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Abstract. The biogeographic diversity of the microbiome can be investigated from two perspectives: the
spatiotemporal distribution of species (or any operational taxonomic unit) diversity and the spatiotemporal
distribution of metagenomic gene diversity. Together, these provide a complementary understanding of
taxonomic, ecological, evolutionary, and functional aspects of the microbiome. Here, we reformulate the
species diversity–area relationship (DAR) to quantify and illustrate metagenomic diversity–area relation-
ships (m-DAR) with the gut metagenome from the human microbiome project (HMP). Using the m-DAR,
the estimated ranges of human gut metagenomic genes (MG) within and among individuals are 5.0–
9.7 × 105 and 4.3–6.9 × 106, respectively; the among-individual standard errors of these estimates (6.0–
7.5 × 105) are of the same order of magnitude as the within-individual ranges, suggesting high between-
individual variability. We similarly estimated the number of metagenome functional gene clusters (MFCG)
to be 222–245 (SE = 1–2). More detailed analysis of the m-DAR profile, pair-wise diversity overlap (PDO),
maximal accrual diversity (MAD), and ratio of individual- to population-level diversity (RIP) of micro-
biomes of individuals with healthy guts and those with three microbiome-associated diseases (obesity, dia-
betes, and inflammatory bowel disease) identified differences in m-DAR parameters between healthy and
diseased individuals. Methodologically, the m-DAR and its associated parameters offer a unified toolset
with which to study and analyze microbiomes from both species and metagenomic perspectives and to
explore spatial scaling of metagenomic diversity within and among individuals. To the best of our knowl-
edge, our illustration of m-DAR with the human gut metagenome is the first statistically-based estimate of
the richness of human metagenomic genes at population scale.
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INTRODUCTION

Microbiomes (e.g., the human gut microbiome)
can be described within- or among-individual
“macrobes” (e.g., a single individual or a

population of individuals). Microbial biogeogra-
phy describes the spatiotemporal distribution of
microbial species (or operational taxonomic units
[OTUs]; Martiny et al. 2006, Costello et al. 2012,
Hanson et al. 2012, van der Gast 2013), but it also
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could represent the spatiotemporal distribution
of genes or metagenomes (i.e., the total genomes
of all member species in a microbial community
or microbiota). In either case, microbial biogeog-
raphy can be described within or among individ-
uals (Costello et al. 2012). Assuming microbial
OTUs, genes, or metagenomes can be distin-
guished (e.g., Qin et al. 2010, Zhu et al. 2010, Li
et al. 2014), it is straightforward to identify fac-
tors associated with, or effects of, microbial spe-
cies richness (e.g., Martiny et al. 2006, Hanson
et al. 2012, Le Chatelier et al. 2013).

Our recent work has considered additional
measures of diversity of microbial OTUs, genes,
and metagenomes and their relationships to
diversity–stability relationships and diseases
associated with changes in structure and interac-
tions within a single individual’s microbiome
(Ma 2018b, Ma and Li 2018, Ma et al. 2019, Ma
and Ellison 2018, 2019). Here, we use our recent
extension of the species–area relationship (SAR;
Connor and McCoy 1979) to a more general
diversity–area relationship (DAR; Ma 2018a, b,
2019) to explore how metagenomic diversity
changes and scales from individuals to popula-
tions (i.e., groups of individuals).

We first outline how we extend the SAR to
construct a DAR for metagenomes (“m-DAR”)
for arbitrary measures of diversity (expressed
as Hill numbers; Hill 1973, Chao et al. 2014).
We estimate the parameters of the m-DAR and
associated measures—pair-wise diversity over-
lap (PDO), maximal accrual diversity (MAD),
and ratio of individual- to population-level
diversity (RIP)—to characterize spatial scaling
of metagenomic diversity within and among
individuals. We then illustrate our approach
using data on the human gut microbiome col-
lected by the human microbiome project (HMP
Consortium 2012, iHMP Consortium 2019). The
human gut microbiome is a good case study
because there is large individual-to-individual
variation and neither the distribution of micro-
bial species diversity nor the distribution of
metagenomic diversity within a human popula-
tion is homogenous (Costello et al. 2012).
Finally, detailed analysis of the m-DAR profile,
PDO, MAD, and RIP of microbial metagenomes
identified within- and among-individual varia-
tion of, and markers for, individuals with
healthy guts and those with three microbiome-

associated diseases (obesity, diabetes, and
inflammatory bowel disease).

MATERIALS AND METHODS

The process for constructing m-DAR models
consists of three steps (Fig. 1): (1) bioinformatic
analysis of the metagenomic sequencing raw
reads (data) to obtain metagenomic gene (MG)
abundance and metagenome functional gene
cluster (MFGC) tables; (2) estimation of metagen-
ome diversity of MGs and MFGCs; and (3) fitting
m-DAR models and constructing m-DAR, PDO,
MAD, and RIP profiles for MGs and MFGCs.

Bioinformatic analysis of metagenomic sequencing
raw reads
Metagenomic gene (MG) abundance can be

estimated using standard bioinformatic software
pipelines applied to whole-genome shotgun
sequencing reads (Qin et al. 2010, 2012, Zhu et al.
2010, Le Chatelier et al. 2013, Li et al. 2014, Xiao
et al. 2015, 2016, Wang and Jia 2016, Sczyrba
et al. 2017, Ma and Li 2018). Because there often
are many MGs (order of 106) with similar func-
tions in a metagenome, MGs are usually grouped
into a smaller number (order of 102) metage-
nomic functional gene clusters (MFGCs; Ma and Li
2018). Two commonly used databases for identify-
ing MFGCs are the eggNOG (protein functions)
and KEGG (metabolic pathways) databases (Kane-
hisa and Goto 2000, Huerta-Cepas et al. 2016,
Kanehisa et al. 2021).

Estimation of metagenome diversity
Analogous to the estimation of species diver-

sity of macrobial assemblages, Ma and Li (2018)
used Hill numbers (Hill 1973, Jost 2007, Chao
et al. 2012, 2014) to define different measures of
diversity of MGs and MFGCs:

qD ¼ ∑
G

i¼1
pqi

� �1= 1�qð Þ
(1)

In Eq. 1, G is the number of MGs or MFGCs,
pi is the relative abundance of the i-th MG or
MFGC, and q is the order number of diversity.
When q = 0, 0D = G, the number (“richness”)
of MGs or MFGCs. When q = 1, 1D is MG or
MFGC diversity weighted proportionately by
gene or functional gene cluster frequency.
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When q = 2, 2D is MG or MFGC diversity
weighted by dominant (more abundant) genes
or functional gene clusters. When q = 3, 3D is
weighted more heavily than 2D by dominant
genes or functional gene clusters (Ma and Li
2018).

Measures of metagenome diversity based on
MGs use single genes, but metagenome diver-
sity of MFGCs can differ depending on
whether clusters are based on metabolic func-
tions (KEGG) or protein functions (eggNOG).
Ma and Li (2018) also distinguished two types
of MFGC diversity, depending on how individ-
ual gene abundance information is used in
defining the functional clusters. Type I MFGCs
ignore the abundance of individual genes and
only count the number of genes in a cluster
(analogous to incidence data in macrobial spe-
cies diversity calculations; e.g., Broms et al.
2015). In contrast, type II MFGCs depend on
both the number of genes and their relative
abundances. However, we only use 0D in our
m-DAR models (q = 0) since 0D of type I and
type II MFGCs are equivalent. This is because
when q = 0, the abundance of gene or MFGC
is not weighed in the computation of 0D.

Fitting m-DAR models and constructing m-DAR
diversity profiles
Following Ma (2018a), who extended the clas-

sic species–area relationship (SAR) to a diver-
sity–area relationship (DAR), we use a basic
power law (PL) model to define the metage-
nomic diversity–area relationship (m-DAR):

qD ¼ cAz (2)

In Eq. 2, qD is metagenome diversity (Eq. 1) of
order q; A (“area”) is the number of subjects
whose metagenome diversity are sampled; and c
and z are fitted parameters. As applied to micro-
bial metagenomes, c can be thought of as the esti-
mated diversity of any single individual,
whereas the diversity scaling parameter z is the
rate of increase in metagenome diversity with
increasing number of individuals sampled.
We follow Plotkin et al. (2000) and Ulrich and

Buszko (2003) in modifying Eq. 2 to include a
third parameter, d:

qD ¼ cAzexp dAð Þ (3)

In this “power law with exponential cutoff”
(PLEC) model, d < 0 and exp(dA) eventually

Microbiome Research via DNA Sequencing Technologies  

Amplicon Sequencing (e.g., 16S-rRNA) 
generates (via OTU clustering): OTU 
(operational taxonomic units) tables 
(Schloss et al 2009, Bolven et al 2018) 

Whole-genome shotgun sequencing 
generates (via gene annotation): MGA 
(metagenomic gene abundance) tables 
(Bradley et al 2019, Zou et al  2019, 
Forster et al 2019)   

Ecological and Network Analyses with 
the OTU tables (e.g., Ma & Ellison 
2018, 2019, Ma et al. 2019)   

Generates (via Bioinformatics Pipeline) 
MFGC (metagenome functional gene 
cluster) table (Ma & Li 2018, Ma 2020c) 

Biogeography: DAR (Diversity-Area 
Relationship) (Ma 2018a, 2018b), DTR 
(Diversity-Time Relationship) (Ma 
2018c) & DTAR (Time-Area) (Ma 2019) 

Biogeography: The m-DAR 
(metagenome-DAR) in terms of MG 
(metagenomic genes) & MFGC 
(metagenome functional gene cluster) 

Towards a unifying microbiome biogeography of species- and gene-diversity  

Fig. 1. Diagram showing the bioinformatic pipelines and ecological tools to establish a unifying biogeography
for microbiome species and gene diversity.
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overwhelms the exponential function at very
large values of A, leading to an asymptotic value
of qD. Using this exponential decay term makes
sense because there are a finite number of people
and thus a finite diversity of metagenomes.

We use log-transformed versions of Eqs. 2, 3

ln Dð Þ ¼ ln cð Þ þ zln Að Þ (4)

ln Dð Þ ¼ ln cð Þ þ zln Að Þ þ dA (5)

to estimate the parameters of the models because
their computation is simpler; z is scale-invariant
in Eq. 4; and the ecological interpretation of z as
a scaling parameter is preserved in Eq. 5. On a
log–log plot, z is the slope of the linearized func-
tions. Fitting of Eqs. 4, 5 to the data was evalu-
ated using the linear correlation coefficients (r)
and associated P values.

There is a notable difference between the human
microbiome and assemblages of macrobes or
microbes in “natural” biomes. In the latter, we can
usually identify a natural spatial order or environ-
mental gradient among plants, animals, soil strata,
etc. But there is not a similar natural ordering
among humans (the hosts of humanmicrobiomes).
To deal with this absence of spatial ordering
among sampled human subjects, we first enumer-
ated all possible permutations of the ordering of
sample subjects. We then randomly selected 50
(for MG) or 100 (for MFGC) orderings and fit the
m-DAR models (Eqs. 4, 5) for each of permuta-
tions. We next eliminated those few poorly fitting
models (P > 0.05) and, for PLEC models (Eq. 5),
any model with Amax < 0 (which is biologically
infeasible). Finally, we used the averages of the
estimated parameters from each of the remaining
models from the permutated data sets as the esti-
mated parameters in the overallm-DARmodels.

The m-DAR profile
The relationship between diversity order q and

the diversity scaling parameter z from Eq. 2 is
defined as the m-DAR profile, similar to that for
species diversity (Ma 2018a).

Metagenomic maximal accrual diversity of
metagenome

Ma (2018a) derived the maximal accrual diver-
sity (MAD) in a cohort or population based on
the DAR-PLEC model (Eq. 3) as:

qDmax ¼ c � z
d

� �z
exp �zð Þ ¼ cAz

max exp �zð Þ (6)

for which the number of individuals (Amax)
reaching the maximum diversity (Dmax) is esti-
mated as:

Amax ¼ �z=d (7)

We then define the m-MAD profile as the set of
Dmax values corresponding to different diversity
orders q. qDmax can be interpreted as a proxy for
the so-called potential (“dark”) diversity: species
(OTUs) or metagenomes (MG or MFGC) that are
absent locally but present in regional or global
species pools (Partel et al. 2011, Real et al. 2017,
Ma 2019).

Pair-wise diversity overlap
Because of the assumption that “areas” of dif-

ferent sampled individuals are approximately
equal, the parameter z of the basic m-DAR model
(Eqs. 2 or 4) can be used to estimate the pair-wise
diversity overlap (PDO). The PDO, g, of two
individuals (i.e., the proportion of the new diver-
sity in the second area) is then:

g ¼ 2� 2z (8)

where z is the scaling parameter of basic m-DAR
model (Eqs. 2, 4). g can take on values from 0
(no overlap; z = 1) to 1 (complete overlap;
z = 0).
The m-PDO profile is the set of g values corre-

sponding to different diversity orders (q). It
approximates the similarity between a pair of
human metagenomes.

The ratio of individual to population diversity
We define the ratio of individual to population

accrual diversity as:

qRIP ¼ qc=qD (9)

where c and qD are estimated from Eq. 2 (or 4).
We further define the set of qRIP values corre-
sponding to different diversity orders q as the
RIP profile.
The RIP profile can be derived from a population

(i.e., sample cohort) of any size. In practice, using
qDmax in place of qD in Eq. 9 is more informative:

qRIP ¼ qc=qDmax (10)
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qRIP in Eq. 10 represents the average diversity
level an individual can represent in the sampled
cohort. This representation is based on two
assumptions. First, the sizes of sampled individ-
uals are approximately equal. Second, the first
subject sampled will not exert undue influence
on the estimation of c. The first assumption is lar-
gely true for the human microbiome. However,
the second assumption may not hold because
human microbiomes are very variable in compo-
sition (Ma 2018a, 2019). To account for this com-
positional variability, we used the random
permutation followed by averaging method
described above for estimating parameters for
Eqs. 4, 5. If the data sets do not allow for reliable
estimation of the MAD (e.g., the PLEC model
[Eq. 3, 5] fails to fit), we suggest using the pre-
dicted values from Eq. 2 in Eq. 9 to estimate qRIP.

Illustrative metagenome data sets
We used six metagenomic data sets of varying

sample sizes (n = 47–168) to illustrate the appli-
cation and interpretation of m-DAR models and
associated profiles of MAD, PDO, and RIP as a
function of q (Table 1). The six data sets consist of
three pairs of healthy vs. diseased groups, includ-
ing lean vs. overweight, healthy control vs. type
II diabetes, and healthy vs. IBD (inflammatory
bowel disease). These metagenomic data sets
were collected using standard protocols of the
human microbiome project (HMP) and have been
successfully used to demonstrate the extension of

ecological diversity in Hill numbers to metagen-
ome diversity and heterogeneity (Ma and Li
2018, Ma 2020c). Hence, it is natural to demon-
strate the scaling of metagenome diversity
(m-DAR), with the same data sets in the present
article. To maintain balanced sample sizes
between the healthy and diseased treatments
(groups), in some cases we randomly discarded
certain number of samples so that the model
parameters could be compared appropriately
between the healthy and diseased treatments. All
the metagenomic data sets are available in the
public domain (sources in Table 1) and the com-
putational codes used in this study consist of two
parts, the code for computing metagenome
diversity in Hill numbers was published in Ma
and Li (2018), and the code for fitting m-DAR
models is essentially the same as that used for fit-
ting the DAR of OTUs (Ma 2018a, b), except for
slight revision in the format of input data.

RESULTS

Metagenomic diversity–area relationships
Both the basic m-DAR power law (PL) model

(Eqs. 2, 4) and the PLEC model (Eqs. 3, 5) fit the
gut metagenome data well (P < 0.001; Table 2).
The scaling parameter (z) in Eq. 2 for metage-
nomic genes (MGs) ranged from 0.358 to 0.468
for diversity order q = 0; 0.264–0.363 for q = 1;
0.221–0.334 for q = 2; and 0.190–0.346 for q = 3
(Fig. 2). Estimates of z from the PLEC model

Table 1. Brief information on the metagenome data sets used to demonstrate m-DAR models.

Disease Treatments
No. of
samples

No. of samples
selected for m-DAR

No. of
genes†

No. of MFGC
(eggNOG)†

No. of
MFGC

(KEGG)† Reference

Obesity Lean 96 96 973,838
(26,969)

245 (2) 174 (2) Qin et al. (2010);
Chatelier et al. (2013)

Obesity Overweight 168 Randomly
sampled 96

937,187
(24,350)

239 (2) 171 (2) Qin et al. (2010);
Chatelier et al. (2013)

Type II
Diabetes

Healthy 74 74 523,793
(17,829)

223 (1) 144 (2) Qin et al. (2012)

Type II
Diabetes

Diseased 71 71 504,712
(23,219)

222 (2) 141 (3) Qin et al. (2012)

IBD Healthy 24 71 962,413
(30,600)

245 (2) 174 (2) Nielsen et al. (2014)

IBD Healthy
Relative

47 71 962,413
(30,600)

245 (2) 174 (2) Nielsen et al. (2014)

IBD UC 127 Randomly
sampled 71

838,009
(24,347)

236 (2) 167 (2) Nielsen et al. (2014)

† Values are expressed as mean with SE in parentheses.
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Table 2. Parameters of m-DAR (metagenome diversity–area relationship) models fitted for metagenomic gene
(MG) diversity, averaged from 50 times of re-sampling.

Treatment by
study case and
diversity order

m-DAR PL (power law) Model m-DAR PLEC (power law with exponential cutoff) Model

z ln(c) g R p N* z d ln(c) R p Amax Dmax N*

q = 0
Obesity
Lean 0.358 14.224 0.718 0.975 0.000 50 0.501 −0.005 13.969 0.994 0.000 94 6871100 50
Overweight 0.367 14.146 0.711 0.975 0.000 50 0.509 −0.005 13.890 0.993 0.000 96 6629101 50

Type II diabetes
Healthy 0.435 13.503 0.648 0.982 0.000 50 0.577 −0.007 13.279 0.994 0.000 86 4305968 50
Disease 0.468 13.439 0.617 0.977 0.000 50 0.617 −0.007 13.209 0.990 0.000 85 4554045 50

IBD
Healthy 0.376 14.110 0.702 0.976 0.000 50 0.525 −0.007 13.879 0.994 0.000 72 5951880 50
Disease 0.392 14.013 0.688 0.978 0.000 50 0.543 −0.007 13.781 0.995 0.000 74 5792650 50

Mean of HEA
(healthy)

0.390 13.946 0.689 0.977 0.000 50 0.534 −0.006 13.709 0.994 0.000 84 5709650 50

SE of HEA 0.023 0.224 0.021 0.002 0.000 0 0.023 0.001 0.216 0.000 0.000 7 750330 0
Mean of DIS
(diseased)

0.409 13.866 0.672 0.977 0.000 50 0.556 −0.007 13.627 0.993 0.000 85 5658598 50

SE of DIS 0.030 0.217 0.028 0.001 0.000 0 0.032 0.001 0.211 0.001 0.000 7 602755 0
q = 1
Obesity
Lean 0.325 12.432 0.748 0.954 0.000 50 0.474 −0.006 12.165 0.981 0.000 85 980004.2 50
Overweight 0.301 12.375 0.768 0.930 0.000 50 0.478 −0.007 12.057 0.972 0.000 73 831126.0 49

Type II diabetes
Healthy 0.321 11.721 0.751 0.941 0.000 50 0.489 −0.008 11.461 0.973 0.000 61 435659.0 49
Disease 0.363 11.679 0.714 0.940 0.000 50 0.534 −0.008 11.418 0.966 0.000 64 491949.4 46

IBD
Healthy 0.264 12.514 0.799 0.920 0.000 50 0.433 −0.008 12.251 0.966 0.000 53 757500.7 48
Disease 0.337 12.316 0.736 0.947 0.000 50 0.534 −0.009 12.007 0.982 0.000 57 831436.9 47

Mean of HEA
(healthy)

0.303 12.222 0.766 0.938 0.000 50 0.465 −0.007 11.959 0.974 0.000 66 724388.0 49

SE of HEA 0.020 0.252 0.017 0.010 0.000 0 0.017 0.001 0.250 0.004 0.000 9 158008.7 1
Mean of DIS
(diseased)

0.334 12.123 0.739 0.939 0.000 50 0.516 −0.008 11.827 0.973 0.000 65 718170.8 47

SE of DIS 0.018 0.223 0.016 0.005 0.000 0 0.019 0.001 0.205 0.005 0.000 5 113110.7 1
q = 2
Obesity
Lean 0.325 11.061 0.747 0.908 0.000 50 0.527 −0.007 10.699 0.956 0.000 71 247026.3 47
Overweight 0.265 11.063 0.798 0.811 0.000 50 0.501 −0.009 10.641 0.903 0.000 58 193637.8 45

Type II diabetes
Healthy 0.244 10.549 0.816 0.856 0.000 50 0.437 −0.009 10.248 0.922 0.000 49 99610.3 46
Disease 0.317 10.408 0.755 0.871 0.000 50 0.528 −0.010 10.096 0.916 0.000 51 113517.0 44

IBD
Healthy 0.221 11.266 0.835 0.820 0.000 50 0.437 −0.010 10.936 0.914 0.000 42 186203.9 44
Disease 0.334 10.950 0.740 0.890 0.000 50 0.579 −0.012 10.563 0.954 0.000 50 208940.3 45

Mean of HEA
(healthy)

0.263 10.958 0.799 0.862 0.000 50 0.467 −0.009 10.628 0.931 0.000 54 177613.5 46

SE of HEA 0.032 0.213 0.027 0.026 0.000 0 0.030 0.001 0.202 0.013 0.000 9 42771.5 1
Mean of DIS
(diseased)

0.305 10.807 0.764 0.858 0.000 50 0.536 −0.010 10.433 0.924 0.000 53 172031.7 45

SE of DIS 0.021 0.202 0.018 0.024 0.000 0 0.023 0.001 0.170 0.015 0.000 3 29588.9 0
q = 3
Obesity
Lean 0.346 9.945 0.729 0.879 0.000 50 0.561 −0.008 9.552 0.925 0.000 72 88601.1 46
Overweight 0.273 9.934 0.791 0.760 0.000 48 0.487 −0.008 9.578 0.847 0.000 59 64918.8 43
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(Eqs. 3, 5) were about 25% larger than those of
the basic PL model (Table 2). Regardless of
model, the differences in z between the healthy
and diseased individuals were comparatively
small, with the z-value being slightly, but not sig-
nificantly higher (P > 0.05) for all values of q

(Appendix S1: Table S1). Ma and Li (2018) pro-
vide additional estimates of metagenome diver-
sity (qD in Eq. 1).
The PLEC model did suggest an asymptote

for MG diversity (d < 0 and Dmax values in
Table 2) and a corresponding number of

(Table 2. Continued.)

Treatment by
study case and
diversity order

m-DAR PL (power law) Model m-DAR PLEC (power law with exponential cutoff) Model

z ln(c) g R p N* z d ln(c) R p Amax Dmax N*

Type II diabetes
Healthy 0.220 9.669 0.835 0.804 0.000 50 0.404 −0.009 9.379 0.883 0.000 48 37648.9 46
Disease 0.319 9.350 0.752 0.809 0.001 49 0.505 −0.010 9.111 0.840 0.001 52 40409.1 39

IBD
Healthy 0.190 10.088 0.859 0.729 0.001 46 0.382 −0.010 9.831 0.825 0.000 39 51321.6 41
Disease 0.294 9.676 0.774 0.760 0.001 46 0.523 −0.012 9.369 0.827 0.000 45 50731.4 41

Mean of HEA
(healthy)

0.252 9.900 0.808 0.804 0.000 49 0.449 −0.009 9.587 0.878 0.000 53 59190.5 44

SE of HEA 0.048 0.123 0.040 0.043 0.000 1 0.056 0.001 0.132 0.029 0.000 10 15225.8 2
Mean of DIS
(diseased)

0.295 9.653 0.773 0.776 0.001 48 0.505 −0.010 9.353 0.838 0.000 52 52019.8 41

SE of DIS 0.013 0.169 0.011 0.016 0.000 1 0.010 0.001 0.135 0.006 0.000 4 7104.6 1

Note: *N = The number of times (number of random re-samplings) that the m-DAR model was successfully fitted.

Fig. 2. Scaling parameter (z) of the m-DAR (metagenome diversity–area relationship) for the metagenomic
genes (MGs) of the human gut metagenome.
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individual subjects (Amax in Table 2) needed to
reach the asymptote. Dmax, the maximal accrual
diversity (MAD) of MGs in the gut metagen-
ome, ranged from 4.3 to 6.8 × 106 (Table 2;
Fig. 3). These estimates of gene richness at the
population level are an order of magnitude
greater than the average gene richness per indi-
vidual (Table 1). The standard errors of the
MAD of MGs in the gut metagenome (Table 2)
are of the same order of magnitude as the aver-
age gene richness per individual (Table 1). That
is, the amount of population-level variation of
MAD is close to the total number of metage-
nomic genes within an individual and represents
an exceptionally high inter-subject heterogeneity.
To the best of our knowledge, no other
approaches are available for estimating the afore-
mentioned parameters. The parameter c ranged
from ≈ 1 × 104 to 1.5 × 106 and is a rough esti-
mate of the number of metagenomic genes (MG)
in one individual (A = 1).

As would be expected, the pair-wise diversity
overlap (PDO) profile exhibited the opposite pat-
tern of the m-DAR profile (Table 2). This is

because z in the m-DAR profile quantifies the dis-
similarity of neighboring individuals whereas g
in the PDO profile quantifies the overlap or simi-
larity between individuals.

Metagenome functional gene cluster diversity–
area relationships
The basic m-DAR PL model successfully fit all

MFGC randomizations (n = 100) for q = 0, but
not more than 80% of the randomizations for
q > 0. Thus, we applied our m-DAR models for
MFGCs only for MFGC richness (i.e., q = 0).
Overall, the z values for MFGCs were ≈80%

smaller than those estimated for MGs (compare
values in Table 3 with those in Table 2) and,
again, were higher when estimated using PLEC
models than when using PL models (Table 3). z
values were higher for MFGCs derived from
KEGG databases (Table 3); for MFGCs derived
from either KEGG or eggNOG databases, the
mean z was slightly but not significantly higher
among diseased individuals (Appendix S1:
Table S2). Similarly, Dmax did not differ among
individuals in the different diagnostic groups

Fig. 3. MAD (maximum accrual diversity: Dmax) of the m-DAR (metagenome diversity–area relationship) for
the MG (metagenomic genes) of the human gut metagenome.
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(P > 0.05; Appendix S1: Table S2, Fig. S2). Finally,
The PDO for MFGCs was much larger than that
of MGs (Appendix S1: Fig. S1, Table 2). The high
PDO observed for MFGCs further illustrated the
high functional similarity among individuals.

The ratio of individual diversity to population
accrual diversity

The average individual has 20–30% of the
MGs and ≈ 65% of the MFGCs of the whole
population (Table 4). The RIP—the ratio of the
average individual diversity (c in the m-DAR
PL model) to the accrued diversity of the sam-
pled population (or cohort) (Dmax)—was

slightly but not significantly (P > 0.05) larger
for the healthy individuals than the diseased
ones. The RIP also increased with q, suggesting
that for higher orders of diversity, any individ-
ual is more representative of the population to
which they belong. Note that the parameter c in
the m-DAR PL model (but not in the PLEC
model) was used to define the RIP since, strictly
speaking, the c from PL model is an estimation
of the diversity of one area size. The parameter
c estimated for the PLEC model co-varies with
the third parameter d and is not an unbiased
estimation of the diversity of one individual
(Area = 1).

Table 3. Parameters of m-DAR (metagenome diversity–area relationship) models fitted for MFGC (metagenome
functional gene cluster) diversity, averaged from 100 times of re-sampling.

Treatment by study
case and diversity
order

PL (power law) model PLEC (power law with exponential cutoff) model

z ln(c) g R p N z d ln(c) R p Amax Dmax N

MFGC (eggNOG)
q = 0
Obesity

Lean 0.060 5.615 0.957 0.929 0.000 100 0.100 −0.001 5.545 0.977 0.000 67 352 100
Overweight 0.068 5.577 0.951 0.951 0.000 100 0.103 −0.001 5.516 0.982 0.000 80 352 100

Type II diabetes
Healthy 0.079 5.466 0.943 0.973 0.000 100 0.104 −0.001 5.427 0.987 0.000 89 327 100
Disease 0.075 5.462 0.947 0.972 0.000 100 0.100 −0.001 5.423 0.988 0.000 79 318 100

IBD
Healthy 0.064 5.599 0.954 0.939 0.000 100 0.104 −0.002 5.538 0.981 0.000 53 346 100
Disease 0.079 5.540 0.944 0.958 0.000 100 0.115 −0.002 5.484 0.983 0.000 65 347 100

Mean of HEA
(healthy)

0.068 5.560 0.952 0.947 0.000 100 0.103 −0.002 5.503 0.982 0.000 70 342 100

SE of HEA 0.006 0.047 0.004 0.013 0.000 0 0.001 0.000 0.038 0.003 0.000 10 8 0
Mean of DIS
(diseased)

0.074 5.526 0.947 0.960 0.000 100 0.106 −0.001 5.475 0.984 0.000 75 339 100

SE of DIS 0.003 0.034 0.002 0.006 0.000 0 0.005 0.000 0.027 0.002 0.000 5 11 0
MFGC (KEGG)
q = 0
Obesity

Lean 0.085 5.293 0.939 0.950 0.000 100 0.130 −0.002 5.213 0.983 0.000 77 284 100
Overweight 0.087 5.270 0.938 0.965 0.000 100 0.125 −0.001 5.201 0.989 0.000 88 280 100

Type II diabetes
Healthy 0.108 5.097 0.922 0.966 0.000 100 0.148 −0.002 5.033 0.983 0.000 77 252 100
Disease 0.116 5.093 0.916 0.964 0.000 100 0.161 −0.002 5.025 0.982 0.000 73 258 100

IBD
Healthy 0.094 5.252 0.933 0.967 0.000 100 0.129 −0.002 5.198 0.984 0.000 75 277 100
Disease 0.098 5.225 0.930 0.969 0.000 100 0.139 −0.002 5.163 0.990 0.000 69 273 100

Mean of HEA
(healthy)

0.096 5.214 0.931 0.961 0.000 100 0.136 −0.002 5.148 0.983 0.000 76 271 100

SE of HEA 0.007 0.060 0.005 0.005 0.000 0 0.006 0.000 0.058 0.000 0.000 1 10 0
Mean of DIS
(diseased)

0.100 5.196 0.928 0.966 0.000 100 0.142 −0.002 5.130 0.987 0.000 76 271 100

SE of DIS 0.008 0.053 0.006 0.001 0.000 0 0.010 0.000 0.054 0.002 0.000 6 7 0
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DISCUSSION

Current assessments of biodiversity have gen-
erally ignored the diversity of genomes or meta-
genomes for at least two reasons. First, the tools
for identifying (meta)genomes have been devel-
oped only recently and have been readily accessi-
ble only for the last two decades. Second,
theories of biodiversity and biogeography devel-
oped for species have not yet been extended to
use metagenomic data or included a metage-
nomic dimension of biogeography. Boon et al.
(2013) identified a central challenge in microbial
community ecology: “the delineation of appro-
priate units of biodiversity, which can be taxo-
nomic, phylogenetic, or functional in nature.”
The m-DAR we have developed provides a first
step toward the theoretical integration of metage-
nomic data into models of biodiversity.

In addition to developing m-DAR models
(Eqs. 2–5) for describing how metagenomic
genes (MGs) and functional gene clusters
(MFGCs) scale with area (≡ number of individu-
als sampled), we defined four metagenome pro-
files for characterizing the biogeography of
microbial metagenomes based on the parameters
of the m-DAR models. We used these models
and profiles to explore the diversity of metage-
nomic data sets of human gut microbiomes.

The estimates of z in the m-DAR power law
model for these gut microbiome data sets
(Table 2) for q = 0 are similar to estimates from
models of the species-DAR for the gut micro-
biome reported in Ma (2018a). That is, the scaling
rates (z) of gene richness and species richness
(the carriers of those genes) are close to one

another, but the scaling rates of diversity (q > 0)
for MG are much larger than those of individual
species. Indeed, the potential total number of
MGs (q = 0) is nearly seven million. Among
these, about 15% (≈1 million) are commonly
recovered (i.e., for q = 1) and 3% are dominant.
Despite known relationships between micro-
biome OTU diversity and disease (Ma et al. 2019,
Ma 2020a, b), we found no significant influence
of the disease on the scaling of MG diversity.
However, the values of c reported here for MGs
are several orders of magnitudes larger than
those of microbial species (Ma 2018a, b). This is
expected given that the gene richness and diver-
sity are orders of magnitudes higher than species
richness and diversity. Although we used pairs
of healthy vs. diseased groups, the focus of this
study was to demonstrate the feasibility of a uni-
fied DAR for species and gene diversity (or eco-
logical and genetic diversity), rather than to
determine the difference in DAR parameters
between healthy and diseased individuals.
Although we could explore m-DAR models for

MG diversity of different orders (up to q = 3), we
successfully fit m-DAR models for MFGCs only
for q = 0. Because an MFGC is a functional clus-
ter of MGs, we would expect MFGCs to be much
more homogenous than MGs among individuals.
Thus, the number of MFGCs (i.e., MFGC rich-
ness) may be a sufficiently informative measure
of metagenomic functional diversity. If this is
true, m-DAR modeling of MFGC should be lim-
ited to the richness of the MFGC (i.e., q = 0).
If we limit the diversity order q for MFGC to

q = 0, we might better describe its accrual as
“maximum accrual richness” (MAR), not maxi-
mum accrual diversity. To the best of our knowl-
edge, this has not been estimated previously. We
observed that the MAR of MFGC (in a sampled
population or cohort) is close to the average
number of MFGCs of an individual metagenome.
This supports other work (Ma and Li 2018, Ma
2020c) that found high similarity (homogeneity)
among individuals in number of observed
MFGCs.
Zhou et al. (2008) used the traditional species–

area relationship (SAR) to estimate the number
of metagenomic functional genes in a forest soil
microbiome. Perhaps restricted by then available
sequencing technology a decade ago, their study
was limited to functional gene clusters without

Table 4. RIP (the ratio of individual diversity to popu-
lation MAD), averaged from the RIP of the three
case studies on the human gut metagenome (con-
verted to percentage).

Diversity
order (q)

MG MFGC

Average
RIP (%)

for
healthy

Average
RIP (%)

for
diseased

Average
RIP (%)

for
healthy

Average
RIP (%)

for
diseased

q = 0 20.0 18.6 67.8 66.6
q = 1 28.1 25.6 N/A N/A
q = 2 32.3 28.7 N/A N/A
q = 3 33.7 29.9 N/A N/A
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measuring the metagenomic genes. Their esti-
mate of z, ranging from 0.048 to 0.096, is similar
to the estimate of z we found for the MFGC of
the human gut microbiome (Table 3). Future
work on other microbiomes are needed to deter-
mine the generality of this result.

Another area of future work would be to
assess the diversity–time relationship (Ma 2018c)
for metagenomes. Such an extension would
require long time series of metagenomic data
from single individuals or localities, which do
not yet exist. As whole-genome sequencing costs
continue to fall, however, such data should
become available and it should become feasible
to demonstrate the spatial–temporal changes in
metagenomes.

Our work has certain limitations. First, suc-
cessful estimation of the asymptote of the PLEC
model depends on the sign of asymptotic param-
eter d (i.e., d < 0). Although this could be
resolved by using non-linear optimization meth-
ods to fit the PLEC models (e.g., Ma 2020d) while
manually imposing the constraint that d < 0, this
constraint may change the fitting of the other
parameters. In particular, it would be expected
that the values of z in both the PL and PLEC
models should have comparable ranges, but this
cannot be guaranteed with non-linear optimiza-
tion algorithms. Further, non-linear optimization
can be far more computationally intensive than
linear regression; given the sheer number of
metagenomic genes, even linear regression is
surprisingly computationally intensive.

Second, we still lack definitive guidance in
selecting a proper DAR model. Indeed, there are
more than a dozen alternative SAR models
(Tjørve 2003, 2009), any of which could be used
to model the m-DAR. We used the PLEC model
primarily because of its asymptotic properties,
which have been recognized previously (e.g.,
Plotkin et al. 2000, Ulrich and Buszko 2003) and
derived explicitly in Ma (2018a).

Third, our approach did not consider the issue
of sample completeness (Chao et al. 2020) to
avoid the added complexity from accumulation
of additional samples in DAR modeling. Addi-
tional research is needed on the influence of sam-
ple completeness on the accumulation of errors
associated with the sample accumulation.

Nonparametric approaches, such as those used
by Chao and Jost (2015) and Chao et al. (2020) to

estimate macrobial biodiversity, may help
resolve the three limitations we have identified
so far. Finally, a recent advance in coupling the
PLEC model to Taylor’s power law of variance-
mean could be used to estimate confidence inter-
vals for estimates of metagenome diversity and
potential diversity (Dmax) (Ma 2021).
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