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Summary

¢ Anthropogenetic climate change has caused range shifts among many species. Species dis-
tribution models (SDMs) are used to predict how species ranges may change in the future.
However, most SDMs rarely consider how climate-sensitive traits, such as phenology, which
affect individuals' demography and fitness, may influence species' ranges.

¢ Using > 120000 herbarium specimens representing 360 plant species distributed across the
eastern United States, we developed a novel ‘phenology-informed’ SDM that integrates phe-
nological responses to changing climates. We compared the ranges of each species forecast
by the phenology-informed SDM with those from conventional SDMs. We further validated
the modeling approach using hindcasting.

¢ When examining the range changes of all species, our phenology-informed SDMs forecast
less species loss and turnover under climate change than conventional SDMs. These results
suggest that dynamic phenological responses of species may help them adjust their ecological
niches and persist in their habitats as the climate changes.

¢ Plant phenology can modulate species’ responses to climate change, mitigating its negative
effects on species persistence. Further application of our framework will contribute to a gener-
alized understanding of how traits affect species distributions along environmental gradients

turnover, trait evolution.

and facilitate the use of trait-based SDMs across spatial and taxonomic scales.

Introduction

The geographic distribution of species is strongly influenced by
climate (Parker, 1963; Whittaker, 1975; Kelly & Goulden,
2008). As global anthropogenic change intensifies, a better
understanding of the abiotic and biotic factors that shape species
distributions at large geographic, temporal, and taxonomic scales
is urgently needed to forecast species’ future range shifts and their
associated consequences for regional and global biodiversity pat-
terns. Species distribution models (SDMs) are the primary tool
used to make these forecasts. Species distribution models apply
associations between the known occurrences of individual species
and co-incident environmental variables, such as temperature
and precipitation, to model current species distributions and
forecast future ones (Thomas ez 4/, 2004; Daru & Rock, 2023;
Mi et al., 2023).

Despite their widespread use and ease of application, ‘conven-
tional’ SDMs are based solely on abiotic (especially climatic) fac-
tors (i.e. the ‘fundamental’ niche, semsu Hutchinson, 1957).
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Conventional SDMs thus ignore important functional traits and
biotic interactions that also may modulate species persistence and
fitness through a variety of mechanisms (Rosenzweig, 1987; Wes-
toby & Wright, 2006; Benito Garzén et al., 2019). Although
some studies have incorporated biotic traits into SDMs (Pollock
et al., 2012; Bosch-Belmar ez al., 2021), such ‘trait-based’ SDMs
still have not been adopted widely. Moreover, most existing
trait-based SDMs require additional process-based approaches
that explicitly model physiology (Higgins er al, 2012),
climate-dependent phenology (Chuine & Beaubien, 2001;
Morin et al., 2009), or demography (Treurnicht ez al, 2016).
They also usually require detailed mechanistic information link-
ing trait variation and fitness, precluding analysis of less-studied
taxa for which such information may not be available, and conse-
quently, limiting the generality of inferences regarding predicted
and forecasted species distribution patterns across space, time,
and taxa (Chuine & Beaubien, 2001; Evans et al, 2016).
Recently developed hierarchical traic-based SDMs that directly
integrate functional traits do not require the complex
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parameterization necessary for earlier process-based models and
hold tremendous promise for forecasting more general responses
across broad spatial and taxonomic scales (Pollock ez al, 2012;
Vesk er al, 2021). However, to our knowledge, hierarchical
trait-based SDMs implemented to date are limited in two ways.
First, they normally use a single trait value for each species and
ignore intraspecific differences, which represents an important
component of trait variation. Second, they have not accommo-
dated the potential for intraspecific changes in the expression of
these traits resulting from spatial and temporal shifts in abiotic
conditions, such as those predicted to occur as the climate con-
tinues to change.

In general, intraspecific variations can be generated through
many mechanisms including phenotypic plasticity and local
adaptation (Violle ez al, 2012). Plasticity traits can respond
rapidly to environmental changes and are the result of when one
genotype expresses different phenotypes across environmental
gradients (Nicotra ez al., 2010). Local adaptation is the result of
selection where genetically distinct populations of a species are
adapted to specific environmental conditions (Savolainen
et al., 2013). Plasticity and adaptation are critical in shaping geo-
graphic variation in functional traits across the species range
(Savolainen et al., 2013; Valladares e al., 2014). To improve the
generality of trait-based SDMs and accommodate climate-driven
changes in trait expression, we developed a new trait-based SDM
that directly incorporates both intraspecific variation in traits and
their dynamic response to climate change. Specifically, our
method simultaneously models historical data linking traits, cli-
mate, and species distributions to forecast where and when clima-
tically suitable areas will exist for focal species (Fig. 1). We tested
the utility of our model using a key component of life-history:
phenology — the timing of recurrent life-history events such as
leaf-out and senescence, budding, flowering, and fruiting. The
timing of any of phenological events may respond to climate and
ongoing climate change, determine the exposure of reproductive
structures to potentially stressful abiotic conditions, influence the
ability of a species to capture resources, and affect its interactions
with other species (Elzinga et al., 2007; Meineke ez al., 2021).

Survival and reproduction often depend on the timing of
life-cycle events (Forrest & Miller-Rushing, 2010). Conse-
quently, flowering/fruiting time is often subject to natural selec-
tion, especially in temperate regions (Munguia-Rosas ez al.,
2011), and may have a strong effect on individual fitness in wild
populations (O’Neil & Schmitt, 1997). Moreover, phenological
shifts resulting from climatic change could be the primary factor
limiting species’ distributions in some ecosystems (Chuine, 2010;
Hereford er al., 2017). Phenology also can exhibit substantial
intraspecific variability as a function of climatic variation across a
species range (Park ez al., 2019; Love & Mazer, 2021). Such intras-
pecific variability remains unexplored for most species but may
confer resilience and increase individuals’ fitness under changing
climates (Richardson ez a/, 2017; Benito Garzén et al., 2019).

Our overarching goal was to create a trait-based framework for
a SDM and use it to integrate phenological responses into fore-
casts of plant species range shifts in response to ongoing climatic
changes (Fig. 1). We applied our new phenologically informed
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trait-based SDM to a dataset of > 120 000 herbarium specimens
that includes nearly 400 000 phenological observations (i.e. of
buds, flowers, and fruits) from 360 plant species growing in the
eastern United States (i.e. from Maine to Florida and westward
to West Virginia and Georgia). We then used this trait-based
SDM to predict changes in species ranges and regional biodiver-
sity as a function of future climate change scenarios.

Specifically, we: modeled relationships between climate and
phenology to estimate the phenological responses of individual
species to varying climatic factors; validated the modeling
approach using hindcasting; forecast the range of each species
under current and future environmental conditions; and com-
pared the results of our phenologically informed trait-based SDM
with those generated by conventional SDMs. The results illus-
trate whether and how phenology shapes species’ distributions
along environmental gradients, and how phenology may modu-
late species’ responses to ongoing and future climate change.
Importantly, although the analyses in this paper focused on phe-
nology, our SDM can incorporate any fitness-related functional
traits that covary with abiotic factors across space, time, and taxa.

Materials and Methods

Species selection and phenological data collection

We used specimens from two of the most comprehensive digi-
tized regional floras in the world: the Consortium of Northeast-
ern Herbaria (CNH, https://neherbaria.org/portal/) and the
Southeast Regional Network of Expertise and Collections (SER-
NEC, https://sernecportal.org/portal/). We selected species and
specimens for analysis when: there were at least 50 unique collec-
tions of the species across space and time in the eastern United
States; the specimens included both an exact collection date and
at least county-level location information; and the specimens had
easily identifiable and quantifiable buds, flowers, and fruits.
Applying these criteria yielded 124 847 total herbarium speci-
mens representing 360 species that we used in our models and
analyses. These species vary in life history, growth form,
and native status (i.e. native or not to the eastern United States;
see details in Supporting Information Table S1). Information on
species’ growth form and native status was derived from the Uni-
ted States Department of Agriculture PLANTS Database
(hteps://plants.isda.gov/).

Phenological data extraction

Crowdsourcers hired through Amazon’s Mechanical Turk service
(MTurk; heeps://www.mturk.com/) counted the number of each
type of structure (i.e. buds, flowers, and fruits) present on
each specimen using the CrowdCurio platform (Willis
et al., 2008). Each specimen was scored independently by at least
three crowdsourcers. We estimated the reliability of each crowd-
sourcer and their data following Park ez al. (2019). Specifically,
each 10-image set scored by one person included nine unique
images and one duplicate image randomly selected from the
other nine. The nine images plus the duplicate image were
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Fig. 1 Phenology-informed species distribution model (SDM) workflow. Predicted phenology (peak budding, flowering, and fruiting time (Day of Year,
DQY)), ascertained from > 120 000 herbarium specimens and c. 400 000 phenological observations under both current and future climates, was estimated
for each species in each grid cell based on species-specific phenology—climate relationships. We then built phenology-informed SDMs to test whether
phenology mediates responses of individual plants to environmental gradients, and forecast species distributions and regional diversity under future climate
scenarios. To validate model reliability, we hindcasted our model using historical data to project species distributions before 1950 and compared them with
actual species distributions recorded before 1950.
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presented to each crowdsourcer in a random order. We then cal-
culated a reliability score for each crowdsourcer based on the data
for each 10-image set. The absolute differences between the two
duplicate specimens in counts of buds, flowers, or fruits, were
separately divided by the total counts for each phenological state,
and then subtracted from 1 (Eqn 1):

Eqn 1

Reliability — 1_( |countl —count2| )

|countl + count2|

The reliability score ranged from 0 (unreliable) to 1 (reliable).
Specimen observations scored by crowdsourcers with a reliability
score of zero were excluded from the analysis (Park ez 4/, 2019).
If an individual received a reliability score of zero for any pheno-
logical phase, the reliability scores for that individual’s counts of
the other phenological states were also set to zero (and similarly
excluded from the analyses). Our final dataset included a total of
393610 phenological observations spanning 124 yr (1895-
2018).

We calculated the median number of buds, flowers, and fruits
from the multiple phenological observations for each specimen.
We then estimated the day of year (DOY) of ‘peak’ budding,
flowering, and fruiting if their buds, open flowers, or fruits sepa-
rately represented >50% of the total number of reproductive
structures (Park ez al, 2019). Two species each were excluded
from the ‘peak budding’ category (Primula mistassinica and Sar-
racenia rubra) and the ‘peak fruiting’ category (Calopogon barba-
tus and Narcissus poeticus) because there were no specimens of
these species at these developmental stages. Of the original
124 847 herbarium specimens, 29 094 specimens were scored as
being at peak budding (representing 358 species), 55 767 speci-
mens at peak flowering (representing 360 species), and 37 071
specimens at peak fruiting (representing 358 species).

Species distribution data

County-level species’” distribution data were obtained from the
Biota of North America Program’s (BONAP; http://www.bonap.
org/) North American Plant Atas (NAPA; Kartesz, 2015; accessed
November 2022). These data are available as binary occurrences
(i.e. presence/absence) for 3067 counties in the United States,
excluding Alaska and Hawai’i. We supplemented the species’ dis-
tribution records from BONAP using additional data from the
GBIF database (https://www.gbif.org) and all available specimen
records in the CNH and SERNEC database. Most (x~70%) of
these additional data points (i.e. GBIF + NH + SERNEC) repre-
sented specimens collected between 1960 and 2000. We then
transformed county-level distribution maps into equal-area grid
cells with a resolution of 40 X 40-km (see details in Methods S1).

Environmental data

Climatic data of specimen localities We extracted average
monthly temperature and precipitation data (1895-2018) at a
4-km resolution from PrisM (product AN81m, http://prism.
oregonstate.edu/) to characterize the climate of the locality where
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and when each specimen was collected. Following Park
et al. (2022), we used the climatic data for the county centroid if
precise coordinate data were not available for historical specimen
records. Previous studies found that within-county climatic varia-
tion had little effect on estimates of phenological response in the
(Park & Davis, 2017). Based on
the extracted monthly temperature and precipitation data, we

eastern United States

estimated annual mean temperature (abbreviation in Worldclim:
biol), temperature seasonality (bio4), annual precipitation
(bio12), and precipitation seasonality (biol5) for each locality—
year combination and assigned these values to corresponding spe-
cimens. These climatic variables have been shown to be strongly
associated with plant budding, flowering, and fruiting times
(Park ez al., 20195 Li er al., 2021). Although these variables are
calculated over periods over which ephemeral species might not
be present, spatiotemporal variation in mean annual climatic
conditions tends to be correlated with variation of narrower sea-
sons within a year (7> 0.7). Therefore, these variables may cap-
ture climatic variation relevant to all species.

Environmental data used for modeling species’ distribu-
tions ‘Recent’ (1970-2000) and future (2061-2080; henceforth
referred to as “2070s’) climatic data at 2.5-arc-minute (¢. 5-km)
resolutions were obtained from WorldClim (https://www.
worldclim.org/, v.2.1; all 19 climatic variables: biol-bio19;
Table S2). Elevation data with a 30-arc-seconds spatial resolution
(c. 1-km) were obtained from the US Geological Survey. We also
included five soil variables — sand content, clay content, silt con-
tent, bulk density, and coarse fragments — because previous stu-
dies have demonstrated that soil structure may improve the fit of
SDMs (Figueiredo er al., 2018). We calculated the mean values
of each of these soil variables at two soil depths (0-5 and 5—
15cm) using soil data from the SoilGrids250m database
(hteps:/Iwww.soilgrids.org/) and assumed that these values would
be constant through time. We did not include soil chemical vari-
ables that may be highly temporally variable. The values for cli-
mate, soil, and elevation data assigned to each 40 X 40-km grid
cell were the means of all data points within it.

Future climatic projections were derived from the general cir-
culation models (GCMs) used by the Coupled Model Intercom-
parison Project Phase 6 (Eyring er al, 2016; CMIP6) for four
Shared Socio-economic Pathways (SSPs). We used the most
extreme, SSP5-8.5 projections, which have similar 2100 radiative
forcing levels as its predecessor (i.e. Representative Concentration
Pathway: RCP 8.5). To account for potential uncertainties in
projections induced by different GCMs, we forecast future spe-
cies distributions using six different GCMs: ACCESS-CM2,
CMCC-ESM2, GISS-E2-1-G, HadGEM3, INM-CM4-8, and
MIROCS.

Statistical modeling

Relationships between climate and phenology We first applied
linear mixed models (LMMs) to all herbarium specimens pooled
across the 360 species to identify species-specific relationships
between plant phenology and climatic variables. Separate but
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identically structured models were built for peak budding, flow-
ering, and fruiting. For each full model, we used the DOY for
the phenological state recorded for each specimen as the response
variable. Predictor variables in the full model included: the year
of specimen collection, four bioclimatic variables (annual mean
temperature, temperature seasonality, annual precipitation, and
precipitation seasonality; all centered and scaled), two
species-level plant traits (growth form and native status), and
their two-way interactions (bioclimatic variables X Growth form;
bioclimatic variables X Native status) as fixed terms. The full
model also included the species and sampling locations as ran-
dom effects for the intercept, and species as a random effect for
the slope for each of the environmental variables. The eight inter-
action terms between native status or growth form and climate
indicated whether the effect on phenology of each of the four cli-
matic variables depended on growth form or native status. We
did not find obvious nonlinear relationships between DOY and
any climatic variables in the preliminary analysis for most species,
so we did not include quadratic terms in our models.

All models were fitted using the ‘lmer’ function in the LMERT-
EST package (Kuznetsova ez al., 2017; v.3.1-2) of the R software
system (v.4.2.1). The significance of the predictor variables’
effects in mixed effects models was evaluated using the z distribu-
tion to obtain P-values from the Wald #values provided by the
model output (Luke, 2017). We also checked residuals of all
models to ensure that all assumptions were met and used Moran’s
I to confirm that there was no evidence of spatial autocorrelation.
No models showed significant spatial autocorrelation (P> 0.05).
To predict the peak budding, flowering, and fruiting date of each
current and future species grid-cell combination, we used the
‘predict’ function in the base STATS package (v.4.0.0) with fits
of the models previously described and the estimated values of
recent and future biol, bio4, bio12, and biol5 of each grid cell.
We further checked our model with phylogenetic LMM to exam-
ine whether our results were affected by phylogenetic relationship
among species (see Methods S2 for details in construction of phy-
logenetic tree and Methods S3 for phylogenetic linear model;
Tables S3—S6). We found no substantial differences in the results
between the LMMs described above and those that accounted for
phylogenetic relationships.

Constructing phenology-informed SDMs We quantified how
peak budding, flowering, and fruiting dates (DOY) separately
influenced the effects of environmental change on the species’
probability of occurrence. All Worldclim bioclimatic variables
may affect plant distributions, and these variables are often highly
correlated. To avoid model overfitting, we first divided the 19
WorldClim environmental variables and the five soil variables
into four groups (Table S2): mean temperature (biol, bio5, bio6,
bio8, bio9, bio10, and biol1); mean precipitation (biol2, biol3,
biol4, biol6, biol7, biol8, and biol9); climatic fluctuation
(bio2, bio3, bio4, bio7, and bio15); and soil variables. Principal
component analysis (PCA) was then used to reduce the dimen-
sionality of each group using the ‘prcomp’ function from the
STATS package (v.4.0.0). In the subsequent analyses, we used
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either one or two principal component scores (PCs) as predictor
variables in our models (see Methods S4; Fig. S1). Elevation was
also included as a predictor variable. Our final phenology-
informed SDMs kept elevation, the aforementioned seven PCs
(i.e. one PC for temperature, and two PCs for each of other
environmental group) and the predicted grid-cell level phenol-
ogy, all of which were weakly or moderately correlated (11 < 0.7;
Table S7).

We used generalized linear mixed models (GLMMs) as the fra-
mework for our phenology-informed SDM  (Pollock
et al., 2012). We fitted GLMMs using restricted maximum likeli-
hood (REML) with the R package LMER4 (Nakagawa & Schiel-
zeth, 2013; v.1.1-27). We fitted a random intercept, random
slope binomial model with a logit link function to species X grid
cell presence/absence data (Eqns 2-5).

Pr(Yij = 1) = logit_1 (a[,-] + Sppip X Environmentjk) Eqn 2

In this base model, the logit probability that species 7 occurs at
the jthof 1,2, 3, ..., 1158 grid cells is equal to an intercept term
plus the product of a matrix of eight environmental variables (7
PCs and elevation; Environmentj) and a vector of eight coeffi-
cients (S4(;). Here, k represents environmental variables. The
parameters 4;) and Sy(;) differed among species:

a;) ~ Normal (i, 0) Eqn 3
The submodel for | includes the parameter p, which repre-
sents the average probability of occurrence (on a logit scale)
among species within a hypothetical grid cell, and the parameter
o, which is the degree to which a given species departs from aver-
age probability of occurrence. The parameter Sy; indicates the
response of a given species to the relevant environmental
variables.
Sk = Byjip + Cr ¥ Phenology[i] Eqn 4
In the submodel for Sy, its estimate is calculated as the inter-
cept By plus the coefficient matrix C, and matrix of trait values
Phenology ;. Phenology; is measured as the day of year (DOY).
The intercept By;) is modeled as:
By ~ Normal(U[k], T[k]) Eqn 5
where U indicates the average response of species to environ-
mental variables and 7y reflects the degree to which each species
departs from the among-species average response. C; describes
how plant phenology regulates the probability of occurrence of
an individual species in a certain environment (i.e. DOY X PC[£]
interaction coefficients). For example, positive values of C} sug-
gest that a high value of DOY (i.e. later phenology) increases
the probability of occurrence of a species under high values of the
focal environmental variable. We also added species as a random
component for the slope of occurrence vs environment, which
allowed us to explore species-specific differences in responses to
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environmental variables. We also constructed conventional
SDMs without phenological information (i.e. only Eqns 2, 3) to
compare the results of phenology-informed and conventional
SDMs. In conventional SDMs, we also included species as a ran-
dom component.

To assess model performance, we calculated the conditional R
reflecting the total variance explained (Nakagawa & Schiel-
zeth, 2013). We also calculated the area under the curve (AUC)
with the PROC package (Robin er al, 2011; v.1.16.1). Area
under the curve represents the predictive accuracy of the model
and ranges from 0.5 to 1 (1 is the highest accuracy). We then
converted the probability of occurrence of each species X
grid-cell combination into binary maps. We adopted the thresh-
old that maximized the specificity and the sensitivity, using the
ROCR package (Sing ez al., 2005; v.1.0-11). If the probability of a
species occurrence in a given grid cell was higher than this thresh-
old (Table S1), then the species was considered to be present in
that grid cell.

Model validation through hindcasting To validate the reliabil-
ity of our model, we created both phenology-informed SDMs
and conventional SDMs using the distribution and phenology
records collected between 1970 and 2022 for 57of annual herb
species, and then hindcast the models using historical climatic
data to project species distributions before 1950 (see Methods S5
for details of hindcasting).

Data analyses

We calculated three metrics that reflect potential changes in the
areas suitable for species occurrence under future climate change
(combining all GCMs): the proportion of the currently occupied
range that is forecast to have high suitability in the future (i.e.
range persistence; probability of occurrence > threshold); the
proportion of the currently occupied range forecast to have low
suitability (i.e. range retreat; probability of occurrence < thresh-
old); and the proportion of the currently unoccupied range fore-
cast to have high suitability (i.e. range expansion). Present and
future suitable areas were determined, respectively, from the
number of grid cells in which a species currently occurs and
the number in which it is forecasted to occur in the 2070s. To
examine whether phylogenetic relationships explain the degree of
predicted range preservation, expansion, or contraction among
species, we calculated the proportion of each species’ range persis-
tence, range retreat, and range expansion and then tested for phy-
logenetic signal in these three traits using Blombergs X
(Blomberg ez al., 2003) and Pagel’s lambda (Pagel, 1999).

To assess the percentage of local extinctions for a given grid
cell, we then examined the geographical patterns in the propor-
tion of species loss based on the species’ current and future distri-
butions, which was calculated as the number of species lost (Z)
divided by the current species richness (S) of each grid cell (Z/S).
The same procedure was also applied to evaluate the proportion
of species gain, which was calculated as the number of species
gain (G) divided by the current species richness of each grid cell
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(GIS). Species gain was assessed under the assumption that spe-
cies could colonize any new suitable climate space within the east-
ern United States and that their future distributions will not be
limited by dispersal. The proportion of species turnover is then
given by T=(L+ G)/(G+ S). Relationships between the pro-
portion of species gains, losses, and turnover as a function of dif-
ferent degrees of climate change (e.g. changes in mean annual
temperature) were further explored to examine the stability of
species composition under climate fluctuations. All these analyses
were conducted separately for the conventional and phenology-
informed SDMs. We then compared the changes in suitable areas
and geographical patterns in species gains (losses and turnover)
between conventional and phenology-informed SDMs.

To further explore the mechanisms underlying the phenologi-
cal regulation of species distributions, we explored the relation-

ship between seed size and phenology (see Methods S6).

Results

Plant phenological responses along climatic gradients

Key predictors of DOY of peak budding, flowering, and fruiting
time included annual mean temperature, temperature seasonality,
precipitation seasonality, and species’ growth form (Table S8).
The strongest climatic predictors for budding, flowering, and
fruiting time were annual mean temperature and temperature
seasonality, but their effects differed significantly among species
with different growth forms. For example, holding other predic-
tors constant, a 1-standard deviation (SD) increase in tempera-
ture (c. 5.3°C), would advance the budding time of herbaceous
annuals by 8 +3.6d (mean + one standard error of the mean
(SE)), of herbaceous perennials by 10+ 3.2d, and of woody
plants by 10.0 = 3.9 d (Fig. S2).

Moreover, plant seed size significantly decreased with mean
flowering/fruiting time (flowering: slope = —4.46; P < 0.001;
fruiting: slope = —2.473; P=0.03).

Parameterizing phenologically informed SDMs

All GLMMs of plant distributions performed well, with an aver-
age explained deviance of > 90% (conditional R and AUC of
0.932 (Table 1). Plant reproductive phenology had a strong
modulating influence on the occurrence of plants along environ-
mental gradients (i.e. significant interactions between phenology
and environmental factors; Table 1), and the impacts of phenol-
ogy on the responses of species to environmental conditions var-
ied among environmental variables (Fig. 2; Table 1). In general,
temperature was the most critical factor affecting phenology-
mediated species distributions. Precipitation and altitude were
also important factors, and these patterns were basically consis-
tent among different phenophases. A positive value of standar-
dized coefficient estimates associated with these interaction terms
suggested that a higher value for DOY increased the probability
of occurrence of species under a high value of a certain environ-
mental variable (i.e. later DOY generated either less negative or
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Table 1 Summary of phenology-informed species distribution models.

E%Qﬂ

Research'7 ™

Budding Flowering Fruiting
Phenological traits z P z P Z P
Temperature PC1 —13.525 < 0.001 —-13.076 < 0.001 —8.324 < 0.001
Precipitation PC1 12.431 < 0.001 11.066 < 0.001 14.171 < 0.001
Precipitation PC2 8.397 < 0.001 5.608 < 0.001 12.567 < 0.001
Climate Fluctuation PC1 0.478 0.633 0.315 0.753 4.877 < 0.001
Climate Fluctuation PC2 —2.829 0.005 —2.250 0.024 0.486 0.627
Soil PC1 —-5.392 < 0.001 —6.171 < 0.001 —-0.187 0.851
Soil PC2 —0.098 0.922 3.243 0.42 —1.885 0.059
Elevation —7.348 < 0.001 —9.643 0.001 2.092 0.036
DOY 4.162 < 0.001 —-1.162 0.245 —0.982 0.326
Temp PC1: DOY 21.981 < 0.001 21.298 < 0.001 15.164 < 0.001
Precip PC1: DOY —-13.111 < 0.001 —11.564 < 0.001 —15.235 < 0.001
Precip PC2: DOY —12.352 < 0.001 —9.558 < 0.001 —16.507 < 0.001
Clim Fluc PC1: DOY 4.848 < 0.001 5.483 < 0.001 —-0.167 0.87
Clim Fluc PC2: DOY 2.115 0.03 1.175 0.24 —-1.617 0.1
Soil PC1: DOY 6.324 < 0.001 7.582 < 0.001 0.82 0.41
Soil PC2: DOY 0.751 0.452 —3.210 0.001 2.896 0.004
Elevation: DOY 9.461 < 0.001 12.365 < 0.001 —-1.03 0.30
Conditional R 0.917 0.912 0.913
Marginal R? 0.082 0.079 0.067
AUC 0.917 0.946 0.946

The various principal components (PCs) represent different environmental components and DOY refers to the Day of Year for peak budding, flowering, or
fruiting time. Positive Z-statistics suggest that a high value for DOY increases the probability of occurrence of species under high values of the certain
environmental variable. The *:" symbol in the phenological traits column represents an interaction between variables. Significant effects (P < 0.05) are given
in bold. The area under the curve (AUC), conditional R?, and marginal R? are calculated to assess model performance.

more positive relationships between probability of occurrence
and a given environmental variable).

Specifically, the probability of occurrence within 40 X 40-km?
grid cells of individual plants with earlier budding, flowering,
and fruiting times decreased much more rapidly with increasing
temperature than those with later phenology (Fig. 2). However,
the probability of occurrence of individual plants with earlier
budding, flowering, and fruiting times increased more rapidly
with increasing precipitation than those with later phenology.
Individual plants with later budding and flowering time were
more likely to occur in areas with high-temperature seasonality
than in regions with high precipitation seasonality. Phenology
also mediated the effects of soil characteristics on species distribu-
tions. The negative relationship between the probability of occur-
rence and elevation was much stronger for earlier budding and
flowering individuals than for those with later phenology. That
is, plants with later-flowering (or budding) time have higher
probability of occurrence at high elevations than earlier-flowering

(budding) plants (Fig. 2; Table 1).

Hindcast validation of the phenology-informed SDM

Both conventional SDMs and phenology-informed SDMs exhib-
ited good hindcasting performance. Specifically, an average of
74.5% and 73.8% of the distribution points of 57 annual herbs
before 1950 fell within their predicted past range based on the
phenology-informed and conventional SDMs, respectively (Fig. 3),
suggesting that both models show relatively high accuracy.

© 2024 The Authors
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Species distributions under future climate change

Projected range changes There were no obvious phylogenetic
signals in the proportional change of suitable areas under the
SSP5-8.5 scenario forecasted by both phenology-informed and
conventional SDMs (Table S9), so our models did not include a
phylogenetic correction. Using the phenology-informed SDMs,
we forecast that #35% (mean value of all species) of the current
occupied ranges of species would have low future suitability
(range retreat), and &26% of the species would lose at least half
of their existing suitable habitats in the future. By contrast, the
conventional SDMs forecasted that &#40% of the current occu-
pied ranges would have low future suitability (Fig. 4a—d,e) and
that ®35% species would lose at least half of their existing habi-
tats. Conventional and phenology-informed SDMs showed simi-
lar estimates of the species’ current range (paired Wilcoxon test;
P=0.25) but significantly different estimates of the species
future range (P < 0.001). Specifically, the average proportion of
current areas forecasted to have high suitability (i.e. range persis-
tence) based on the phenology-informed SDMs was significantly
higher than that predicted by the conventional SDMs (Fig. 4a—d,
f). By contrast, phenology-informed SDMs forecasted a 20%
lower proportion of future occupying regions located outside
their current range (i.e. range expansion) than the conventional
SDMs (Fig. 4a—d,g; both differences significant at 2 < 0.001).

Geographic trends in regional species diversity At the grid-cell

level, we calculated several metrics, including species gains, losses,
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Fig. 2 Contribution of plant phenology to partial responses to environmental variables. Average standardized coefficient estimates among species
indicating the main impacts of different environmental factors on species’ probability of occurrence (a—c) and how phenology mediates average species
response to environmental gradients or, alternatively, how environmental effects on the average probability of occurrence are influenced by phenology
(i.e. interaction terms between plant phenology and environmental conditions; d—f). Positive coefficient values for the main effects indicate that probability
of occurrence increases for higher values of the environmental variable, whereas negative values indicate the converse. Positive values of the interaction
terms indicate that later phenology time (i.e. day of year, DOY) makes the relationship between occurrence and an environmental variable either less
negative or more positive, respectively reflecting less severe decreases or higher increases in the probability of occurrence under higher values of the
environmental variable. Negative values of the interaction terms indicate the opposite: later DOY leads to stronger decreases or less marked increases in
probability of occurrence under higher values of an environmental values. We examined the effects on the probability of occurrence of the interaction
between phenology and each of five classes of environmental attributes (mean temperature (one Principal Component, PC), precipitation (two PCs),
climate fluctuation (two PCs), soil composition and structure (two PCs), and elevation). Phenology was quantified as the DOY for plant peak budding (a,
d), flowering (b, e) and fruiting (c, f). Points and range bars represent among-species average standardized coefficient estimates with 95% confidence
intervals (Cls). Standardized coefficient estimates were considered significantly different from one another if their 95% Cls did not overlap zero.

and turnover, which are commonly used in modeling future bio-
diversity. Spatial patterns in absolute species gains and losses were
consistent across GCM scenarios (Figs S3-S5). In general, more
gains in species were expected in Florida and the Atlantic coastal
plain than in New England and parts of the Appalachian Moun-
tains (Fig. S6). The forecast percentage of species losses exceeded
50% in the southern Coastal Plains, some portions of the Adan-
tic coastal plain, and the southern extent of the Appalachian
Mountains. The combination of high species gains and high spe-
cies losses in Florida and the Atlantic Coastal Plain was forecast
to lead to high turnover rate in these regions (Fig. S6). Conven-
tional and phenology-informed SDMs forecast similar spatial
patterns in species gains, losses, and turnover. However, the two
models diverge in the magnitude of these indices. Compared
with conventional SDMs, phenology-informed SDMs forecast
less species gains in Florida, but more species loss and turnover in
the southern Coastal Plains, and the Atlantic coastal plain
(Fig. 5a—c). We identified significant linear relationships among

New Phytologist (2024)
www.newphytologist.com

grid cells between the percentage of absolute species gains (and
losses) and the magnitude of change in mean annual temperature.
Relative to the conventional SDMs, the phenology-informed
SDMs predicted relatively lower species gains when temperature
increases were lower than 5°C but higher species gains at higher
temperature increases (Fig. 5d). However, phenology-informed
SDMs generally predicted stronger negative relationships
between species losses (and turnover) and mean annual tempera-
ture increases than conventional SDMs (Fig. 5e,f).

Discussion

Species distribution models are widely used to assess the potential
consequences of climate change for species’ distributions
(Urban, 2015). However, these models have been criticized for
omitting critical biological components, including intraspecific
phenotypic variation in functional traits, which may have impor-
tant consequences for species fitness (Fordham ez 4/, 2018) or for
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Fig. 3 Hindcasting distributions of annual herbs before 1950. Density plot
showed the proportions of actual species distribution points that fell within
the predicted ranges before 1950 by conventional abiotic-based species
distribution models (SDMs) (a) and phenology-informed SDMs (b),
respectively.

the ability of a population to persist at a given location. The
modeling approach presented here enables the incorporation of
key functional trait data to explore how intraspecific variation in
fitness-related traits (mediated by climate) affects forecasts of spe-
cies geographic distributions in the face of climate change. Speci-
fically, we examined how reproductive phenology — a critical life-
history trait that often mediates fitness — influences the effects of
environmental change on plant species distributions. In general,
both conventional and phenology-informed SDMs forecast a
long-term decline in species’ ranges in the eastern United States.
However, our model inferences differed in one key and impor-
tant way: Our phenology-informed SDM inferred from decades
of herbarium specimens suggested a more optimistic forecast for
species distributions than did the conventional SDMs.

Our approach differs from existing process-based models that
integrate the impacts of climate-mediated phenology on demo-
graphy and fitness to estimate species distributions (Chuine &
Beaubien, 2001; Morin er al, 2009). Despite the many advan-
tages of process-based models in making more accurate predic-
tions under novel environments, they often require detailed
mechanistic knowledge of the processes linking phenology (or
other traits) and fitness within a system. However, the
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experimental data required to develop such mechanistic models
are not available for most species (Pollock et al, 2012; Vesk
et al., 2021). By contrast, our method incorporates the effects of
phenology into occurrence—environment relationship statistically
and thus does not require such knowledge, enabling scaling
range shift assessments to include hundreds or thousands of spe-
cies by using existing taxonomically and geographically extensive
resources (e.g. herbarium specimens).

Phenology mediates the effects of climate on species’
distributions

We identified substantial variation in the predicted peak bud-
ding, flowering, and fruiting time among individual species based
on phenology (DOY)-climate relationships. Our estimates of
phenological responses to climate parallel those reported pre-
viously for the eastern United States that demonstrated broad
and variable phenological responses within and among species
(Park et al., 2019). By accounting for phenology—climate rela-
tionships in our SDMs, we demonstrate that phenology can
modulate the effects of climate on plant occurrence across broad
environmental gradients (Fig. 2; Table 1). This suggests that phe-
nological variation accounts for substantial variability in the abil-
ity of individual plants to withstand climate change.

The probability of occurrence of individual plants that repro-
duced relatively early in the growing season decreased more with
temperature and increased more with precipitation than plants
that flowered relatively late in the growing season (Fig. 2;
Table 1). This suggests that plants with late phenology may sur-
vive better under future environmental change. Previous studies
demonstrate that phenotypic plasticity plays a prominent role in
the long-term climate-mediated acceleration of plant phenology
(Ramirez-Parada ez al., 2024). However, earlier-flowering indivi-
duals also tend to have a strong genetic component, which is cri-
tical for adaptive responses to climate change (Anderson
et al., 2012). Adaptation may be necessary for long-term 7z situ
persistence under climate change (Sgro er 4/, 2011). Our results,
using actual distribution data, show an opposite pattern and we
highlight the need for studies on future species occurrence to link
real fitness data to estimate extinction risks.

Different life-history stages are biologically linked and the
timing of these phases can have direct bearing on reproductive
allocation per offspring. For example, in temperate climates,
large-seeded species often flower earlier than small-seeded species,
presumably because the former require more time to develop and
ripen their seeds (Mazer, 1989; Bolmgren & Cowan, 2008).
Large seeds subsequently produce larger seedlings, some of which
are more drought resistant during the late summer and early fall
(Metz er al., 2010). Our results show a negative relationship
between plant seed size and mean flowering/fruiting time, which
also support such a hypothesis. By contrast, late-flowering species
often allocate more resources to maternal growth. However,
later-flowering plants often are exposed to risks associated with
early frosts during seed maturation (Molau, 1993). From this
perspective, late-flowering plants may be more favored under
warming scenarios in which the growing season is extended
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Fig. 4 Changes in species ranges forecasted by conventional abiotic-based species distribution models (SDMs) and phenology-informed SDMs. Maps
illustrate the current (a, c) and future (b, d) distributions of Trillium catesbaei as an examplar. Yellow areas represent regions currently occupied by T.
catesbaei that are projected to remain suitable in the future (i.e. range persistence); green areas represent regions currently occupied by T. catesbaei that
are projected to have low suitability in the future (i.e. range retreat); pink areas represent regions currently unoccupied by T. catesbaei that are projected to
have high suitability in the future (i.e. range expansion). Box plots illustrate the proportion of species’ ranges that persist (d), contract (e), or expand ()
across all 360 species forecasted by conventional abiotic-based SDMs (blue) vs phenology-informed SDMs (orange). The central box in each boxplot
shows the median and the interquartile range. The differences between the two models were evaluated by a paired Wilcoxon test. The significant level was

setat P < 0.05.

(Molau et al., 2005). In support of these hypotheses, we identi-
fied higher probabilities of occurrence of late-flowering plants
than those of early-flowering plants at higher elevations. Higher
elevations tend to be colder and have shorter growing seasons
than lower elevations. Plants growing at higher elevations usually
have lower seed production, which could be offset by vegetative
growth during longer seasonal vegetative periods to ensure the
persistence of populations (Pangtey ez al., 1990).

Phenology-informed SDM:s forecast less severe habitat loss
of species in response to climate change

Climate change is contributing to widespread range contractions

and local extirpations of species (Thomas ez al, 2006; Cahill
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et al., 2013). Boonman ez al. (2024) projected that over half of
global tree species are at potential extinction risk under global
changes. Both phenology-informed and conventional SDMs
forecast that > 50% of the species we sampled will experience
range loss under future climate change scenarios. However, our
results differed between these models in important ways.

First, although the species range loss was forecast to increase in
the future (and to similar extents) by both phenology-informed
and conventional SDMs, the magnitude of changes in the
sampled species’ geographic ranges differed significantly between
the two types of SDMs. The conventional SDMs forecast that,
on average, across species, 60% of the currently occupied ranges
of species would have high suitability in the future, whereas the
phenology-informed SDMs predicted that an average of 65% of
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species gains, losses, and turnover and changes
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based species distribution models (SDMs) and
phenology-informed SDMs. Here, phenology
was quantified as the day of year for peak
flowering and mean annual temperature in each
grid cell was calculated as the average across all
six general circulation models under the SSP5-8.5
climate scenario in the 2070s. (d-f) Geographical
patterns in the differences in the proportion of
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species gains, losses, and turnover between the
conventional abiotic-based SDMs and
phenology-informed SDMs.

the currently occupied ranges would persist (Fig. 4). These find-
ings provide evidence that the geographic range of a species is
modulated not only by climate but also by variation in function-
ally relevant biological traits that allow populations to survive
within their local environments (Hargreaves & Eckert, 2014). As
a fitness-related trait, plant reproductive phenology exhibits high
intraspecific variation across species’ ranges (Park ez al, 2019;
Love & Mazer, 2021). Thus, the fundamental assumption of
conventional SDMs — homogeneous responses to climate varia-
tions across their range — is unrealistic. Species distribution mod-
els that do not include information on traits and their dynamic
interactions with the environment and with other traits may
result in incorrectly estimating a species’ climatic niche, which
may, in turn, lead to incorrect forecasts of species loss.

As the climate continues to change, populations are expected
to persist 77 situ via local adaptation and phenotypic plasticity,
track climate through migration, or become locally extinct
(Brito-Morales ez al., 2018). The first two biological mechanisms
are important for the persistence of species by expanding the cli-
matic tolerance of species beyond their present realized niches.
Species that can maintain their climatic niche by acclimating
their phenology to changing climates may not need to migrate to
survive and reproduce (Amano et al, 2014). Therefore,
climate-induced phenological responses may alter expectations of
species’ distributions under future climatic conditions, a predic-
tion consistent with our phenology-informed SDMs, which gen-
erally predict a smaller reduction in species’ ranges with climate
change compared to forecasts generated by abiotic SDMs.
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However, we cannot explicitly distinguish between plasticity
and local adaptation because our model measures statistical asso-
ciations that can be generated by both of processes. Unambigu-
ously differentiating local adaptation from plasticity requires
common-garden experiments (Benito Garzén et al., 2019), and
methods to estimate the contributions of these processes observa-
tionally involve statistical frameworks that are not easily inte-
grated with our methods (Ramirez-Parada ez al., 2024). Our aim
is to explore how the observed values of critical functional traits
affect forecasts of species distributions under climate change. As
such, we do not rely on partitioning the degree to which
phenology—climate relationships are the result of plasticity or
adaptation.

Phenology-informed SDM:s predict less species turnover in
response to climate change

We found significant geographic differences in species gains,
losses, and turnover. Florida and the Atlantic Coastal Plain were
forecast to have a higher proportion of species losses than the
other regions included in this study. We hypothesize that this
pattern may be driven by two factors: a narrower range of pheno-
logical responses to temperature among southern populations
and a thermal tolerance maximum reached by these populations
under projected climate change. Although the absolute amount
of warming is lower at low latitudes, many species with narrow
ranges are endemic to the southeastern United States and the
southern Appalachian Mountains. These species frequently
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exhibit more narrow climatic tolerances, which are likely to pro-
mote high rates of species loss under future climate change
(Wiens, 2016). These species may also be nearer to their thermal
maxima, which may be exceeded in the southeastern United
States in future non-analog climatic conditions (Williams &
Jackson, 2007). We additionally found a significant positive rela-
tionship between the mean amount of warming predicted across
the range of species and the proportion of range that persists
(Fig. S7), which supported our results of high species loss in
southern regions with a relatively low magnitude of warming
compared to northern regions.

We identified strong negative relationships between the per-
centage of species gains, losses, and turnover and the expected
amount of warming for individual grid cells. Qualitative patterns
were similar for both phenology-informed and conventional
SDMs. However, phenology-informed SDMs generally fore-
casted a lower proportion of species losses and turnover (i.e. per-
sistent regional species composition) in response to warming. We
hypothesize that both phenotypic plasticity and adaptive compo-
nents of plant phenology contribute to the persistence of popula-
tions as the climate changes and tend to increase opportunities
for species migration to the extent that they contribute to species
niche breadth (Ackerly, 2003; Valladares ez 4/, 2014).

We also suggest that similar conclusions could be drawn from
our model framework if it were used with other fitness-related
traits, although the relative importance of plasticity and local
adaptation differs among functional traits (Benito Garzén
et al., 2019). Phenotypic plasticity is considered favorable for the
persistent of populations under rapid climatic change, but it can
delay evolutionary adaption to new environments in the long
term (Wund, 2012; Oostra ez al., 2018). However, both pheno-
typic plasticity and local adaptation can allow populations to per-
sist under climatic change. Since our hindcasting analysis showed
high prediction accuracy of both phenology-informed and con-
ventional SDMs, we suggest that previous studies using only cli-
matic variables in SDMs may have overestimated the impacts of
climate change on species turnover.

In summary, the trait-based framework used
phenology-informed SDMs readily accounts for the interaction
between phenology and environments, considering both intraspe-

in our

cific variability in phenology and dynamic phenological response
different space. Both
phenology-informed SDMs project species range loss across hun-
dreds of plant species in the eastern United States under future
climatic change scenarios. However, phenology-informed SDMs

under climatic conventional and

forecast significantly less drastic species’ range loss and turnover
within communities. Our results suggest that trait (co)variation
can significantly influence species distributions across geographi-
cal gradients and subsequent diversity patterns under new cli-
mates. We conclude that future research and conservation efforts
should look beyond conventional SDMs and embrace and inte-
grate biological phenomena that contribute to species-specific
acclimation and adaptive responses to climate change. Such work
also may reveal climatic tolerances beyond those predicted by
conventional SDMs. Finally, whereas our study uses phenology
as an exemplar trait with which to build taxonomically and
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geographically broad SDMs, our methodological framework
could be further developed to explore how other climate-sensitive
traits may mediate future range shifts. Obvious traits to explore
include flowering duration, photosynthesis rate, water use effi-
ciency, and resource allocation to roots. Further application of
other fitness-related functional traits to our framework will con-
tribute to a general mechanistic understanding of how trait affect
species distributions along different environmental gradients,
with implications for understanding species response under
future climate change.
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