of mean tree
abundances across the plot at a 20-m cell resolution. Subsequently, to associate a mean
relative abundance value with each tree, this generated surface was sampled in the GIS at
the location of each tree. Using the ‘cforest’ function in the R package ‘party’ (Version
1.3-5) (Hothorn, Hornik & Zeileis, 2006), the outcomes of 500 conditional inference tree
models (Hothorn, Hornik & Zeileis, 2006) were compiled and the relative importance of
explanatory variables were ranked across all models. The conditional inference algorithm
is based on a random forest machine-learning algorithm (Breiman, 2001) used in many
ecological modeling contexts (e.g., Fox et al., 2017; Mi et al., 2017; Mohapatra et al., 2019;
Shearman et al., 2019). The conditional inference method improves on the variable ranking
methodology by applying a permutation importance algorithm that corrects for variable
selection bias resulting from a mix of categorical and continuous explanatory variables
that are correlated to varying degrees or that have complex interactions (Strobl, Boulesteix
& Hothorn, 2007). Variable importance scores are calculated by determining the marginal
loss of prediction accuracy from any given model iteration after removing each explanatory
variable. Overall variable importance is determined by averaging the variable-wise decrease
in accuracy scores over all 500 model iterations to rank the overall importance of each
variable across all models.

Data availability
Data associatedwith this study are publicly available from the Environmental Data Initiative
(Orwig, Foster & Ellison, 2015: https://doi.org/10.6073/pasta/18c01a2bb5f5bdf98846542ebbdbad65).

RESULTS
Composition and stand structure
Within the 35-ha HF ForestGEO plot, we identified 108,632 live stems ≥ 1 cm dbh,
representing 77,536 individuals (2215 ha−1) of 51 woody species in 17 families (Table S2).
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Table 1 Description of land-use history, disturbance, stand, and biophysical predictor variables con-
verted to GIS shapefiles and used to predict current tree species abundance and dbh values across the
Harvard Forest ForestGEO plot.

Predictor Description

Land use
Stand type –1908, 1947, 1986 Early forest stand descriptions in plot recorded by forest

type and year
Allen Land Use Land-use descriptions derived from degree of soil

disturbance, including plow (Ap) horizon presence and
depth, recorded by previous HF soil scientist, Arthur Allen.

Field Abandonment Years since the date of field abandonment
20th C. Salvage cutting Areas that experienced cutting following wind damage or

other natural disturbance in the early to mid-1900s
20th C. intensive cutting Areas that experienced clearcut, shelterwood or

reproduction cuts during the early to mid-1900s
Natural disturbance

Hurricane damage
Data collected between 1939-1941 on degree of overstory
trees uprooted, leaning or broken following 1938 hurricane
(Rowlands, 1941).

Stand features
Mean dbh of trees within 10 m Mean dbh of trees within 10 m of individual tree stem
CV dbh of trees within 10 m Coefficient of variation of dbh of trees within 10 m
Number of trees within 10 m Number of trees within 10 m of individual tree stem
Mean distance to trees within 10 m Mean distance to trees within 10 m of individual tree stem
CV distance to trees within 10 m Coefficient of variation in distance to trees within 10 m of

individual tree stem
Biophysical features
Elevation Elevation of quadrat as determined from NASA Goddard’s

Lidar, hyperspectral and thermal (G-LiHT) airborne
imager.

Distance to streams (m) Distance from individual tree stem to streams as identified
by the National Hydrography Dataset

Soil drainage class USDA Natural Resources Conservation Service Soil Survey
Geographic (SSURGO) database soil attribute

Simmons soil type Soil Classification from 1:24000 scale surveys (Simmons,
1941)

Common families were Betulaceae, Rosaceae, and Pinaceae (six species each), and Fagaceae
and Adoxaceae (five species each). Four tree species (T. canadensis, Acer rubrum [red
maple], Q. rubra [northern red oak], and P. strobus) and one shrub, Ilex verticillata
(winterberry), accounted for 63% of all stems (Table 2). Live tree basal area averaged
42.25 m2 ha−1 and average live aboveground biomass was 245.2 Mg ha−1. Eighty-four
percent of the basal area and 78% of the biomass was represented by T. canadensis (14.0 m2

ha−1; 61.1 Mg ha−1), Q. rubra (9.6 m2 ha−1; 75.1 Mg ha−1), A. rubrum (7.2 m2 ha−1; 33.8
Mg ha−1) and P. strobus (4.4 m2 ha−1; 20.7 Mg ha−1). The live tree diameter distributions
of T. canadensis and F. grandifolia were strongly right-skewed (reverse-J shaped), whereas
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Table 2 List of total live woody plant density, basal area, and biomass within the 35 ha HF ForestGEO
plot in 2014.

Scientific name Total live
tree Density
(35 ha−1)

Total live
Basal area
(m2)

Total live
Biomass (Mg)

Acer pensylvanicum 339 0.59 1.13
Acer rubrum 9,723 253.54 1182.86
Acer saccharum 1 3.12e−03 0.02
Alnus incana 479 0.68 0.60
Amelanchier laevis 572 0.35 0.61
Aronia melanocarpa 413 0.07 0.10
Betula alleghaniensis 4,059 36.96 207.73
Betula lenta 1,430 21.14 124.04
Betula papyrifera 537 14.80 72.76
Betula populifolia 108 1.49 7.18
Castanea dentata 732 1.12 4.35
Crataegus spp. 180 0.14 0.27
Fagus grandifolia 3,802 20.93 138.58
Frangula alnus 3 7.42e−04 4.90e−04
Fraxinus americana 186 3.84 23.73
Fraxinus nigra 34 0.17 0.82
Hamamelis virginiana 1,931 3.10 5.77
Ilex laevigata 2 1.39e−03 2.76e−03
Ilex mucronata 598 0.64 0.58
Ilex verticillata 9,874 3.62 6.15
Juniperus communis 1 4.52e−04 4.20e−04
Kalmia latifolia 3,914 3.27 7.64
Lindera benzoin 66 0.02 0.04
Lyonia ligustrina 1,178 0.41 2.04
Nyssa sylvatica 180 2.63 11.25
Ostrya virginiana 24 0.06 0.19
Picea abies 900 24.43 93.11
Picea rubens 101 3.61 15.15
Pinus resinosa 790 67.23 330.28
Pinus strobus 2,126 155.68 724.64
Populus grandidentata 2 0.03 0.14
Populus tremuloides 1 0.01 0.05
Prunus pensylvanica 11 0.05 0.98
Prunus serotina 250 5.48 34.85
Quercus alba 38 1.89 14.53
Quercus rubra 3,896 334.99 2,627.07
Quercus velutina 206 19.28 164.46
Rhododendron prinophyllum 127 0.05 0.25
Salix spp. 2 1.59e−04 1.50e−03

(continued on next page)
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Table 2 (continued)

Scientific name Total live
tree Density
(35 ha−1)

Total live
Basal area
(m2)

Total live
Biomass (Mg)

Sambucus racemosa 2 5.65e−04 4.03e−03
Sorbus americana 66 0.26 2.78
Toxicodendron radicans 1 1.13e−04 1.05e−04
Toxicodendron vernix 521 0.32 0.38
Tsuga canadensis 22,880 491.07 2138.00
Ulmus americana 1 2.84e−04 3.85e−04
Vaccinium corymbosum 3,531 2.39 9.58
Viburnum acerifolium 39 0.01 0.07
Viburnum dentatum 325 0.08 0.52
Viburnum lantanoides 75 0.01 0.01
Viburnum nudum 1,182 0.44 2.27

those of A. rubrum, Q. rubra, P. strobus, Betula lenta (black birch), and B. alleghaniensis
(yellow birch) were less right-skewed (Fig. 3).

In contrast, 73% of tagged stems and 69% of live individuals within the plot were
<10-cm dbh (Fig. 4). These same stems comprised only 5% of the total live plot basal
area and 3% of the total live plot biomass (Table 2). Shrub species made up many of these
stems with reverse-J size distributions and included I. verticillata, Vaccinium corymbosum
(highbush blueberry), and Kalmia latifolia (mountain laurel). Nonnative species in the
plot included 1687 stems of Picea abies (Norway spruce) and Pinus resinosa (red pine)
that remained from early 20th-century conifer plantings and three stems of Frangula alnus
(glossy false buckthorn). Ten species had only one or two stems within the plot (Table
2). Finally, there were 7595 dead stems ≥ 5 cm dbh within the plot, >50% of which were
T. canadensis, P. strobus, or A. rubrum. Dead tree basal area was 4.18 m2 ha−1 and dead
aboveground biomass was 17.53 Mg ha−1.

Spatial structure related to past land-use impacts
The spatial distributions of the seven most common species varied across the plot (Fig. 5).
Pinus strobus was common throughout the plot. Tsuga canadensis was most abundant in
the western, northern, and eastern portions of the plot, whereas Q. rubra and A. rubrum
dominated the central and southern areas. Both Betula species were most abundant in
the central and eastern sections, and F. grandifolia was most common in the southeastern
section.

Shrubs were also often spatially aggregated with respect to hydrology and topography.
Ilex verticillata V. corymbosum, Viburnum nudum (withe-rod), and Lyonia ligustrina
(maleberry) dominated the poorly drained beaver swamp (Fig. 6). Hamamelis virginiana
(witch-hazel) was found in a narrow elevational band (342–346m) surrounding the swamp
and a dense patch of K. latifolia was located in the northwest corner of the plot.
The seven most abundant canopy tree species were significantly clustered in the plot
at all spatial lags up to 50 m relative to a CSR null expectation (Fig. 7). The effect of
intraspecific competition also was apparent for these seven species as smaller than expected
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Figure 3 Diameter distribution of the sevenmost common overstory species within the HF Forest-
GEO plot.

Full-size DOI: 10.7717/peerj.12693/fig-3

diameters were observed when nearby individuals of the same species. For example, spatial
distributions of A. rubrum, Q. rubra, and F. grandifolia showed negative intraspecific
correlations in diameters up to at least a 150-m spatial lag, whereas the other species
had intraspecific negative correlations at ≤ 50-m spatial lags (Fig. 8). Tsuga canadensis,
B. alleghaniensis, and P. strobus had positive spatial correlations (larger diameters than
expected among dbhs at spatial lags >150 m. Interspecific correlations in diameters
between species suggest that the impact of T. canadensis on Q. rubra was negative at
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Figure 4 Diameter distribution of the six most common understory species within the HF ForestGEO
plot.

Full-size DOI: 10.7717/peerj.12693/fig-4

intermediate spatial lags (25–75 m) but positive between T. canadensis and the other five
species at most spatial scales up to 150 m (Fig. 9).

The abundances and sizes of the most common overstory species were predicted
best by a variety of historical factors and competitive interactions. Conditional inference
random-forest modeling revealed that the abundances ofT. canadensis, P. strobus, Q. rubra,
A. rubrum and F. grandifolia were strongly associated with neighborhood effects (size of
neighboring trees within 10 m; Fig. 10). The date of field abandonment was a strong
predictor of Q. rubra, P. strobus, and B. lenta abundance, whereas the forest type in 1908
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Figure 5 Spatial distribution of stems≥1 cm dbh of the sevenmost common overstory species within
the HF ForestGEO plot with 3-m elevation contour lines.

Full-size DOI: 10.7717/peerj.12693/fig-5

was the best predictor of B. alleghaniensis and A. rubrum abundance. Betula species also
were strongly associated with Simmons soil type. Overstory species diameters were best
predicted by neighborhood effects for T. canadensis, B. lenta, and F. grandifolia; date of
field abandonment for P. strobus and B. alleghaniensis; and the 1947 stand type forQ. rubra
and A. rubrum (Fig. 11). The predictive power of the conditional inference forest model
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Figure 6 Spatial distribution of stems≥1 cm dbh of the six most common understory species within
the HF ForestGEO plot with 3 -m elevation contour lines.

Full-size DOI: 10.7717/peerj.12693/fig-6

regressions was much higher (R2
= 0.79–0.95) for species abundance in the plot compared

to species size (R2
= 0.11–0.53).

DISCUSSION
We censused all woody stems ≥1-cm dbh within a 35-ha forest-dynamics plot in north-
central Massachusetts to examine the spatial patterns of trees and shrubs at a scale rarely
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Figure 7 Observed (blue line) and expected (black dashed line) values of the pair correlation function,
g (r), showing the degree of spatial clustering (values> 1) of the sevenmost dominant tree species in
the Harvard Forest plot. Expected values were obtained from 199 Monte Carlo simulations to completely
randomize the spatial position of trees (complete spatial randomness; CSR).

Full-size DOI: 10.7717/peerj.12693/fig-7
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Figure 8 Univariate mark correlation function analysis results showing the effects of the underlying
spatial pattern of trees on the size of conspecific individuals for seven dominant species in the Harvard
Forest plot across a range of scales. The significance of this effect was (continued on next page. . . )

Full-size DOI: 10.7717/peerj.12693/fig-8
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Figure 8 (. . .continued)
evaluated by comparing the calculated kmm (r) against values simulated under a null expectation, where
tree sizes were randomly shuffled over all trees for each of the 199 simulations. The blue line indicates cal-
culated kmm (r) values, while the black lines demark the 95% confidence envelope around simulated kmm
(r) values under the null model. A blue line falling below, within, or above the upper confidence limit, in-
dicates significant negative, independent, or positive correlations among dbhmarks for the given species,
respectively.

attempted in temperate forests.Wehave shown that broadpatterns in landuse andhistorical
disturbance that occurred up to a century ago remain dominant controls on present-day
spatial distribution and structure of overstory species. Tree species were significantly
clumped within the plot and T. canadensis affected the distribution of other dominant
canopy species in different ways. Topography and hydrology also affected the distribution
and abundance of understory stems. Detailed abundance and species distribution data
provided in this study will provide invaluable information on forest dynamics in the
future as the currently most abundant species—Tsuga canadensis—is declining because of
a non-native insect (Orwig et al., 2018).

Forest structure is contingent on past land use
The forest canopy within the HF ForestGEO plot, dominated by T. canadensis, Q. rubra,
A. rubrum, and P. strobus, is representative of many central New England forests. Like
other temperate ForestGEO plots, a relatively small number of species dominated the HF
plot (13 species were represented by over 1000 stems). However, this number was higher
than the 5–10 species that reached this abundance in other temperate ForestGEO plots
(Wang et al., 2010; Wang et al., 2011; Lutz et al., 2012; Bourg et al., 2013; Lutz et al., 2013)
and likely reflects the varied habitats, high intensity of prior land use, and early stages
of stand development at HF. Although we have much historical knowledge regarding
land-use change at HF, the conditional regression random-forest modeling enabled us
to explore more quantitatively how patterns of tree size and stem density for the seven
most abundant species have been affected by tradeoffs between legacy effects of past land
uses, management interventions, disturbances, and local-scale variation in stand structure
and environmental conditions. This combination of quantitative modeling with historical
knowledge contributes to a deeper understanding of historical human impacts on current
forest structure.

For example, our modeling results suggested that T. canadensis diameters and stem
densities across the full plot are most strongly associated with local stand structural
characteristics and neighborhood effects, whereas stem densities are only moderately
associated with land-use history. This result is consistent with the relatively undisturbed
appearance of the older portion of the HF plot where T. canadensis is most common, has
persisted through time for thousands of years (Foster & Zebryk, 1993), and excluded of other
species under its canopy. Tsuga canadensis is most abundant on land that was consistently
used as a woodlot but never completely cleared for agriculture. The western portion of the
plot was one of the few locations at HF that was mapped as T. canadensis forest in 1908
(Spurr, 1956). The high abundance of T. canadensis is the result of its shade tolerance and
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Figure 9 Bivariate marked point pattern analysis results showing the effects of the size of focal Tsuga
canadensis individuals on the size of six other non-focal species in the HF ForestGEO plot across a
range of scales. The significance of this effect was evaluated by comparing the calculated Schlather’s I
(Im1m2(r)) bivariate correlation statistic against values simulated under a null expectation, where non-
focal species’ tree sizes were randomly shuffled over trees for each of 199 simulations. The blue line indi-
cates calculated Im1m2(r) values, whereas the black lines demark the 95% confidence envelope around
simulated Im1m2(r) values under the null model. A blue line falling below, within, or above the upper
confidence limit indicates significant negative, independent, or positive correlations of dbhmarks of the
given species with the dbh of T. canadensis individuals found at a range of distances, respectively.

Full-size DOI: 10.7717/peerj.12693/fig-9

deep crowns, which enable it to persist for decades, modify the understory environment by
transmitting very little light, prevent other species from getting established (Canham et al.,
1994), and gain dominance following partial cuttings, the death and subsequent salvage of
C. dentata and F. grandifolia, and moderate damage from the 1938 hurricane (Foster et al.,
1992; Motzkin et al., 1999; McLachlan, Foster & Menalled, 2000). These same disturbances
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Figure 10 Variable importance scores, based on the mean decrease in prediction accuracy, from a con-
ditional inference random-forest model predicting tree species abundance values (stems/ha) for the
sevenmost common trees as a function of possible predictors. Variable importance scores were calcu-
lated across 400 random forest iterations and the range of values is from 0–100,000, reflecting the range of
the response variable, abundance.

Full-size DOI: 10.7717/peerj.12693/fig-10
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Figure 11 Variable importance scores, based on the mean decrease in prediction accuracy, from a con-
ditional inference random-forest model predicting tree species diameter at breast height (dbh) for the
sevenmost common trees as a function of possible predictors. Variable importance scores were calcu-
lated across 400 random forest iterations and the range of values is from 0–40, reflecting the range of the
response variable, diameter.

Full-size DOI: 10.7717/peerj.12693/fig-11
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also likely led to growth increases and additional establishment of P. strobus (Hibbs, 1982b),
as the largest pine stems also occur on the western edge of the HF plot.

In contrast, modeling revealed stronger effects of both land-use history and stand
structural variables on the sizes and stem densities of the other six dominant species.
Field abandonment date and stand types present in the early- and mid-20th century are
particularly strong predictors of diameters and densities of these species. This is consistent
with recorded historical knowledge. For example, Pinus strobus and Q. rubra are most
abundant on areas that were formerly pasture or fields in the mid- to late-1800s that also
experienced intensive past silvicultural cuts, thinning, and weeding in the 1920s–1940s, and
more severe damage from the 1938 hurricane (Motzkin et al., 1999; Hall, 2005). Quercus
rubra trees had larger mean diameters and crown sizes than F. grandifolia or A. rubrum,
consistent with past investigations that highlighted the ability ofQ. rubra to overtop canopy
associates and rapidly expand laterally into gaps (Oliver, 1978; Hibbs, 1982a). Acer rubrum
andB. alleghaniensis aremore closely associatedwithmesic locations such as swampborders
with silt loam soils and low-lying sites with peaty soils in the northeast corner of the plot;
indeed, random-forest models supported the relatively strong importance of soil type for
these species and B. lenta relative to the other species. The south-central portion of the plot
experienced the most intensive land use. It was the only area that experienced historical
cultivation and multiple periods of subsequent clear-cutting, including a harvest in 1980.
This area is dominated by smaller, multi-stemmed A. rubrum, Q. rubra, B. populifolia and
B. papyrifera (grey and paper birch), and Prunus (cherry) species, which are much more
common in forests that have experienced intense human impacts (Del Tredici, 2001). The
relationship between current stem-density patterns for A. rubrum and these two Betula
species and intensive historical land-use activities can be explained by the ability of these
species to sprout following cutting and take advantage of high-light environments (Burns
& Honkala, 1990).

Understory composition, dominated by woody shrubs, appears to be determined by soil
drainage and the ability of individual species to tolerate standing water, poorly drained soils,
or subtle topographic variation. Historically, the swamp contained pasture on its western
edge and a woodlot in the remaining portion. Today, the wetland shrubs I. verticillata,
Va. corymbosum, L. ligustrina, and Vi. nudum are found in high abundance in the central
beaver swamp, which otherwise is devoid of trees. The northwest section of the plot has
the highest elevation and is dominated by K. latifolia. Hamamelis virginiana appears to be
restricted to a narrow elevation west of the swamp and in the southeast corner of the plot.
Previous work at HF related K. latifolia abundance to nitrogen-poor sites andH. virginiana
to continuously forested sites (Motzkin et al., 1999), which is consistent with our findings.

Across all species and size classes, the forest contains a preponderance (>80,000) of
small stems (<10-cm dbh) that exhibit a reverse-J size distribution. The high abundance
of stems in this size class (e.g., several shrub species, T. canadensis, and A. rubrum) is in
contrast to several other temperate forest plots (Lutz et al., 2012; Bourg et al., 2013; Lutz et
al., 2013), and is more similar to results from tropical evergreen (Memiaghe et al., 2016)
or Mediterranean forests (Gilbert et al., 2010). Most of the abundant overstory and all the
abundant shrub species also have reverse-J distributions, indicative of stable populations
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and adequate regeneration. For overstory species, this likely is a result of the mix of
even-age and varying-aged cohorts and single trees establishing following anthropogenic
disturbances and natural gap-phase dynamics that are frequent in this region (Oliver
& Stephens, 1977; Hibbs, 1982a; Pederson, 2005). The greater ages of the shade-tolerant
T. canadensis that occur on primary woodland are approaching a structure and diameter
distribution that resembles old-growth forest (D’Amato, Orwig & Foster, 2008; Janowiak,
Nagel & Webster, 2008). In contrast, A. rubrum and Q. rubra had skewed unimodal size
distributions more indicative of managed forests (Janowiak, Nagel & Webster, 2008).

Overstory spatial patterns
We observed significant spatial clustering among abundant overstory species at all spatial
scales examined. Aggregated species distribution patterns are common in both temperate
(Hou et al., 2004; Hao et al., 2007; Wang et al., 2011) and tropical forests (Condit et al.,
2000; Plotkin et al., 2000; Réjou-Méchain et al. et al. 2011, Nguyen, Uria-Diez & Wiegand,
2016). Both external factors (habitat heterogeneity) and internal factors (dispersal
limitation, succession, gap dynamics) can lead to clumped distributions at various spatial
scales (Getzin et al., 2008; Réjou-Méchain et al. et al. 2011). Within the HF ForestGEO plot,
high habitat heterogeneity caused by complex past land use (differing field abandonment
dates followed by repeated cutting and thinning; Motzkin et al., 1999) has likely led to
high densities of A. rubrum and Q. rubra stems in the central portion of the plot. These
non-random patches of individuals with lower than average dbh (as seen in the mark
correlation analysis) may reflect strong competition for light as seen elsewhere (Fibich et
al., 2016). Similar patterns seen in B. alleghaniensis, B. lenta, P. strobus, and T. canadensis
in close proximity to other conspecifics (0–20-m scale) likely reflect crowding effects, and
for T. canadensis, the ability of thousands of small stems to persist in the understory for
decades (Marshall, 1927). These effects disappear at intermediate scales and even become
positive at distances >100 m, indicating that trees greater than the mean dbh are more
broadly distributed. The negative correlation observed for F. grandifolia at most spatial
lags ≤ 150 m may be more reflective of its overall size distribution with most of its stems
<10-cm dbh. Beech-bark disease is present at HF, and has likely contributed, along with
past cutting, to the absence of large F. grandifolia in the plot.

Bivariate mark correlation functions have been underused in large, stem-mapped plots
but hold great promise in ecological research (Velázquez et al., 2016). We used this method
to examine the relationship between the size of individuals of T. canadensis, an important
foundation species within the plot, with the size of six other important canopy species
some distance away. Apart fromQ. rubra, diameters of the other five species were positively
correlated with the diameters of T. canadensis at all spatial scales. This pattern is consistent
with T. canadensis being a foundation species in this forest (Buckley, Case & Ellison, 2016;
Ellison et al., 2019), but it also simply could indicate a ‘‘habitat’’ effect: all these species are
growing well everywhere and are found at a wide range of sizes. This effect was particularly
strong for B. lenta and P. strobus, but weaker for A. rubrum, B. alleghaniensis, and F.
grandifolia and disappeared after 100–150 m. Diameter of Q. rubra was on average smaller
than expected by chance when within 20–80 m of T. canadensis. Historical factors play a
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role here, as the spatial distribution of these species highlight that oak abundance is the
lowest within the T. canadensis-dominated portions of the plot that were woodlots and
suggest that T. canadensis and the dense shade cast by their crowns limited establishment
of the more intolerant Q. rubra.

CONCLUSIONS
The HF ForestGEO plot is the largest mapped temperate-forest plot in North America and
joins the growing array of temperate forest-dynamics plots worldwide (Anderson-Teixeira
et al., 2015). The species composition and aggregated spatial patterns within the plot are
still being influenced by a land-use legacy of anthropogenic and natural disturbances
that occurred decades to over a century ago. Despite extensive 20th-century harvesting,
silvicultural thinning, and salvage operations following the 1938 hurricane, the most
common overstory species in the HF ForestGEO plot today can best be predicted by longer-
term land-use legacies represented by the 1908 forest type and the date of late 19th-century
field abandonment, and tree neighborhood effects. At smaller scales, there is evidence of
crowding effects of many common species, likely a result of successional dynamics of these
aggrading forests following intensive land use. The increasing importance of T. canadensis
during the last century across the plot negatively affected the distribution of Q. rubra. Its
location and five-year schedule of plot sampling highlight the plot as valuable long-term
infrastructure that will complement Harvard Forest, LTER, NEON, and ForestGEO
research efforts (Orwig et al., 2018). Because all woody stems ≥ 1-cm dbh are mapped
and measured, the data have been used in a variety of complementary ways, including
to examine species codispersion patterns and spatial patterns of species co-occurrence
(Buckley, Case & Ellison, 2016; Case et al., 2016), help inform a simulation model of forest
dynamics (SORTIE; Case et al., 2017), assist with investigating crown allometry (Sullivan
et al., 2017) and crown mapping (Hastings et al., 2020), develop maps of tree-mycorrhizal
associations (Sousa et al., 2021) and aid in identifying statistical fingerprints of foundation
species (Ellison et al., 2019). In addition, the data enable us to document changing species
distribution patterns at an uncommonly large scale, while focusing on elements of the
landscape that are often ignored, like beaver swamps and shrub thickets, and examine their
contribution to overall forest structure and composition.
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