CONTRIBUTED RESEARCH ARTICLE 141

Making Provenance Work for You

by Barbara Lerner, Emery Boose, Orenna Brand, Aaron M. Ellison, Elizabeth Fong, Matthew K. Lau,
Khanh Ngo, Thomas Pasquier, Luis Perez, Margo Seltzer, Rose Sheehan, Joseph Wonsil

Abstract To be useful, scientific results must be reproducible and trustworthy. Data provenance—the
history of data and how it was computed—underlies reproducibility of, and trust in, data analyses.
Our work focuses on collecting data provenance from R scripts and providing tools that use the
provenance to increase the reproducibility of and trust in analyses done in R. Specifically, our “End-to-
end provenance tools” (“E2ETools”) use data provenance to: document the computing environment
and inputs and outputs of a script’s execution; support script debugging and exploration; and explain
differences in behavior across repeated executions of the same script. Use of these tools can help both
the original author and later users of a script reproduce and trust its results.

1 Introduction

In today’s data-driven world, an increasing number of people are finding themselves needing to
analyze data in the course of their work. Often these people have little or no background or formal
coursework in programming and may think of it solely as a tedious means to an interesting end.
Writing scripts to work with data in this way is often exploratory. The researcher may be writing a
script to produce a plot that enables visual understanding of the data. This understanding might then
lead to a realization that the data need to be cleaned to remove bad values, and statistical tests need
to be performed to determine the strength or trends of relationships. Examining these results may
raise more questions and lead to more code. This type of exploratory programming can easily lead to
scripts that grow over time to include both useful and irrelevant code that is difficult to understand,
debug, and modify.

Creating a script and successfully running it once to analyze a dataset is one thing. Reproducing it
later is another thing entirely. We might expect that re-running a script and reproducing a data analysis
should be a simple matter of rerunning a program or script on the same data, but it is rarely that
simple. Anyone who has tried to retrieve the version of the data and scripts used to produce the results
presented in a paper will likely appreciate how difficult this can be. Data and scripts can be modified
or lost. But even if care is taken to save the scripts and data, new versions of programming languages,
libraries and operating systems may make scripts behave differently or be unable to run at all. In
an ideal world, everything would be backwards-compatible, but in reality, what ran last week often
doesn’t run next week. It can be difficult to determine what went wrong, especially if programming is
an occasional activity. The National Academy of Sciences report on Reproducibility and Replicability
in Science (National Academies of Sciences, Engineering, and Medicine, 2019) describes at length the
challenges associated with computational reproducibility of scientific results.

Motivated by an interest in supporting reproducibility of R scripts, we developed a package called
rdtLite to collect data provenance containing a record of a script’s execution and the environment
in which it was executed (Lerner et al., 2018). Having done that, we then realized that the wealth
of information contained in the data provenance could serve other purposes as well. This led to the
development of End-to-End Provenance Tools (“E2ETools”): an evolving set of R packages that use
data provenance to help users save workable copies of their data and scripts, debug them, understand
how data and results of analyses were derived, discover what has changed when a script stops
working, and reproduce prior results.

2  What is data provenance?

Provenance is the history of creation, ownership, chain-of-custody, and location of an object. In
its original and still most-frequently used sense, provenance is used to authenticate and trace the
legitimate ownership of a work of art; it confers, creates, or adds value to the work itself. But
provenance can be constructed, identified, or traced for any object, including data (Becker and
Chambers, 1988). Data provenance is analogous to provenance of a work of art in that it includes the
history of a datum or entire dataset from the point at which it was collected (by a person or sensor),
created (by a computational process), or derived (from other data). Data provenance also confers
or adds value—as trustworthiness—to data, but data provenance can do more: it can be used to
reproduce computational analyses and validate scientific conclusions.

More precisely, data provenance is the history of a data item (“datum”) or a dataset (“data”); it
describes how the datum or data came to be in its present state. Our E2ETools focus on language-level

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859


https://CRAN.R-project.org/package=rdtLite

CONTRIBUTED RESEARCH ARTICLE 142

# Load the mtcars data set that comes with R
data(mtcars)

# All the cars
allCars.df <- mtcars

# Create separate data frames for each number of cylinders
cars4Cyl.df <- allCars.df[allCars.df$cyl == 4, ]
cars6Cyl.df <- allCars.df[allCars.df$cyl == 6, ]
cars8Cyl.df <- allCars.df[allCars.df$cyl == 8, ]

# Create a table with the average mpg for each # cylinders

cylinders = c(4, 6, 8)

mpg = c(mean(cars4Cyl.df$mpg), mean(cars6Cyl.df$mpg), mean(cars8Cyl.df$mpg))
cyl.vs.mpg.df <- data.frame (cylinders, mpg)

# Plot it
plot(cylinders, mpg)

Figure 1: Source code for mtcars_example.R. This code is used to demonstrate the lineage traces
provided by the debug.lineage function as described in the text.

provenance: how data are created and manipulated by a programming language such as R during
the execution of a script or program. Provenance is also referred to in other computing contexts.
For example, data provenance can be used to understand results of queries to a database or to the
processes that were used to create or modify a file. In the remainder of this paper, however, when we
say “provenance” or “data provenance”, we specifically mean language-level provenance.

We associate three types of information with provenance: environment information, coarse-grained
information, and fine-grained information. Environment information includes information about
the computing environment in which the script was executed. This includes information such as the
operating system version, the R version, and the versions of the R libraries used, as each of these may
play a role in understanding the details of how a script behaves. Coarse-grained information includes
the source code of the script(s), the data input to the script, the data output by the script, and plots
produced by the script. Fine-grained information includes an execution trace. Specifically, for each
line of the script that is executed, fine-grained information includes the data used on that line and any
data computed by, or object created by, that line. Our E2ETools can use this fine-grained information
to help a user understand exactly how any data value or object in the script was computed or derived.

3 A first example

Consider this simple example, ‘mtcars_example.R’, that loads in the ‘cars’ dataset and plots miles per
gallon (mpg) as a function of the number of cylinders (cylinders) (Figure 1).

The following commands run the script, collect its provenance, and produce a textual summary of
the provenance.

library(rdtLite)
prov.run("mtcars_example.R")
prov.summarize()

The provenance summary is shown in Figure 2. The environment information (lines 3-18) reports
details of the computing environment in which the script was executed, such as the processor and
operating system on which it ran and the version of R and R libraries used. The coarse-grained
information (lines 20-36) identifies the location in the file system of the script, the input dataset,
and the plot produced. The fine-grained information, which is not displayed by prov.summarize()
but is accessible via other tools, indicates the input and output data for each line of code executed,
linking them together so that one can see how the values computed in one statement are used in
later statements. For example, the provenance debugger can use fine-grained information to display
everything that is derived from a variable.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 143

PROVENANCE SUMMARY for mtcars_example.R

ENVIRONMENT :

Executed at 2022-07-28T13.52.25EDT

Total execution time was 1.516 seconds

Script last modified at 2022-07-22T10.41.25EDT

Executed with R version 4.2.1 (2022-06-23)

Platform was x86_64, darwinl7.0

Operating system was macOS Catalina 10.15.7

User interface was 2022.02.3+492 Prairie Trillium (desktop)
Document converter was 2.2.1 @ /usr/local/bin/pandoc
Provenance was collected with rdtLitel.4

Provenance is stored in /Users/blerner/tmp/prov/prov_mtcars_example
Hash algorithm is md5

LIBRARIES (loaded by script):
None (see notes below)

SCRIPTS:
1[:] /Users/blerner/Documents/Process/DataProvenance/Papers/RJournal/scripts/
examples/mtcars_example.R

PRE-EXISTING:
None

INPUTS:
1[:] /Library/Frameworks/R.framework/Versions/4.2/Resources/library/datasets/
data/Rdata.rds

OUTPUTS:
1[-]1 /Users/blerner/Documents/Process/DataProvenance/Papers/RJournal/scripts/
dev.off.11.pdf

CONSOLE:
None

ERRORS & WARNINGS:
None

NOTES: Files are listed in the order of execution (script 1 = main script).
The status of each file in its original location is marked as follows:

File unchanged [:], File changed [+], File missing [-], Not checked [ ].
Copies of original files are available on the provenance directory.

Libraries loaded by the user's script at the time of execution are displayed.
Note that some libraries may have been loaded before execution. Use details =
TRUE to see all loaded libraries along with script, file, and message details.

Figure 2: Provenance summary for mtcars_example.R, showing the environment in which the script
was executed, identifying the script, input and output files, and any errors or warnings encountered
when the script was executed.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 144

library(provDebugR)
prov.debug()
debug.lineage("cars4Cyl.df", forward = TRUE)

The resulting output displays the line numbers and code for everything computed, either directly
or indirectly, from cars4Cyl.df .

Var cars4Cyl.df

8: cars4Cyl.df <- allCars.df[allCars.df$cyl == 4, ]
14:  mpg = c(mean(cars4Cyl.df$mpg), mean(cars6Cyl.df ...
15: cyl.vs.mpg.df <- data.frame (cylinders, mpg)

18: plot(cylinders, mpg)

NA: mtcars_example.R

Alternatively, a modified version of the same command
debug.lineage("cars4Cyl.df")

shows the lines of code that lead to the value for cars4Cyl.df being computed.

Var cars4Cyl.df

2: data(mtcars)

5: allCars.df <- mtcars

8: cars4Cyl.df <- allCars.df[allCars.df$cyl == 4, ]

Having seen an introductory example of some things the E2ETools can do, we now turn to a more
detailed discussion of each tool.

4 The end-to-end provenance tools

The E2ETools consist of three types of packages:

* A package to collect provenance: rdtLite;

* Packages that process data provenance to provide information to the user about a particular
script and its execution: provSummarizeR, provDebugR, provViz, and provExplainR;

* Packages to enable tool developers to more easily use data provenance: provParseR and
provGraphR.

We describe each of these packages, beginning with provenance collection. All the tools described
are available on CRAN.

Collecting provenance with rdtLite

The rdtLite package collects provenance from R scripts as they execute.' rdtLite captures provenance
data from both scripts and interactive console sessions. To capture provenance for a script, the user
runs the script using the prov. run function.

library(rdtLite)
prov.run(”"script.R")

To collect provenance for an interactive session, the user begins the session with the prov.init function
and concludes it with prov.quit.

library(rdtLite)

prov.init()

data <- read.csv("mydata.csv")
plot(data$x, datas$y)
prov.quit()

rdtLite collects information about each file or URL read by the script, each file written by the
script, and each plot created by the script. In addition, it records an execution trace of the top-level R
statements. This trace identifies the statement executed. It records any variables set or used by the
statement. When a variable is set, it records the type of the value, including its container (such as

IrdtLite is a simplified version of RDataTracker (Lerner and Boose, 2014b; Lerner et al., 2018).

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859


https://CRAN.R-project.org/package=rdtLite
https://CRAN.R-project.org/package=provSummarizeR
https://CRAN.R-project.org/package=provDebugR
https://CRAN.R-project.org/package=provViz
https://CRAN.R-project.org/package=provExplainR
https://CRAN.R-project.org/package=provParseR
https://CRAN.R-project.org/package=provGraphR

CONTRIBUTED RESEARCH ARTICLE 145

vector, data frame, etc.), dimensions, and class (e.g., character, numeric). If the container is a vector
of length 1, rdtLite records its data value, embedded in the provenance (which is stored in a JSON
file). rdtLite can save the values of larger containers in separate snapshot files. The user controls how
much data to save using the snapshot.size parameter in prov.init and prov.run. The default is to
not save snapshots. rdtLite also records any warning or error messages generated when the statement
is executed. To capture similar information about scripts that are included using the source function,
calls to source must be replaced with calls to prov. source.

The provenance is stored in a JSON file using a format that extends the PROV-JSON standard
(W3C, 2014).” The extended format provides structured information about fine-grained provenance,
such as a list of libraries used, a mapping from functions called to the libraries from which they came,
script line numbers, and data values and their types. More information about the extended JSON
format is provided in the Appendix.

The JSON file is stored in a provenance directory that also contains copies of all input and output
files and the R scripts executed. By default, the provenance data is stored in the R session temporary
directory, but the user can change this location either at the time that prov.run or prov.init is called
or by setting the prov.dir option, for example, in the .Rprofile file.

Upon completion of a script called with prov.run, or after a call to prov.quit, rtdLite creates and
populates a directory named either ‘prov_script’, where “script’ is the name of the script file, or
‘prov_console’ for an interactive session. The directory will contain:

* ‘prov.json’ - the JSON file containing the fine-grained provenance

e ‘data’ - a directory containing copies of input and output files, URLs, plots created, and snapshot
files.

* ‘scripts’ - a directory containing a copy of the scripts for which provenance was collected.

The rdtLite default is to overwrite this information if the same script is executed again or if
prov.init is used again in a console session. However if the overwrite parameter is set to FALSE,
the provenance is stored in a unique, time-stamped directory, allowing provenance from multiple
executions to be analyzed and compared.

Using provenance

Having the provenance is extremely valuable, but it is not particularly usable without tools that read
the provenance and provide information or enable reproducibility. We next describe four tools that use
provenance to help R programmers understand executions of their script. The provSummarizeR
package provides a concise textual summary of an execution. The provViz package provides a
graphical visualization of the provenance. The provDebugR package uses collected provenance to
help programmers debug their code. The provExplainR package compares provenance from two
executions to help the programmer understand changes between them. These applications exist in
packages separate from rdtLite and would work equally well with provenance collected by other tools
that produce the same JSON format.

provSummarizeR

The purpose of provSummarizeR is to produce a concise record of the environment in which a script
was executed. This information could be particularly valuable when including a script and its results
in a paper, or when sharing a script with a colleague. For an example, please see Figure 2 above. The
summary includes the following information:

* The ENVIRONMENT section shows information about when the script was modified and
executed, what version of R was used, what hardware and operating system were used, what
R environment (such as RStudio) was used, what tool collected the provenance, where the
provenance is stored, and what hash algorithm was used to store hash values for files used in
the input and output of the script.

¢ The LIBRARIES section shows the libraries loaded by the script and their version numbers.
¢ The SCRIPTS section lists the main script and any scripts that are included in the execution of
this script using the source or prov.source functions.

¢ The PRE-EXISTING section shows any variables where the script uses a value that was bound
to the variable before the script started. This is a common R programming error that can lead to
unexpected results if the script is run again in a different environment, where such a variable
might have a different value or not be set at all.

thtps: //github.com/End-to-end-provenance/ExtendedProvJson/blob/master/JSON-format.md.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859


https://CRAN.R-project.org/package=provSummarizeR
https://CRAN.R-project.org/package=provViz
https://CRAN.R-project.org/package=provDebugR
https://CRAN.R-project.org/package=provExplainR
https://CRAN.R-project.org/package=rdtLite
https://CRAN.R-project.org/package=provSummarizeR
https://github.com/End-to-end-provenance/ExtendedProvJson/blob/master/JSON-format.md

CONTRIBUTED RESEARCH ARTICLE 146

* The INPUTS and OUTPUTS sections list all input and output files, the date they were last
modified, and their hash values, using the hash algorithm shown in the environment section.

¢ The CONSOLE section shows any output sent to the console when the script executed.

* The ERRORS & WARNINGS section lists any errors or warnings that occurred when the script
executed, including the number of the line that caused them.

In our own day-to-day work, we use provSummarizeR to document the processing of real-time
meteorological and hydrological data at Harvard Forest. Data and plots of data captured in the past 30
days, including air temperature, precipitation, stream discharge, and water temperature, are updated
and posted every 15 minutes.’ Also posted at the same site are provenance summaries for the script
execution that creates the plots.

There are three functions provided to generate summaries:

prov.summarize(details = FALSE)
prov.summarize.file(prov.file, details = FALSE)
prov.summarize.run(r.script, details = FALSE)

* prov.summarize produces a summary for the last provenance collected in the current R session.

® prov.summarize.file takes the name of a JSON file containing provenance and produces a
summary from it.

* prov.summarize.run takes the name of a file containing an R script. It runs the script, collects
its provenance, and produces a summary.*

By passing TRUE for the details parameter, the user can see more detail about some aspects of the
provenance. In particular,

* The libraries section is divided into three parts. The first part shows the libraries loaded by the
script. The second part shows the libraries that were loaded before the script starts. The third
part shows the libraries loaded by the rdtLite code itself.

¢ The information about script, inputs, and output files includes modification date and hash
value.

* The information about errors and warnings includes the line number on which each occurred.

The provViz and provDebugR tools described below provide a similar set of three functions: one
to use the last provenance collected, one to use a specific JSON file, and one to run a script and use its
provenance.

provViz

The provViz package allows visual exploration of script execution as shown in Figure 3. There are
two types of nodes: data nodes and procedure nodes. Data nodes represent things such as variables,
files, plots, and URLs. Procedure nodes represent executed R statements. An edge from a data node
to a procedure node indicates that the statement represented by the procedure node uses the data
represented by the data node. For example, the edge from data item, ‘7-mpg’, to procedure node,
‘9-plot(cylinders,mpg)’, indicates that mpg was used in the call to the plot function. Conversely,
an edge from a procedure node to a data node indicates that the procedure produced the data, for
example, by assigning to a variable or writing to a file. An edge between two procedure nodes
represents control flow, indicating the order in which the statements were executed.

provViz also allows the user to view the graph and explore it to examine intermediate data values
or input and output files and to perform lineage queries. The node colors indicate node type. Data
nodes representing variables are purple. Files are tan. Orange nodes represent standard output, while
red data nodes represent warnings and errors. Yellow nodes represent R statements. Green nodes
come in pairs and represent the start and end of a group of R statements. Clicking on a green node
reduces the set of statements between the matching ‘Start” and ‘Finish” nodes into a single node,
which is useful for making large graphs more manageable.

To see everything that depends on the value of a variable at a particular point in the execution of
the script, the user can right-click on the data node and select ‘Show what is computed using this
value’. This will display a subgraph containing just the data and procedure nodes that are in the
lineage of the data node, as shown in Figure 4, which shows the lineage of ‘3-cars4Cyl.df". Notice
that statements that do not use the value of cars4Cyl.df, either directly or indirectly, are not shown.

Shttps://harvardforest.fas.harvard.edu/met-hydro-stations
Al three functions have additional optional parameters. For details, see the online help page.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859


https://CRAN.R-project.org/package=provSummarizeR
https://CRAN.R-project.org/package=provViz
https://CRAN.R-project.org/package=provViz
https://harvardforest.fas.harvard.edu/met-hydro-stations

CONTRIBUTED RESEARCH ARTICLE 147

\ 4
(Z-aIICars.df <- read.csv(" mtcars.csv"))

Y
((3-cars4Cyl.df <- allCars.dffaliCars.df$cyl == 4, ] )

2-aIICars.df)

\4
(9 -plot(cylinders, mpg)) 8- cyls vs.mpg.df

10- cafR F'msﬁh \@

\4

10-dev.off.10.pdf

Figure 3: A provenance graph as displayed using provViz. Yellow nodes represent statements in the
code, blue nodes represent variables, orange nodes represent files and green nodes mark the start and
end of the script.

3-cars4Cyl.df

\J
(7-mpg <- c(mean(cars4Cyl.df$mpg, mean(cars6Cyl.df$mpg, mean()

4

(8-cy|.vs.mpg.df <- data.frame(cylinders, mpg)) 9-plot(cylinders, mpg)

\4 v

8-cyls.vs.mpg.df 9-dev.2

\ A
10-car.R Finish
¥

/
10-dev.off.10.pdf

Figure 4: Displaying the Lineage of 3-cars4Cyl.df

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859


https://CRAN.R-project.org/package=provViz

CONTRIBUTED RESEARCH ARTICLE 148

In addition to examining data values and tracing lineages as in this example, provViz supports the
following ways of exploring the provenance:

* Viewing input and output data files

* Viewing plots created

* Viewing the source code for a node or the entire script

¢ Comparing R scripts

¢ Comparing provenance graphs

* Searching for nodes by name and type

¢ Sorting procedure nodes based on execution time

provViZ itself is a small R program that connects to a Java program called DDG Explorer (Lerner
and Boose, 2014a), which does the actual work of creating and managing the display.

provDebugR

The provDebugR package provides debugging support by using the provenance to help users un-
derstand the state of their script at any point during execution. It provides command-line debugging
capabilities, but one could imagine building a GUI on top of these functions to produce a friendly in-
teractive debugging environment. By using provenance, provDebugR provides insight into the entire
execution and creates a rich debugging environment that provides execution context not typically
available in debuggers.

For example, consider a simple, but buggy script.

w <- 4:6

x <- 1:3

y <- 1:10

z<-w+ty

y <-c('a', 'b', 'c")

xyz <- data.frame (x, y, z)
Running this script produces a warning and an error.

Error in data.frame(x, y, z) :
arguments imply differing number of rows: 3, 10
In addition: Warning message:
Inw + y : longer object length is not a multiple of shorter object length

Of course, with a short script like this, a user could simply step through the script one line at a
time and examine the results, but for the purposes of demonstrating the debugger, imagine that this
code is buried within a large script. The lines of code might not be consecutive as shown here, and it
may even be difficult to determine what lines caused the reported errors.

The debugger provides some functions that are particularly helpful for understanding warning
and error messages. For example, if the user needs help understanding where a warning came from,
calling debug.warning with no arguments lists all the warnings; when called with a warning number,
it displays the lines of code leading up to the warning.

> debug.warning()
Possible results:

1 In w+y: longer object length is not a multiple of shorter object length

Pass the corresponding numeric value to the function for info on that warning
> debug.warning(1)
Warning: In w +y : longer object length is not a multiple of shorter object length

1: w<- 4:6
3: y <- 1:10
4: z<-w+y

By omitting lines that do not contribute to the computations that lead to the warning, the R programmer
should be able to find the problem more easily.

Similarly, the user can get information about what led up to an error using debug.error.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859


https://CRAN.R-project.org/package=provDebugR

CONTRIBUTED RESEARCH ARTICLE 149

> debug.error(stack.overflow=TRUE)
Your Error: Error in data.frame(x, y, z): arguments imply differing number
of rows: 3, 10

Code that led to error message:

1: w <- 4:6

2: X <= 1:3

3: y <-1:10

4: z<-w+y

5: y <-c('a', 'b", 'c")

6: Xxyz <- data.frame (x, y, z)

Results from StackOverflow:

[1] "What does the error \"arguments imply differing number of rows: x, y\”
mean?"

[2] "ggplot gives \"arguments imply differing number of rows\" error in
geom_point while it isn't true - how to debug?”

[3] "Checkpoint function error in R- arguments imply differing number of rows:
1, 38, 37"

[4] "qdap check_spelling Error in checkForRemoteErrors(val) : one node
produced an error: arguments imply differing number of rows”

[5] "Creating and appending to data frame in R (Error: arguments imply
differing number of rows: 0, 1)"

[6] "Caret and GBM: task 1 failed - \"arguments imply differing number of rows\""

Choose a numeric value that matches your error the best or q to quit:

Figure 5: The output of a call to debug.error, showing the titles of posts on Stack Overflow related
to the error encountered in the script. The user can select an option to be taken to the corresponding
Stack Overflow page.

> debug.error()
Your Error: Error in data.frame(x, y, z): arguments imply differing number of rows: 3, 10

Code that led to error message:
1: w<- 4:6
<-1:3
<-1:10
<-w+ty
<-c('a', 'b", 'c")
xyz <- data.frame (x, y, z)

o U1 AW N
< N <K X

The debug. error function has an optional logical parameter, stack.overflow. When set to TRUE,
debug.error uses the stackexchange API to search Stack Overflow for posts about similar error
messages. It lists the questions asked in the top six posts. The user can select one and a tab will open
in the user’s browser displaying the selected post.

Figure 5shows a sample dialog using debug.error. Selecting 1 results in the user’s browser going

to the page displayed in Figure 6.” By scrolling down through answers to this question (not shown
here), users will ideally obtain helpful information allowing them to solve their problem quickly.

A common cause of programming errors in R is caused by automatic type conversions as occurs

print ("x is 2")

5https://stackoverflow4com/questioms/ZGT47558/whatfdoesftheferrorfargumentsfimplyfdifferingf
number-of-rows-x-y-mean

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859


 https://stackoverflow.com/questions/26147558/what-does-the-error-arguments-imply-differing-number-of-rows-x-y-mean
 https://stackoverflow.com/questions/26147558/what-does-the-error-arguments-imply-differing-number-of-rows-x-y-mean

CONTRIBUTED RESEARCH ARTICLE 150

What does the error “arguments imply differing
number of rows: X, y” mean?

I'm trying to create a plot from elements of csv file which looks like this:

32 hi1,h2,h3,ha
a,1,0,1,0
b,1,1,0,1
c,0,0,1,0

| tried the following code but am receiving an error saying

Error in data.frame(id = varieties, attr(mat, "row.names"), check.rows = FALSE) :
arguments imply differing number of rows: 8, 20

my sample data has 8 columns and 20 rows (excluding header and row names). | tried to look up
online and tried to implement a few fixes but the issue still persists. I'd really appreciate any help.

mat <- read.csv("trial.csv", header=T, row.names=1)
varieties = names(mat)
df <- data.frame(id=varieties,attr(mat, "row.names"), check.rows= FALSE)

Figure 6: Stack Overflow Page to Resolve an Error

} else {
print ("x is not 2")

3
Running this simple script produces this output.
Error in if (x == 2) { : the condition has length > 1

The programmer may be surprised or confused to get this warning message, as the assignment back
to x may have been a mistake. Since R is a dynamically-typed language, there is no error at the time of
the assignment, but only later when the value is used. The programmer can use debug.variable to
quickly identify the type of x at each assignment

> debug.variable(x, showType=TRUE)

Var: x
1: 1 x <=1
container dimension type
1 vector 1 numeric
4. 2 3 45 6 7 8 91011 X <= X +y
container dimension type
2 vector 10 numeric

This shows that on line 4, x changed from a single element vector whose value was 1 to a 10-element
vector containing the numbers 2 through 11.

Next, the programmer may want to find out why x became a vector. The debug.1ineage function
provides this information.

> debug.lineage(x)

Var x
1: x <=1
2: y <-1:10
4: X <-x +y

By showing the lines that led to x’s value and type at line 4, we see the vector assignment to y in line 2,
followed by the computation of x in line 4. Notice that line 3, the assignment to z, is not included in
the lineage, since it played no role, either directly or indirectly in the value assigned to x. Ideally, by
examining the provenance, the programmer realizes that the assignment should have been to y rather
than to x.

An experienced R programmer may realize that unexpected type changes such as these can
commonly lead to errors. Even if no error had been reported, they might want to check preemptively
for type changes. This can be done by calling debug. type. changes, which reports all variables where

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 151

the container, dimension, or type of value in the container have changed, showing just the values
immediately before and after the type change.

> debug. type.changes()
The type of variable x has changed. x was declared on line 1 in debugScript4.R.
1: debugScript4.R, line 4
dimension changed to: 10
from: 1
code excerpt: x <- x +y

The debug.line and debug.state functions allow the user to inspect variable values at specific
lines in the code. The debug.line function shows the values of all variables used or modified on a
specific line.

> debug.line(4)
Results for line(s): 4

4: x <-x ty
Inputs:
1. x 1
2.y 1 2 3 45 6 7 8 910
Outputs:
1. x 2 3 4 5 6 7 8 9101

The debug. state function shows the values that all variables have after execution of a specific line,
showing the line number where the variable was set.

> debug.state(4)
Results for line(s): 4

Line 4
4: X 2 3 4 5 6 7 8 91011
2: y 1 2 3 45 6 7 8 910
3: z 2

Earlier we showed the debug. lineage function that shows the user how a particular value was
computed. That was an example of backward lineage or ancestry, because it starts with a variable
and goes back in time to show all the computations on which a variable depends. The debug.lineage
function can also display forward lineage to show how a value is used, i.e., all the subsequent
computations that depend on it. This is particularly helpful in identifying all the information that
might be affected by a programmatic change or modification to an input file.

> debug.lineage(x, forward = TRUE)

Var x
1: x <-1
4: X <-x +y
5: if (x == 2) {

Note that by using provenance, provDebugR is able to display information about the execution
state of the script at different points in its execution without the need to set breakpoints or insert print
statements and re-run the script. This is particularly helpful for stochastic processes where the output
might vary on each execution, causing some bugs to be challenging to track down.

provExplainR

Whereas provSummarizeR provides a summary of a single script execution, provExplainR goes a
step further and provides a textual description of the difference between two script executions. If two
executions of a script produce different outputs, provExplainR can be used to expose differences. This
can be helpful when returning to work on an old script, when porting a script to a new environment,
or when inheriting a script from someone else.

The prov.explain function reads two provenance directories and identifies differences in the
computing environment, the input data, the versions of R or its libraries, and /or the main and sourced
scripts.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859


https://CRAN.R-project.org/package=provSummarizeR
https://CRAN.R-project.org/package=provExplainR
https://CRAN.R-project.org/package=provExplainR

CONTRIBUTED RESEARCH ARTICLE 152

prov.explain(
dir1l = "prov_factorial_2021-03-31T12.01.36EDT",
dir2 = "prov_factorial_2021-04-26T16.34.16EDT")

Results are displayed in the console (Figure 7).
The prov.diff.script function can be used to identify differences between two scripts.

prov.diff.script(
dirl = "prov_MyScript_2019-08-06T15.59.18EDT",
dir2 = "prov_MyScript_2019-08-21T16.25.58EDT")

This function uses the diffobj package to identify and display differences (Figure 8).

We are planning to extend the functionality of provExplainR so that it also helps the programmer
understand the impact of any reported changes by identifying where the behavior of the two executions
start to differ. We expect this will help the programmer understand more specifically why the script is
behaving differently. For example, if the line of code where changes first appear involves calling a
function from an updated library, the programmer will likely want to understand better what changed
with the new version of the library.

Developing new provenance-based tools

In addition to end-user tools as described above, we have also made available packages intended for
programmers interested in developing their own tools incorporating provenance information.

provParseR

The provParseR package parses the JSON provenance and provides a convenient API to access
portions of the provenance. To get started the tool developer calls the prov.parse function.

prov.parse(prov.input, isFile = TRUE)

The prov.input parameter is a string that can either be the path to a JSON file containing prove-
nance or it can be a string containing the provenance. The second parameter (isFile) is used to
disambiguate these cases. The default assumption is that prov. input is the path to a file. This function
returns an object whose class is ProvInfo. The remaining functions provided by provParseR are
getters that are passed a ProvInfo object and return information, typically a data frame containing
that portion of the provenance.

For example, get.input. files returns a data frame containing a subset of the data nodes that cor-
respond to files read by the script. The data frame that is returned includes the following information:

¢ id - a unique id

® name - the file name

* value - the path to a saved copy of the file
¢ hash - the hash value of the file

¢ location - the path to the original file

The get.environment function returns a data frame including information about the execution
environment, such as the architecture and operating system on which the script was executed, the
version of R, and the modification and execution times of the script.

Two functions provide information about the R libraries used. The get.1libs function returns the
name and version of each library, and whether it was loaded by the script, loaded before the script ran,
or loaded by rdtLite code. The get. func.1lib function returns the name of each function called from a
library and the library from which it came.

Other functions provide information about the R statements executed and the edges between
nodes. See the package’s help page for a complete list of the functions and what they do.

The provSummarizeR, provDebugR and provExplainR tools all use provParseR to extract the
information they need from the JSON file.

provGraphR

The provGraphR package provides an API that allows a tool developer to make lineage queries over
provenance, as provDebugR does. To get started, the tool developer calls the create. graph function.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859


https://CRAN.R-project.org/package=diffobj
https://CRAN.R-project.org/package=provParseR
https://CRAN.R-project.org/package=provParseR
https://CRAN.R-project.org/package=provGraphR

CONTRIBUTED RESEARCH ARTICLE 153

You entered:

dirl = prov_factorial_2021-03-31T12.01.36EDT

dir2 = prov_factorial_2021-04-26T16.34.16EDT

SCRIPT CHANGES: The content of the main script factorial.R has changed

Run prov.diff.script to see the changes.

### dirl main script factorial.R was last modified at: 2021-03-31T11.58.03EDT
### dir2 main script factorial.R was last modified at: 2021-03-31T11.58.21EDT

LIBRARY CHANGES:
Library version differences:
name dirl.version dir2.version

base 4.0.0 4.0.5
datasets 4.0.0 4.0.5
ggplot?2 3.3.2 3.3.3
graphics 4.0.0 4.0.5
grDevices 4.0.0 4.0.5
methods 4.0.0 4.0.5
stats 4.0.0 4.0.5
utils 4.0.0 4.0.5

Libraries in dir2 but not in dirl1: No such libraries were found
Libraries in dirl1 but not in dir2:
name version

dplyr 1.0.0
provDebugR 1.0
provExplainR 1.0

INPUT FILE CHANGES:
No input files were found in dir 1
No input files were found in dir 2

ENVIRONMENT CHANGES: Value differences:

Attribute: language version

### dirl value: R version 4.0.0 (2020-04-24)

### dir2 value: R version 4.0.5 (2021-03-31)

Attribute: scriptHash

### dir1l value: c6b976a5ba662833323d56543817671b

### dir2 value: 426ecf@1ebab431cdcbb@00a20c3e273

Attribute: total elapsed time

### dirl value: 1.483

### dir2 value: 1.752

Attribute: working directory

### dirl value: /Users/blerner/Documents/workspace/factorial-1

### dir2 value: /Users/blerner/Documents/workspace/factorial-2

Attribute: provenance directory

### dir1 value: /Users/blerner/tmp/prov/prov_factorial_2021-03-31T12.01.36EDT
### dir2 value: /Users/blerner/tmp/prov/prov_factorial_2021-04-26T16.34.16EDT
Attribute: provenance collection time

### dirl value: 2021-03-31T12.01.36EDT

#i## dir2 value: 2021-04-26T16.34.16EDT

PROVENANCE TOOL CHANGES: Tool differences: No differences have been detected

Figure 7: Output from prov.explain describing the differences found in the provenance of two execu-
tions of factorial. Items referenced as dirl refer to the first execution, while items referenced as dir2
refer to the second execution. In this case, the significant differences are differences in the factorial
script, the library versions, and the version of R. Other less significant differences that are identified
include when the script was executed, the time it took the script to execute, the directory in which the
script was executed, and the directory in which the provenance is stored.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 154

<| first.full.script |>| second. full.script
return (=1) | return (=1)
} }

answer = 1

for (i in 0: num) { > if (num == 0) {
‘ | answer = answer * i E return (1)
< return (answer) : return (num * factorial (num - 1))

H) }

Figure 8: Comparing scripts using provExplainR.

create.graph(prov.input = NULL, isFile = TRUE)

The create. graph function uses the igraph package to calculate an adjacency matrix representation
of the graph. The value returned by create.graph can be used as an argument to the get.lineage
function to perform lineage queries. As with prov.parse, the default behavior is for prov. input to
be the path to a JSON provenance file and for isFile to be TRUE. Alternatively, prov. input can be a
string containing JSON provenance if isFile is FALSE.

The get.lineage function computes either backward or forward provenance.
get.lineage(adj.graph, node.id, forward = FALSE)

Its node. id parameter is the unique id assigned to each node in the graph. Using parser functions,
such as get.input.files, get.output.files, get.variables.set, and get.variables.used, a tool
developer can find the id of a file or variable and then obtain its lineage.

These functions provide information about how input data is used or how the values stored in an
output file or a plot were computed. The return value is a vector of node ids identifying the nodes in
the lineage. The functions return complete lineage, so backward provenance traces back to input files
or constants, while forward lineage traces to output. This function underlies the various trace and
lineage functionality provided in provDebugR.

5 Limitations

There are two techniques used to capture provenance, each with its own limitations.

First, provenance information concerning files that are read or written is done by using R’s
trace function. Specifically, we trace the low-level I/O functions provide by R, such as writelLines,
write.table, readLines, and read. table, as well as I/O functions from the vroom package. We also
trace plotting functions provided by the grDevices package, like pdf, and functions from the ggplot2
package, like ggsave. Any I/0O function built on top of any traced functions will effectively be traced.
However, I/O functions that instead use an external library to do the actual I/O will not be traced. It is
not difficult to add new functions to trace, but it requires a modification to rdtLite for that to happen.

Second, statement-level provenance is captured by parsing each statement to find the variables
used and set and then executing the statement to capture the values of variables that are modified.
Each top-level statement is executed atomically. As a result, an if-statement, loop, or a function
call is executed as a unit. While I/O information is captured internally to these, provenance at the
level of variables is not captured on a line-by-line basis internally to these programming constructs.
Provenance collection slows down the execution of scripts, and collecting more detailed provenance
seems prohibitive, although it does limit the usefulness of provDebugR, in particular.

For a similar reason, a statement that uses the pipe operator is also executed as a unit. The variables
used within pipes, and the final value computed by a statement that uses pipes is captured. However,
the intermediate values passed through the pipe are not captured.

rdtlite may misidentify some expressions as variables when non-standard evaluation is used. For
example, in the statement

cars6Cyl.df <- subset(allCars.df, cyl == 6)

cyl is not a variable, but rather the name of a column in the allCars.df data frame. In order to
know that cyl is not a variable, rdtLite would need to know how the subset function evaluates its
parameters. There is no general purpose way of determining this. Handling this situation would
require creating a list of known functions and which parameters use non-standard evaluation. rdtLite
does not do this currently.

Finally, rdtLite captures values associated with R’s base types. However, it has not been extensively
tested with the various class systems supported by R.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859


https://CRAN.R-project.org/package=provExplainR
https://CRAN.R-project.org/package=igraph
https://CRAN.R-project.org/package=provDebugR
https://CRAN.R-project.org/package=vroom
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=rdtLite
https://CRAN.R-project.org/package=provDebugR
https://CRAN.R-project.org/package=rdtlite
https://CRAN.R-project.org/package=rdtLite
https://CRAN.R-project.org/package=rdtLite

CONTRIBUTED RESEARCH ARTICLE 155

6 Related work

There are many systems that collect provenance and several excellent survey papers on provenance
systems (Freire et al., 2008; Herschel et al., 2018; Pimentel et al., 2019). Provenance collection is
common in workflow systems where it is built directly into the execution environment, such as
in Kepler (Altintas et al., 2006), VisTrails (Koop et al., 2013), and Taverna (Missier et al., 2008). Of
particular interest is the work of de Oliveira et al. (2014) who use provenance to debug long-running
workflows, and Why-Diff (Thavasimani et al., 2019) which compares provenance of multiple workflow
executions to find differences. Provenance collection in programming languages is much less common,
with the exception of the noWorkflow (Murta et al., 2014) implementation for Python.

There has been previous work on collecting provenance for R. Much of this work collects prove-
nance at the level of files. The rctrack package (Liu and Pounds, 2014) uses R’s trace function to record
information about files read and written and the computing environment. It saves copies of data files
and scripts with the goal of being able to reproduce a computation. Similarly, recordr (Slaughter et al.,
2018) records information about files read and written and the computing environment. It can also
save copies of those files.

The CodeDepends (Lang et al., 2019), trackr (Becker et al., 2017), and histry (Becker et al., 2017)
packages coordinate to provide insights and records of code execution similar to how rdtLite and its
associated tools work. The techniques used to collect provenance and the functionality built on top
of the collected provenance are different, however. The CodeDepends package collects dependency
information from R code based on static analysis of the code, rather than through execution. The
histry package tracks expression evaluation and weaving as with RMarkdown. The trackr package
(Becker et al., 2017) captures the provenance of plots created by a script. Metadata about how a plot is
created comes from the dependencies and provenance gathered by CodeDepends and histry. The
plots can later be discovered by performing searches on the metadata.

The adapr package (Gelfond et al., 2018) stores hash values of data files with the R code in a
GitHub repository. They assume the data themselves are stored elsewhere. Their goal is to be able to
confirm that data match the data used by the code. If the data are modified, the modification will be
observable, but the original data cannot be restored by adapr.

While these R provenance systems collect valuable information useful for archiving data prove-
nance, they do not produce the fine-grained provenance needed for debugging. In contrast, CXXR
(Silles and Runnalls, 2010; Runnalls and Silles, 2012) computes fine-grained provenance using a mod-
ified R interpreter where the read-eval-print loop is modified to collect provenance. The collected
provenance is available interactively but is not stored persistently. This type of provenance can be
helpful for debugging but does not support archiving the provenance.

In contrast to these, rdtLite saves information persistently about file inputs and outputs that is
useful for archival purposes and saves fine-grained provenance useful for debugging. The E2ETools
also build on top of this provenance to provide useful functionality to the user and provide building
blocks to enable more tools to be built. Since the JSON provenance format is language-agnostic, the
same provenance tools should be usable for different programming languages, and we are currently
working on supporting Python by translating provenance collected by noWorkflow (Murta et al., 2014)
into the E2ETool JSON format.

7 Conclusions and future work

Data provenance contains a wealth of information. Although provenance initially was thought of as
documentation to bolster trust in the data, it has many uses beyond that. In particular, fine-grained
provenance offers rich opportunities to develop tools that can be helpful for debugging, learning how
a script works, maintaining scripts, and porting scripts to new environments.

Reproducibility as a Service (RaaS) (Wonsil, 2021), a web-based reproducibility tool, strongly
benefits from collecting and using provenance data. This tool automatically constructs a computational
environment in a Docker container for a given set of R scripts and the data they analyze. It then
executes all the scripts, collecting provenance with rdtLite and saving all the results to a Docker image.
The resulting provenance currently allows RaaS to build a report for its users and situates it perfectly
to use the E2ETools in the future. For example, it could use provSummarizeR to generate its reports. If
researchers want to compare the RaaS execution to their initial execution on their machine, RaaS could
integrate provExplainR for easy comparisons. Finally, RaaS could also incorporate provDebugR to
allow users to step through the execution of the scripts entirely within their browser without needing
an R session or even downloading the data.

Our collaborators have used a variant of provDebugR to explore asynchronous collaboration
between data scientists. This variant, called the Multilingual Provenance Debugger (MPD) (Yoo et al.,

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859


https://CRAN.R-project.org/package=CodeDepends
https://CRAN.R-project.org/package=histry
https://CRAN.R-project.org/package=rdtLite
https://CRAN.R-project.org/package=CodeDepends
https://CRAN.R-project.org/package=histry
https://CRAN.R-project.org/package=CodeDepends
https://CRAN.R-project.org/package=histry
https://CRAN.R-project.org/package=rdtLite
https://CRAN.R-project.org/package=rdtLite
https://CRAN.R-project.org/package=provSummarizeR
https://CRAN.R-project.org/package=provExplainR
https://CRAN.R-project.org/package=provDebugR
https://CRAN.R-project.org/package=provDebugR

CONTRIBUTED RESEARCH ARTICLE 156

2021), is not tied to the R language. Instead, it works on provenance for any language that exports
to the same PROV-JSON format as rdiLite. An experimental feature in MPD allows users to record
and annotate a debugging session as a trace to send to another collaborator, who can replay the trace
step-by-step or view the whole session as a pretty-printed markdown file. We could implement similar
features in provDebugR and extend it to include a visualization component.

Finally, another avenue for future work is the semi-automatic generation of model cards, an
artifact that Mitchell et al. (2019) proposed to increase transparency for machine-learning models.
One of our current collaborations includes contributions to the open-source Tribuo machine-learning
library (Pocock, 2021), which contains a built-in provenance collection system focused on machine-
learning provenance. Using the provenance that Tribuo generates, our collaborators built a feature to
automatically generate the technical details for model cards and provide support for annotations to
supplement the data on the card. We can bring a variant of this feature back into the R ecosystem as an
extension of provSummarizeR, either directly for machine learning in R or, more generally, to build
an “analysis card’ or 'script card.” As these ongoing projects demonstrate, collecting provenance is just
the beginning. Developing software that builds on collected provenance to support reproducibility,
understanding, and enhancement of software is the long-term goal of this work.

Acknowledgements

This work was supported by NSF grants DEB-1237491, DBI-1459519, and SSI-1450277, the Charles
Bullard Fellowship program at Harvard University, and a faculty fellowship from Mount Holyoke
College. This paper is a contribution of the Harvard Forest Long-Term Ecological Research (LTER)
program.

The authors acknowledge intellectual contributions from the following students: Shaylyn Adams,
Vasco Carinhas, Marios Dardas, Andrew Galdunski, Connor Gregorich-Trevor, Nicole Hoffler, Jennifer
Johnson, Siqing (Alex) Liu, Erick Oduniyi, Antonia Oprescu, Luis Perez, Moe Pwint Phyu, Katerina
Poulos, Garrett Rosenblatt, Cory Teshera-Sterne, Sofiya Toskova, Morgan Vigil, and Yujia Zhou.

1 Appendix: Extended Prov JSON format

The provenance collected by rdtLite uses a JSON format that extends the Prov JSON format defined by
W3C W3C (2014). The W3C Prov JSON format was designed to capture workflow involving multiple
activities with information flowing between them. An activity might be performed by a piece of
software, or by a person. The detailed provenance captured by rdtLite has activities that are at the
level of R statements, with the data being files and variables. The extensions use the same schema as
defined by W3C, encoding the provenance data as described below.

Prov JSON has three types of elements: entities, agents, and activities. In the extended JSON used
by rdtLite, information about data, libraries, and functions, as well as the runtime environment are
encoded as entities. The tool used to collect the provenance is encoded as an agent. Information about
statements is encoded as activities.

Prov JSON provides many types of relationships. In the extended JSON, just four of these are used.
The wasInformedBy relationship is used to represent edges connecting statement elements. Specifically,
these edges capture control flow information. The wasGeneratedBy relationship connects a statement
element to the data elements that it generates, such as a variable that is modified, or a file that is
output. The used relationship is used to connect a data element to the statement elements that uses the
data, such as a variable used within a statement or a file input by a statement. The used edge also is
used to record what functions are used by each statement. The hadMember relationship records which
library each function comes from.

Seehttps://github.com/End-to-end-provenance/ExtendedProvJson/blob/master/JSON-format.
md for more details about this format.
Bibliography

I. Altintas, O. Barney, and E. Jaeger-Frank. Provenance collection support in the Kepler scientific
workflow system. In Proceedings of the International Provenance and Annotation Workshop, pages
118-132, Chicago, May 2006. Springer-Verlag. [p155]

G. Becker, S. E. Moore, and M. Lawrence. trackr: A framework for enhancing discoverability and

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859


https://CRAN.R-project.org/package=rdtLite
https://CRAN.R-project.org/package=provDebugR
https://CRAN.R-project.org/package=provSummarizeR
https://CRAN.R-project.org/package=rdtLite
https://CRAN.R-project.org/package=rdtLite
https://github.com/End-to-end-provenance/ExtendedProvJson/blob/master/JSON-format.md
https://github.com/End-to-end-provenance/ExtendedProvJson/blob/master/JSON-format.md

CONTRIBUTED RESEARCH ARTICLE 157

reproducibility of data visualizations and other artifacts in r, 2017. URL https://arxiv.org/abs/
1706.04440. [p155]

R. A. Becker and J. M. Chambers. Auditing of data analyses. SIAM Journal of Scientific and Statistical
Computing, 9:747-760, 1988. [p141]

D. de Oliveira, F. Costa, V. Silva, K. Ocafia, and M. Mattoso. Debugging scientific workflows with
provenance: Achievements and lessons learned. In in Proceedings of the 29th SBBD, pages 67-76,
Brazil, October 2014. [p155]

J. Freire, D. Koop, E. Santos, and C. T. Silva. Provenance for computational tasks: A survey. Computing
in Science and Engineering, 10(3):11-21, May/June 2008. [p155]

J. Gelfond, M. Goros, B. Hernandez, and A. Bokov. A system for an accountable data analysis process
in R. The R Journal, 10(1):6-21, July 2018. [p155]

M. Herschel, R. Diestelkdmper, and H. B. Lahmar. A survey on provenance: What for? What form?
What from? VLDB Journal, 2018. [p155]

D. Koop, J. Freire, and C. T. Silva. Enabling reproducible science with vistrails. In First Workshop on
Sustainable Software for Science: Practice and Experiences (WSSSPE1), Denver, CO, November 2013.

[p155]

D. T. Lang, R. Peng, D. Nolan, and G. Becker. CodeDepends. https://github.com/duncantl/
CodeDepends, 2019. [Online; accessed 19-July-2022]. [p155]

B. Lerner, E. Boose, and L. Perez. Using introspection to collect provenance in R. Informatics, 5(12),
2018. URL http://www.mdpi.com/2227-9709/5/1/12/htm. [p141, 144]

B.S. Lerner and E. R. Boose. Poster: RDataTracker and DDG Explorer — capture, visualization and
querying of provenance from R scripts. In Proceedings of the International Provenance and Annotation
Workshop, Cologne, Germany, June 2014a. [p148]

B.S. Lerner and E. R. Boose. RDataTracker: Collecting provenance in an interactive scripting envi-
ronment. In Proceedings of 6th USENIX Workshop on the Theory and Practice of Provenance (TaPP '14),
Cologne, Germany, June 2014b. [p144]

Z.Liu and S. Pounds. An R package that automatically collects and archives details for reproducible
computing. BMC Bioinformatics, 15(138), 2014. [p155]

P. Missier, S. Embury, and R. Stapenhurst. Exploiting provenance to make sense of automated decisions
in scientific workflows. In Provenance and Annotation of Data and Processes: Second International
Provenance and Annotation Workshop, IPAW 2008, number 5272 in Lecture Notes in Computer Science,
pages 174-185, Salt Lake City, Utah, June 2008. Springer-Verlag. [p155]

M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchinson, E. Spitzer, I. D. Raji, and
T. Gebru. Model cards for model reporting. In Proceedings of the conference on fairness, accountability,
and transparency, pages 220-229, 2019. [p156]

L. Murta, V. Braganholo, F. Chirigati, D. Koop, and J. Freire. noworkflow: Capturing and analyzing
provenance of scripts. In Proceedings of IPAW 2014, Cologne, Germany, June 2014. [p155]

National Academies of Sciences, Engineering, and Medicine. Reproducibility and Replicability in Science.
National Academies Press, Washington, DC, 2019. [p141]

J. E. Pimentel, J. Freire, L. Murta, and V. Braganholo. A survey on collecting, managing, and analyzing
provenance from scripts. ACM Comput. Surv., 52(3), June 2019. [p155]

A. Pocock. Tribuo: Machine learning with provenance in java, 2021. URL https://arxiv.org/abs/
2110.03022. [p156]

A. Runnalls and C. Silles. Provenance tracking in R. In Proceedings of the 4th International Conference on
Provenance and Annotation of Data and Processes, IPAW’12, pages 237-239, Berlin, Heidelberg, 2012.
Springer-Verlag. ISBN 978-3-642-34221-9. doi: 10.1007 /978-3-642-34222-6_25. [p155]

C. A. Silles and A. R. Runnalls. Provenance-awareness in R. In Proceedings of the 3rd International
Conference on Provenance and Annotation of Data and Processes, pages 64—72,2010. [p155]

P. Slaughter, M. B. Jones, C. Jones, and L. Palmer. recordr, 2018. URL https://github.com/NCEAS/
recordr. [p155]

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859


https://arxiv.org/abs/1706.04440
https://arxiv.org/abs/1706.04440
https://github.com/duncantl/CodeDepends
https://github.com/duncantl/CodeDepends
http://www.mdpi.com/2227-9709/5/1/12/htm
https://arxiv.org/abs/2110.03022
https://arxiv.org/abs/2110.03022
https://github.com/NCEAS/recordr
https://github.com/NCEAS/recordr

CONTRIBUTED RESEARCH ARTICLE 158

P. Thavasimani, J. Cata, and P. Missier. Why-diff: Exploiting provenance to understand outcome
differences from non-identical reproduced workflows. IEEE Access, 2019. [p155]

W3C. The PROV-JSON Serialization. https://openprovenance.org/prov-json/, 2014. [Online;
accessed 18-July-2022]. [p145, 156]

J. Wonsil. Reproducibility as a service. PhD thesis, University of British Columbia, 2021. URL https:
//open.library.ubc.ca/collections/ubctheses/24/items/1.0398221. [p155]

J. Yoo, A. Li, and J. Wonsil. Multilingual provenance debugger, 2021. URL https://github.com/
jyoo0980/MultilingualProvenanceDebugger. [p155]

Barbara Lerner

Mount Holyoke College
Computer Science Department
South Hadley, MA 01075
United States of America
blerner@mtholyoke.edu

Emery Boose

Harvard University
Harvard Forest
Petersham, MA 01366
United States of America
boose@fas.harvard.edu

Orenna Brand

Columbia University
New York, NY 10027
United States of America
o.brand@columbia.edu

Aaron M. Ellison

Sound Solutions for Sustainable Science
Boston, MA 02135

United States of America
aaron@ssforss.com

Elizabeth Fong

Mount Holyoke College
Computer Science Department
South Hadley, MA 01075
United States of America
fong22e@mtholyoke.edu

Matthew Lau

University of Hawaii West Oahu

Sustainable Community Food Systems Program
Division of Social Sciences

91-1001 Farrington Hwy, Kapolei, HI 96707
United States of America

mklau3@hawaii.edu

Khanh Ngo

Mount Holyoke College
South Hadley, MA 01075
United States of America
ngo22k@mtholyoke.edu

Thomas Pasquier
University of British Columbia
Department of Computer Science

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859


https://openprovenance.org/prov-json/
https://open.library.ubc.ca/collections/ubctheses/24/items/1.0398221
https://open.library.ubc.ca/collections/ubctheses/24/items/1.0398221
https://github.com/jyoo980/MultilingualProvenanceDebugger
https://github.com/jyoo980/MultilingualProvenanceDebugger
mailto:blerner@mtholyoke.edu
mailto:boose@fas.harvard.edu
mailto:o.brand@columbia.edu
mailto:aaron@ssforss.com
mailto:fong22e@mtholyoke.edu
mailto:mklau3@hawaii.edu
mailto:ngo22k@mtholyoke.edu

CONTRIBUTED RESEARCH ARTICLE 159

2366 Main Mall #201, Vancouver, BC V6T 1724
Canada
tfjmp@cs.ubc.ca

Luis A. Perez

Harvard College®
Massachusetts Hall
Cambridge, MA 02138
United States of America
nautilik@deepmind.com

Margo Seltzer

University of British Columbia

Department of Computer Science

2366 Main Mall #201, Vancouver, BC V6T 174
Canada

mseltzer@cs.ubc.ca

Rose Sheehan

Mount Holyoke College
South Hadley, MA 01075
United States of America
sheeh22r@mtholyoke.edu

Joseph Wonsil

University of British Columbia

Department of Computer Science

2366 Main Mall #201, Vancouver, BC V6T 174
Canada

jwonsil@cs.ubc.ca

®Primary contributions while at Harvard College. Now at DeepMind.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859


mailto:tfjmp@cs.ubc.ca
mailto:nautilik@deepmind.com
mailto:mseltzer@cs.ubc.ca
mailto:sheeh22r@mtholyoke.edu
mailto:jwonsil@cs.ubc.ca

	Making Provenance Work for You
	Introduction
	What is data provenance?
	A first example
	The end-to-end provenance tools
	Collecting provenance with rdtLite
	Using provenance
	provExplainR
	Developing new provenance-based tools

	Limitations
	Related work
	Conclusions and future work
	Appendix: Extended Prov JSON format


