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a b s t r a c t

In this work we define a spatial concordance coefficient for
second-order stationary processes. This problem has been widely
addressed in a non-spatial context, but here we consider a
coefficient that for a fixed spatial lag allows one to compare
two spatial sequences along a 45◦ line. The proposed coefficient
was explored for the bivariate Matérn and Wendland covariance
functions. The asymptotic normality of a sample version of the
spatial concordance coefficient for an increasing domain sam-
pling framework was established for the Wendland covariance
function. To work with large digital images, we developed a
local approach for estimating the concordance that uses local
spatial models on non-overlapping windows. Monte Carlo simu-
lations were used to gain additional insights into the asymptotic
properties for finite sample sizes. As an illustrative example, we
applied this methodology to two similar images of a deciduous
forest canopy. The images were recorded with different cameras
but similar fields-of-view and within minutes of each other. Our
analysis showed that the local approach helped to explain a per-
centage of the non-spatial concordance and provided additional
information about its decay as a function of the spatial lag.
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1. Introduction

In recent decades, concordance correlation coefficients have been developed in a variety of
different contexts. For instance, in assay or instrument validation processes, the reproducibility of
the measurements among trials or laboratories is of interest. When a new instrument is developed,
it may be relevant to evaluate whether its performance is concordant with other, existing ones, or
its results accord with a ‘‘gold standard’’. There are also situations in which one is interested in
comparing two methods without a designated gold standard or target values (Lin et al., 2002). In
the literature, this latter type of concordance has been tackled from different perspectives (Barnhart
et al., 2007). Cohen (1968) discussed this problem in the context of categorical data. Schall and
Williams (1996) and Lin (2000) performed similar studies in the context of bioequivalence.

One way to approach the concordance problem for continuous measurements is to construct
a scaled summary index that can take on values between −1 and 1, analogous to a correlation
oefficient. Using this approach, Lin (1989) suggested a concordance correlation coefficient (CCC)
hat evaluates the agreement between two continuous variables by measuring their joint deviation
rom a 45◦ line through the origin. There have been some extensions of this CCC that use several
easuring instruments and techniques to evaluate the agreement between two instruments;

hese efforts have led to interesting graphical tools (Hiriote and Chinchilli, 2011; Stevens et al.,
017). In the context of goodness of fit, Vonesh et al. (1996) proposed a modified Lin’s CCC for
hoosing models that have a better agreement between the observed and the predicted values.
ecently Stevens et al. (2017) and Chodhary and Nagaraja (2017) developed the probability of
greement, and Leal et al. (2019) studied the local influence of the CCC and the probability of
greement considering both first- and second-order measures under the case-weight perturbation
cheme. Atkinson and Nevill (1997) critiqued the CCC because any correlation coefficient is highly
ependent on the measurement range. In general, therefore, CCC is used only when measuring
anges are comparable or when methods are on the same scale.

In this paper, we suggest an approach to assessing the agreement between two continuous
esponses when the observations of both variables have been georeferenced in space. We define
spatial CCC (SCCC) as a generalization of Lin’s (1989) coefficient that measures the agreement
etween two spatial variables. For a fixed lag, our SCCC shares the same properties as the original
CC. For an increasing domain sampling scheme, (i.e., for an asymptotic method for which the two-
imensional domain increases), we establish the asymptotic normality of the sample SCCC for a
ivariate Gaussian process with a Wendland covariance function. To facilitate the computation of
he spatial concordance coefficient when image sizes are large, we developed a local approach for
stimating it that uses local spatial models on non-overlapping windows. This approach constitutes
new way of thinking about concordance that has not been considered previously, especially for

arge digital images. Our approach also captures the decay of the SCCC as a function of the norm of
he spatial lag. Monte Carlo simulations and numerical experiments with real datasets accompany
he exposition of the methodological aspects. An image-analysis example is worked in detail to
llustrate the fitting of a local SCCCs. We conclude with a summary of the main findings and an
utline of problems to be tackled in future research.

. Preliminaries and notation

Assume that X and Y are two continuous random variables such that the joint distribution of X
nd Y has finite second moments with means µX and µY , variances σ 2

X and σ 2
Y , covariance σXY and

orrelation coefficient between X and Y

ρ =
σXY

σXσY
.

he mean squared deviation of D = X − Y is

MSD = ϵ2 = E[D2
] = E[(X − Y )2].
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Fig. 1. Departure of two datasets defined on the plane from the 45◦ line intersecting the origin. (a) Perfect correlation
with a shift effect results in relatively high concordance (̂ρc = 0.7241). (b) Perfect correlation but poor concordance
(̂ρc = 0.0340).

It is straightforward to see that ϵ2 = (µX − µY )2 + σ 2
X + σ 2

Y − 2σXY and the sample counterpart
atisfies e2 = (X − Y )2 + s2X + s2Y − 2sXY . Using this framework, Lin (1989) defined a CCC as:

ρc = 1 −
ϵ2

ϵ2|ρ = 0
=

2σXY
σ 2
X + σ 2

Y + (µX − µY )2
, (1)

where ϵ2|ρ = 0 is the error, given that the correlation coefficient between X and Y is null. Lin (1989)
pointed out that Eq. (1) is equal to one minus the ratio between the expected squared perpendic-
ular deviation from the 45◦-line intersecting the origin, and the expected squared perpendicular
deviation from it when X and Y are uncorrelated.

The CCC satisfies the following properties:

1. ρc = α · ρ, where α =
2

w+1/w+v2
, v =

µX−µy
√
σXσY

, and w =
σX
σY

.

2. |ρc | ≤ |ρ| ≤ 1.
3. ρc = 0 if and only if ρ = 0.
4. ρc = ρ if and only if σY = σX and µY = µX .

It should be emphasized that ρc is always less than ρ because the first coefficient evaluates the
degree to which pairs fall on the 45◦-line intersecting the origin, but it is not the exact linear
correlation between X and Y .

The sample estimate of ρc is given as:

ρ̂c =
2sXY

s2X + s2Y + (X − Y )2
.

To clarify the difference between the CCC and the correlation coefficient, two examples are
illustrated in Fig. 1. Fig. 1(a) is a scatterplot for the case where there are different sample means
but identical sample variances (X = (1, 2, 3, . . . , 8), Y = (3, 4, 5, . . . , 10)); the correlation between
X and Y coefficient is equal to 1 and ρ̂c = 0.7241. Fig. 1(b) illustrates the case where both sample
means and variances differ (X = (1.1, 1.2, 1.3, . . . , 1.8), Y = (3, 4, 5, . . . , 10)). As in Fig. 1(a), there
is a perfect correlation between X and Y (̂ρ = 1), but now there is much lower concordance X and
Y (̂ρ = 0.0340).
c
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Inference for this coefficient was addressed via Fisher’s transformation. Lin (1989) proved that

Ẑ =
1
2
log
(
1 + ρ̂c

1 − ρ̂c

)
D

−→ N (Z, σ 2
Z ), as n → ∞,

where

Z = tanh−1(ρc) =
1
2
log
(
1 + ρc

1 − ρc

)
nd

σ 2
Ẑ =

1
n − 2

[
(1 − ρ2)ρ2

c

(1 − ρ2
c )ρ2 +

4v2(1 − ρc)ρ3
c

(1 − ρ2
c )2ρ

+
2v4ρ4

c

(1 − ρ2
c )2ρ2

]
.

As a consequence of the asymptotic normality of the sample CCC, an approximate hypothesis
esting problem of the form

H0 : ρc = ρ0 versus H1 : ρc ̸= ρ0

or a fixed ρ0 can be constructed. Alternatively, an approximate confidence interval for ρc of the
orm

[tanh(Z − zα/2σẐ ), tanh(Z + zα/2σẐ )]

can be used, where zα/2 is the upper quantile of order α/2 of the standard normal distribution.
Applications and extensions of Lin’s coefficient can be found in Lin et al. (2012), among others.

Although the notion of concordance and particularly Lin’s coefficient have been generalized
to different contexts, they also have been criticized. Atkinson and Nevill (1997) questioned Lin’s
coefficient for two reasons. First, these kind of methods are highly sensitive to sample heterogeneity.
Second, its interpretation is problematic, especially when ρc is small. Lawrence and Chinchilli (1997)
argued that most of the correlation coefficients largely depend on the analytical range, so that good
concordance observed over a small range of measurements cannot be extrapolated to a similarly
good concordance over a larger range of measurements. Three factors contribute to low values of
ρc : small analytical range, imprecision, and inaccuracy (systematic bias) (Lawrence and Chinchilli,
1997). Because of these factors, study design plays a crucial role in the interpretation of Lin’s
coefficient. Measurement ranges should be compatible and they should be reported together with
Lin’s coefficient.

3. A spatial concordance coefficient and its properties

In this section we generalize Lin’s coefficient for bivariate spatial processes. The main advantage
of this extension is the fact that the new coefficient considers the existing spatial information
of a georeferenced sample on the two-dimensional space. The way the coefficient takes into
account the spatial association is through its dependence on a spatial lag h ∈ R2, similarly to the
ovariance function or the variogram of a weakly stationary process. This extension preserves Lin’s
nterpretation in the sense that for a particular spatial lag, the spatial concordance captures the
eparture from the 45◦ line passing through the origin. In particular, for isotropic processes the
im of this extension is to yield a plot of the spatial concordance coefficient versus the norm of
he spatial lag. This will help to study the decay of the concordance as a function of the distance
etween the observations.
We start by extending Lin’s CCC for bivariate second-order spatial processes for a general

ivariate covariance function and a fixed lag in space.

efinition 1. Let Z(s) = (X(s), Y (s))⊤ be a bivariate second-order stationary random field with
s, h ∈ R2, mean (µX , µY )⊤, and covariance function

C(h) =

(
CX (h) CXY (h)

)
,
CYX (h) CY (h)
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where

CX (h) = Cov[X(s), X(s + h)],

CY (h) = Cov[Y (s), Y (s + h)],

CXY (h) = CYX (h) = Cov[X(s), Y (s + h)].

Then the SCCC is defined as

ρc(h) = 1 −
E[(X(s + h) − Y (s))2]

E[(X(s + h) − Y (s))2|CXY (0) = 0]

=
2CXY (h)

CX (0) + CY (0) + (µX − µY )2
. (2)

Some straightforward properties of this SCCC are:

1. For η =
2
√

CX (0)CY (0)
CX (0)+CY (0)+(µX−µY )2

, and ρXY (h) =
CXY (h)√
CX (0)CY (0)

, it follows that

ρc(h) = η · ρYX (h). (3)

2. |ρc(h)| ≤ |ρXY (h)| ≤ 1.
3. ρc(h) = 0 iff ρXY (h) = 0.
4. ρc(h) = ρXY (h) iff µX = µY and CX (0) = CY (0).

In the sequel, the estimation of parametric covariance functions will be relevant, so we first
define them for parametric correlations. If R(h,φ) is a correlation function with parameter vector
φ, then a covariance function is defined as:

CX (h) = σ 2
X R(h,φX ),

CY (h) = σ 2
Y R(h,φY ),

CXY (h) = ρXYσXσYR(h,φXY ). (4)

The SCCC then can be written as:

ρc(h) =
2σXσY
σ 2
X + σ 2

Y
ρXYR(h,φXY ). (5)

his means that the SCCC can be seen as a corrected version of the correlation between processes
(·) and Y (·). Because we expect that ρc(∥h∥) in general will decrease as a function of ∥h∥, it is

possible to quantify the relationship between the spatial concordance and Lin’s coefficient for a
fixed spatial lag. Moreover, the value of ∥h∥ for which ρc(∥h∥) is negligible when it decreases as
a function of ∥h∥ can be quantified similarly to the correlation function. In this case, the range of
SCCC is the value of the norm of h for which ρc(∥h∥) is zero.

Using similar arguments as in properties 1–4, the SCCC in (5) could be derived for specific
parametric bivariate correlation functions. Here we provide two examples.

1. For a bivariate random field with mean (µ,µ)⊤ and the Matérn covariance function

CX (h) = σ 2
XM(h, νX , aX ), (6)

CY (h) = σ 2
Y M(h, νY , aY ), (7)

CXY (h) = ρXYσXσYM(h, νXY , aXY ), (8)

where M(h, ν, a) = (a∥h∥)νKν(a∥h∥), Kν(·) is a modified Bessel function of the second kind,
2

∥ · ∥ is the Euclidean norm in R , and ρXY is the co-located correlation coefficient between X
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and Y (defined by Gneiting et al., 2010). It follows that

ρc(h) =
2CXY (h)

CX (0) + CY (0) + (µ− µ)2

=
2ρXYσXσYM(h, νXY , aXY )

σ 2
XM(0, νX , aX ) + σ 2

Y M(0, νY , aY )

=
2ρXYσXσYM(h, νXY , aXY )

σ 2
X + σ 2

Y

=
2σXσYM(h, νXY , aXY )

σ 2
X + σ 2

Y
· ρXY

= η(h) · ρXY ,

where η(h) =
2σXσYM(h,νXY ,aXY )

σ2
X +σ2

Y
.

A special case of the Matérn covariance function is when νXY = p + 1/2. Then

M(h, νXY , aXY ) = M(h, p + 1/2, aXY ) = exp(−aXY∥h∥)
p∑

k=0

(p + k)!
(2p)!

(
p
k

)
(2aXY∥h∥)p−k,

and the SCCC is

ρc(h) =
2σXY

σ 2
X + σ 2

Y
exp(−aXY∥h∥)

p∑
k=0

(p + k)!
(2p)!

(
p
k

)
(2aXY∥h∥)p−k.

By choosing p = 0 and M(h, 1/2, aXY ) = exp(−aXY∥h∥), the SCCC can be written in its simplest
form:

ρc(h) =
2σXY

σ 2
X + σ 2

Y
exp(−aXY∥h∥).

For illustrative purposes, consider σX = 1, σY = 2, σXY = 1.8, aXY = 1/2 and ν = νXY =

{
1
2 ,

3
2 ,

5
2 }. Then for ∥h∥ ∈ {0, 1, . . . , 15}, the SCCCs for different values of the smoothing

parameter ν and using the Matérn covariance function are illustrated in Fig. 2. The curves
of the SCCC decay more rapidly to zero as ν increases.

2. For a bivariate Wendland–Gneiting covariance function (Daley et al., 2015) of the form

CX (h) = σ 2
XW (h, bX , γX ),

CY (h) = σ 2
Y W (h, bY , γY ),

CXY (h) = ρXYσXσYW (h, bXY , γXY ), (9)

where

W (h, b, γ ) = bν+2k+1B(ν + 2k + 1, γ + 1)ψ̃ν+γ+1,k

(
∥h∥

b

)
,

B(·, ·) is the beta function, and ψ̃ν,k is defined for k ≥ 1 as

ψ̃v,k(t) =

∫ 1

t

u(u2
− t2)k−1(1 − u)v

+

B(2k, v + 1)
du, 0 ≤ t ≤ 1,

where (x)+ = 1(x≥0) (Gneiting, 2002), the SCCC is

ρc(h) =
2ρXYσXσYW (h, bXY , γXY )
σ 2
X + σ 2

Y + (µX − µY )2
, h ∈ R2.

In particular, considering W (h, bXY , γXY ) = pk(∥h∥)(1−∥h∥/bXY )l+, where k = 1, l = v+γ +1,
γ = 0 and bXY > 0,

ρc(h) =
2ρXYσXσY (1 + l∥h∥/bXY ) (1 − ∥h∥bXY )l+

2 2 2
. (10)
σX + σY + (µX − µY )
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Fig. 2. ρc (h) versus ∥h∥ for the Matérn covariance function and different values of the smoothness parameter ν.

4. Inference

In the previous section we showed that for several covariance structures, the spatial concordance
correlation coefficient defined in Eq. (2) can be written as a product of the correlation function
and a constant. Thus, we can consider plug-in estimators for the correlation function and the
constant.

Let Z(s) = (X(s), Y (s))⊤, s ∈ D ⊂ R2 be a Gaussian process with mean µ = (µX , µY )⊤ and
covariance function C (h), s, h ∈ R2. Then a sample (plug-in) estimate of the SCCC index (3) is

ρ̂c(h) = η̂ · ρ̂XY (h), (11)

where η̂ = ((̂a + 1/̂a + b̂2)/2)−1, â =

(
ĈXX (0)
ĈYY (0)

)1/2

, b̂ =
µ̂X − µ̂Y

(̂CXX (0)̂CYY (0))1/4
, and µ̂X , µ̂Y , ĈXX (0),

nd ĈYY (0) are the maximum likelihood (ML) estimates of µX , µY , CXX (0), and CYY (0), respectively.
The asymptotic properties of an estimator like equation (11) have been studied in the literature

or specific cases. Bevilaqua et al. (2015) studied the asymptotic properties of the ML estimator for
separable Matérn covariance model. They used a result provided by Mardia and Marshall (1984)

n an increasing domain sampling framework: a process Z(s), with points s1, . . . , sn located in a
ectangle Dn ⊂ ∆Z2, for 0 < ∆ < ∞, such that Dn satisfies the increasing condition Dn ⊂ Dn+1, for
ll n.
Using this theorem and the delta method, we can establish the following result for the
endland–Gneiting model:

heorem 1. Let Z(s), s ∈ D ⊂ R2 be a bivariate Gaussian spatial process with mean 0 and covariance
unction given by

CX (h) = σ 2
X

(
1 + (ν + 1)

∥h∥

bX

)(
1 −

∥h∥

bX

)ν+1

+

,

CY (h) = σ 2
Y

(
1 + (ν + 1)

∥h∥

bY

)(
1 −

∥h∥

bY

)ν+1

+

,

CXY (h) = CYX (h) = ρXYσXσY

(
1 + (ν + 1)

∥h∥

bXY

)(
1 −

∥h∥

bXY

)ν+1

+

,
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for ν > 0 fixed. Define θ = (σ 2
X , σ

2
Y , ρXY , bXY )

⊤ and denote the ML estimator of θ as θ̂n. Then,(
∇g(θ)⊤F n(θ)−1

∇g(θ)
)−1/2

(g (̂θn) − g(θ))
D
−→ N (0, 1), as n → ∞,

in an increasing domain sense, where

g(θ) =

2ρXYσXσY

(
1 + (ν + 1)

∥h∥

bXY

)(
1 −

∥h∥

bXY

)ν+1

+

σ 2
X + σ 2

Y
,

n(θ)−1 is the Fisher information matrix with respect to β and θn,

∇g(θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σYρXY (σ 2
Y − σ 2

X )
(
1 + (ν + 1)

∥h∥

bXY

)(
1 −

∥h∥

bXY

)ν+1

+

σX (σ 2
X + σ 2

Y )2

σXρXY (σ 2
X − σ 2

Y )
(
1 + (ν + 1)

∥h∥

bXY

)(
1 −

∥h∥

bXY

)ν+1

+

σY (σ 2
X + σ 2

Y )2

2σXσY

(
1 + (ν + 1)

∥h∥

bXY

)(
1 −

∥h∥

bXY

)ν+1

+

σ 2
X + σ 2

Y
2σXσYρXY f (bXY )

σ 2
X + σ 2

Y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

nd f (bXY ) =

(
−

(ν + 1)∥h∥

b2XY

)(
1 −

∥h∥

bXY

)ν+1

+

+

(
1 +

(ν + 1)∥h∥

bXY

)(
1 −

∥h∥

bXY

)ν
+

(ν + 1)∥h∥

b2XY
.

Proof. See Appendix. □

. A local approach

When the sizes of the images for which correspondence is to be assessed are large, it can
e difficult to find a single model fitting reasonably well to the entire image(s). This has been
nvestigated in the literature for autoregressive processes defined on the plane in the context of
mage restoration and segmentation (for examples, see Bustos et al., 2009).

Here we describe a local approach for a bivariate process of the form Z(s), s ∈ D ⊂ R2, where
he observations are located over a rectangular grid of size n×m. The extension to an l ∈ N-variate
rocess is natural when l > 2. In this framework, we assume that the whole domain D can be
ivided into p sub-windows Di, such that ∪

n
i=1Di = D, for i = 1, . . . , p. Then we define p processes

f the form Z i(s) = (X i(s),Y i(s))⊤, s ∈ Di, where each process has a covariance function given by

CX,i(h) = σ 2
X,iR(h,φX,i),

CY ,i(h) = σ 2
Y ,iR(h,φY ,i),

CXY ,i(h) = ρXY ,iσX,iσY ,iR(h,φXY ,i), i = 1, . . . , p, (12)

here R(h,φ) is a correlation function with parameter vector φ, and Z i(·) and Z j(·) are supposed to
e independent (Ojeda et al., 2010). Then for each local process Z i(·) we define the local SCCC ρc

i (·)
sing the theory developed in Section 3:

ρc
i (h) =

2σX,iσY ,i
2 2 ρXY ,iR(h,φXY ,i). (13)

σX,i + σY ,i



R. Vallejos, J. Pérez, A.M. Ellison et al. / Spatial Statistics 40 (2020) 100405 9

o

i

s

6

r
c
t
S

Based on the local coefficients ρc
i (·), we suggest two global SCCCs. The first one is the average

f the p local coefficients:

ρ1(h) =
1
p

p∑
i=1

ρc
i (h). (14)

The second one considers the average of each parameter in the correlation function such that the
global coefficient is

ρ2(h) =
2σ Xσ Y

σ 2
X + σ 2

X
ρXYR(h,φXY ), (15)

σ X =
1
p

∑p
i=1 σX,i, and similarly for σ Y , ρXY , and R(h,φXY ). As a result, we have two global

coefficients of spatial concordance depending on averages: the first one is the average of the local
coefficients and the second one is a plug-in of the parameter averages.

When process Z(s) have been observed in the sites s1, . . . , sn and all the local coefficients have
been computed, the sample versions of ρ1(·) and ρ2(·) are

ρ̂1(h) =
1
p

p∑
i=1

ρ̂c
i (h),

ρ̂2(h) =
2σ̂ X σ̂ Y

σ̂
2
X + σ̂

2
Y

ρ̂XYR(h, φ̂XY ),

where σ̂ X , σ̂ Y , ρ̂XY , and R(h, φ̂XY ) are the means of the ML estimators of the parameters defined
n Eq. (15).

Considering an increasing domain sampling scheme, the asymptotic normality of ρ̂1(h) is
traightforward. Indeed, let Z i(s) = (Xi(s), Yi(s))⊤, s ∈ Di, be a bivariate process with correlation
structure given by (12). Define the parameter vector θi

= (ρXY ,i, σX,i, σY ,i, σXY ,i,φXY ,i)⊤ associated
with Z i(s) and denote the ML estimator of θi as θ̂

i
n. If the covariance satisfies the Mardia and Marshall

(1984) conditions, then

θ̂
i
n

D
−→ N (θi, F i

n(θ
i)−1),

where F i
n(θ

i) is the covariance matrix of θ̂
i
n . Then for g(θ) = ρc

i (h),(
∇g(θi)⊤F i

n(θ
i)−1

∇g(θi)
)−1/2

(g(θ̂i
n) − g(θi))

D
−→ N (0, 1).

Assuming that Z i(s) and Z j(s) are independent for all i ̸= j,

ρ̂1(h) =
1
p

p∑
i=1

ρ̂i
c(h) D

−→ N

(
ρc
i (h),

1
p2

p∑
i=1

∇g(θi)⊤F i
n(θ

i)−1
∇g(θi)

)
.

. Monte Carlo simulations

We used Monte Carlo simulations to explore the properties of the SCCC, ρc(·), for finite samples
sizes. The performance of the ML estimates were then analyzed with respect to the true values of the
coefficient. We generated 500 replicates from a Gaussian random field sampled on a regular lattice
of size 20 × 20 inside the region [−

3
2 ,

3
2 ]

2. Each replicate was generated from a bivariate Gaussian
andom field with mean zero and Wendland–Gneiting covariance function given in Eq. (9). In each
ase, we estimated the parameters of the covariance function using ML and used them to compute
he SCCC given in Eq. (10). Four set of parameters were considered to assess the performance of the
CCC when these parameters vary:

1. Case 1: σX = σY = 1, ρXY = −0.15, bX = 0.5, bY = 0.4, bXY = 0.35.
2. Case 2: σ = σ = 1, ρ = 0.25, b = 1.2, b = 0.9, b = 1.
X Y XY X Y XY
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Fig. 3. Realization of a Gaussian random field with bivariate Wendland–Gneiting correlation function. (a) Case 1; (b) Case
; (c) Case 3; (d) Case 4.

3. Case 3: σX = σY = 1, ρXY = 0.3, bX = 1.8, bY = 1.4, bXY = 1.5.
4. Case 4: σX = 2, σY = 0.5, ρXY = 0.45, bX = 1.1, bY = 1, bXY = 0.9.

Note that in all cases ν = 4 and k = 1 and that Case 4 includes different marginal variances.
In Fig. 3 we show a realization of the random field for each case.
Table 1 summarizes the estimates of the Wendland–Gneiting model for the simulations. The

estimates were obtained using ML estimation and the values reported are the average over 500
simulation runs. In each case the value of the standard error is in parenthesis under the estimation.
In general we observed reasonable estimates of all parameters and small standard errors.

The ML estimates of the parameters of the Wendland–Gneiting covariance function had low bias
and standard errors, and agreed with previously published results (e.g., Bevilaqua et al., 2019). Using
these estimates, we computed the SCCC in each case for 0 < ∥h∥ < 2. This length for ∥h∥ was
enough to observe the decay of the SCCC in each case even though the maximum distance between
two points in the region was 3

√
2 (Fig. 4).

The mean square errors of the estimates shown in (Table 1) were all less than 1.6485 · 10−6,
0.0001, 6.5292·10−5, and 9.3775·10−6, respectively, for cases 1–4. ρc(h) versus ∥h∥ and ρ̂c(h) versus
h∥ are plotted in Fig. 4; the true coefficient is drawn with a continuous line. In addition, for each
alue of ∥h∥, we included 90% confidence intervals based on quantiles 5 and 95 of the simulation
alues. The estimates of the SCCC were reasonably well-behaved but worsened when ∥h∥ was close
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Table 1
Theoretical values, parameter estimates and standard errors (in parentheses) for the four cases
considered in the simulation study in which we generated realizations of a random Gaussian
random field with a bivariate Wendland–Gneiting covariance function.
Case 1 σ 2

1 = 1 σ 2
2 = 1 ρ12 = −0.15 b1 = 0.5 b12 = 0.35 b2 = 0.4

0.9906 0.9995 −0.1493 0.4994 0.3707 0.4511
(0.0896) (0.0715) (0.0507) (0.0369) (0.1772) (0.1451)

Case 2 σ 2
1 = 1 σ 2

2 = 1 ρ12 = 0.25 b1 = 1.2 b12 = 0.9 b2 = 1

1.0039 1.0011 0.2439 1.2137 1.0711 0.9528
(0.2034) (0.1706) (0.1274) (0.1876) (0.3884) (0.3172)

Case 3 σ 2
1 = 1 σ 2

2 = 1 ρ12 = 0.3 b1 = 1.8 b12 = 1.4 b2 = 1.5

0.9901 1.0003 0.3092 1.7973 1.4829 1.4811
(0.1744) (0.00922) (0.3892) (0.5574) (0.2836) (0.2483)

Case 4 σ 2
1 = 2 σ 2

2 = 0.5 ρ12 = 0.45 b1 = 1.1 b12 = 0.9 b2 = 1

1.9998 0.4960 0.4379 1.1073 0.9347 1.1606
(0.3810) (0.0798) (0.0955) (0.1641) (0.4215) (0.3298)

to zero, as is typical of lag-dependent spatial functions computed over a rectangular grid where the
minimum distance between coordinates is fixed. We also ran Monte Carlo simulations using the
bivariate Matérn covariance function; the results were similar. The estimate of ρXY was better for
the Matérn case in terms of the mean square error. With either covariance function, however, the
estimates of ρXY affected the estimates of the SCCC.

For the same region used in the previous Monte Carlo simulation, we computed the asymptotic
variance of ρ̂c(·). For 0 < ∥h∥ < 2, all variances were less than 0.006, and the largest discrepancies
between cases 1–4 were seen near the origin.

For the local approach, we generated 100 replicates from a bivariate Gaussian random field
sampled on a regular lattice of size 100 × 100 in the region [0, 100]2, with mean equal to zero
and Wendland–Gneiting covariance given in Eq. (9). We then split each process into 25 square sub-
images of size 10 × 10, and estimated the parameters of the covariance function for each sub-image
using ML. We also computed the local SCCCs given by Eqs. (14) and (15). Fig. 5 illustrates box-plots
of the estimates of σX , σY , ρXY and bXY for the 25 sub-images for case 3, where the true parameters
were ν = 4, k = 1, σX = σY = 1, ρXY = 0.3, bX = 1.8, bY = 1.4, and bXY = 1.5. Although the
estimates did vary, the average values of all sub-images were reasonably close to the true values.
Finally, we computed ρ̂1(h) and ρ̂2(h) given by Eqs. (14) and (15), and compared them with the
global SCCC (Fig. 6)

To observe the performance of the estimates of SCCC for an increasing domain framework, we
did another Monte Carlo simulation study. Five hundred simulation runs from a zero-mean Gaussian
random field with a Wendland–Gneiting covariance function with parameters ν = 4, k = 1,
σX = σY = 1, ρXY = 0.3, bX = 1.8, bY = 1.4, and bXY = 1.5, were generated. We ran the
simulations for the following six regions: [1, 4]2, [1, 8]2, [1, 12]2, [1, 16]2, [1, 20]2 and [1, 24]2, with
16, 64, 144, 256, 400 and 576 points respectively. Then in each simulation run, the ML estimations
of the parameters of the SCCC were computed together with 90% confidence intervals based on
the 5th and 95th quantiles. Estimates improve as the domain increases, yielding thinner confidence
intervals (Fig. 7).

To gain insight into the computational time required for computing ρ̂c(·) for the covariance
functions used in this work, we ran similar simulations with different window sizes. We ran 100
simulations for window sizes = 8× 8, 12 × 12, 16 × 16, and 20 × 20. In each, ρ̂c(·) was computed
for the Matérn and Wendland–Gneiting covariance functions. All computations were done using an
HP ProLiant DL380G9 server, equipped with a 2x Intel Xeon E5-2630 v3 2.40 GHz processor, 128
GB DDR4 2.133 Ghz RAM, and 512 GB SSD storage.

Time to run each simulation increased exponentially with window size (Fig. 8). Although the
time required to compute the Wendland–Gneiting covariance function was always smaller than

the time to compute the Matérn covariance function, for real images it is not feasible to compute
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Fig. 4. Theoretical coefficients (solid lines) and estimates (circles) for the distinct sets of parameters,with a 90% confidence
interval based on quantiles 5 and 95. (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4.

ρc(·), at least using an interpreted language such as R, which we used here. It is expected to find
his kind of drawback for the Matérn covariance function because of the complexity of the model,
he number of parameters, and the large amount of data. The compact support covariance functions
as in the Wendland model) reduces the computational burden (Wendland, 1995).

This result further supports the use of the local approach we presented in Section 5, but we plan
o explore ways to optimize and accelerate the computation of ρ̂c(·).
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Fig. 5. Box-plot for the estimates of the covariance parameters in each of the 25 sub-images. (a) σX ; (b) σY ; (c) ρXY and
(d) bXY .

7. An application

7.1. Motivation

Our application derives from ecology. In order to track the seasonality (‘‘phenology’’) of vegeta-
tion in different ecosystems, digital cameras have been deployed to record high-frequency images
of the canopy at hundreds of research sites around the world (Richardson, 2018). From each
image, color-channel information (e.g., RGB [red-green-blue] values of each pixel) are extracted
and converted to a suite of ‘‘vegetation indices’’ derived from linear or nonlinear transformations
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Fig. 6. Local SCCCs estimates (red and blue lines) and global theoretical SCCC (black) for a Gaussian spatial process with
Wendland–Gneiting covariance function. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

of the RGB or other color spaces (Sonnentag et al., 2012; Mizunuma et al., 2014; Toomey et al.,
2015; Nguy-Robertson et al., 2016). These indices have been used to identify the timing of seasonal
phenomena such as leaf-out, senescence, and abscission, and to monitor how these phenomena
are changing in response to ongoing climatic change (Sonnentag et al., 2012). However, different
cameras may render the same scene differently because of the specifics of the imaging sensor being
used (e.g., CCD, CMOS) and researchers have used a wide range of different cameras because of
considerations including trade-offs between cost and image quality. Changes in scene illumination
(e.g., caused by time-of-day or cloud cover) also may impact the resulting image. Although previous
research has shown that diurnal, seasonal, and weather-related changes in illumination can have
large effects on estimates of average color (or color index) for the whole image or a region of
interest (Sonnentag et al., 2012), spatial information has not been incorporated previously in these
estimates.

7.2. Imagery

We focus here on comparing two jpeg images taken of the same scene on 20 October 2010
y two different cameras (Figs. 9(a) and 9(b)). These images were taken with, respectively, an
utdoor StarDot NetCam XL 3MP camera with a 2048 × 1636-pixel CMOS sensor (Fig. 9(a)) and

an outdoor Axis 223M camera with a 1600 × 1200-pixel CCD sensor (Fig. 9(b)). These images
ere selected from the image archive associated with an experiment, analyzed and reported on
reviously by Sonnentag et al. (2012), in which images, color time series, and phenological transition
ates from eleven different cameras were compared. Although the two images we use here are of
he same scene and were taken at the same time, they are not identical. For example, both cameras
ere pointing due north with an ≈ 20◦ tilt angle, but image displacement occurred because the
ameras were mounted at different positions on a fixed platform. The resolution and overall field-of-
iew also differed because of different sensor sizes and lens characteristics. Sonnentag et al. (2012)
ompared color information averaged across a small ‘‘region of interest’’ in the images. Here, we
ork with the entire images after correction for differences of field-of-view and displacement.
To account for differences in field-of-view and displacement, the two images were first manually

ropped using tools in IrfanView (version 4.38; Skiljan 2014) to equivalent areas and aspect ratios.
he resulting images had 2023 × 1444 pixels for the higher-resolution one taken with the StarDot
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Fig. 7. Theoretical SCCC (black line) and estimates (blue circles) for the distinct regions, with a confidence interval of
0%. (a) 4 × 4 grid ; (b) 8 × 8 grid; (c) 12 × 12 grid; (d) 16 × 16 grid; (e) 20 × 20 grid ; (f) 24 × 24 grid.
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Fig. 8. Computational time in seconds to compute ρ̂c (·) for the Matérn and Wendland–Gneiting covariance functions.

Fig. 9. Two images taken by adjacent cameras of the same site at Harvard Forest. (a): Image taken with an outdoor StarDot
NetCam XL 3MP camera. (b): Image taken with an outdoor Axis 223M camera. The dominant tree species (foreground)
is red oak (Quercus rubra), and there is some white pine (Pinus strobus) in the upper right corner.

amera and 1297 × 922 pixels for the lower-resolution one taken with the Axis camera. The higher-
esolution image was then resized and down-sampled in IrfanView so that it had the same number
f pixels as the lower-resolution image (Figs. 10(a) and 10(b)). These two images were loaded
nto the R software system (version 3.51; R Core Team, 2018) using the load.image function in
he imager package (Urbanek, 2014) and transformed either to gray-scale using the grayscale
unction in the same package (Figs. 11(a) and 11(b)) or to green chromatic coordinates (gcc =

G
R+G+B ), which normalizes for brightness (Gillespie et al., 1987) (Figs. 12(a) and 12(b)). For both
he gray-scale and gcc images, the lower-resolution image (Figs. 11(b) and 12(b), respectively) was
hen coordinate-registered to the higher-resolution image (Figs. 11(a) and 12(a), respectively) using
he R package RNiftyReg and a linear (affine) transformation with 12 degrees of freedom (Clayton
t al., 2018). Spatial concordance was assessed between the resampled higher-resolution images

Fig. 11(a) or 12(a)) and the coordinate-registered lower-resolution images (Fig. 11(c) or 12(c)).



R. Vallejos, J. Pérez, A.M. Ellison et al. / Spatial Statistics 40 (2020) 100405 17

d
o

r
c

Fig. 10. The two images from Harvard Forest after cropping to equivalent views and resampling to equivalent pixel
imensions. (a): Image taken with an outdoor StarDot NetCam XL 3MP camera (Fig. 9(a)); (b): Image taken with an
utdoor Axis 223M camera (9(b)).

Fig. 11. The two cropped and resampled images (Figs. 10(a) and 10(b)) converted to grayscale, and the coordinate
egistration of the second image with respect to the first. (a): Image taken with an outdoor StarDot NetCam XL 3MP
amera (Fig. 10(a)); (b): Image taken with an outdoor Axis 223M camera (Fig. 10(b)); (c): Image (b) registered to image (a).
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Fig. 12. Cropped and resampled images (Figs. 10(a) and 10(b)) corrected for brightness using the green chromatic
coordinate (gcc), and the coordinate registration of the second image with respect to the first. (a): gcc for Fig. 10(a);
b): gcc for Fig. 10(b); (c): Image (b) registered to image (a).

.3. Estimating concordance

For each pair of images, we first calculated Lin’s (1989) CCC. We then calculated the SCCC as
escribed in Section 5. We calculated the local concordance coefficient ρi(·) in small (12 × 12-
ixel) non-overlapping windows. To fit the local model to each small window, we used a Gaussian
rocess Z(s) = (X(s), Y (s))⊤, s ∈ R2, with mean (µX , µY )⊤ and the covariance functions described
n Eqs. (6)–(9). We used the function GeoFit in the R package GeoModels (Bevilacqua and
orales-Oñate, 2018) to compute the ML estimators of the parameters involved in the models.
or computational efficiency, the Matérn and Wendland–Gneiting covariances were estimated for a
andomly-selected set of 1,467 20 × 20-pixel sub-images; the model to be used was selected based
n the Akaike and Bayesian Information Criteria (AIC and BIC, respectively). In general, the AIC and
IC coefficients were smaller for estimates using the Matérn covariance than for the Wendland–
neiting covariance, and so we used the Matérn model even though it took somewhat more time
o use it to compute the local estimators. Finally, the global SCCCs for each pair of images were
stimated using Eqs. (14) and (15).

.4. Estimates of concordance

Lin’s coefficient was ρc = 0.1334 for the grayscale images (Fig. 11(a) vs. 11(c)) and ρc = 0.2450
for the gcc-indexed images (Fig. 12(a) vs. 12(c)). In Fig. 13 we plot Lin’s coefficient and the two
global coefficients as a function of the spatial norm. We observed a rapid decay of ρ̂2(·) and a

slower decay of ρ̂1(·). The decay was related to the way in which the estimates were computed
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Fig. 13. Global concordance coefficients and Lin’s CCC for the gcc-indexed images.

for each window: ρ̂1(·) is a coefficient obtained by plugging in the average of the parameters in the
concordance function, but ρ̂2(·) is the average of the concordance using all possible windows.

For ∥h∥ = 0, we observed that the SCCC was approximately one-third (0.08/0.245×100 ≈ 0.33)
of Lin’s CCC. This suggests that Lin’s CCC overestimated the spatial concordance between these two
images, and implies that it would be inappropriate to use it for modeling spatial data.

It is also worth mentioning that the low SCCC between two images like these – high-resolution
versus low-resolution registered to high-resolution – implies that even at small lags there is
substantial information lost in the post-processing of the lower-resolution image. Thus, one should
be cautious in trying to up-scale information from either lower-resolution imagery or similar
(e.g., historical) datasets. We are unlikely to be able to extract more information from an image
than is actually contained within it.

We also note that the development of hypothesis testing about the SCCC using Theorem 1
requires the computation of the asymptotic variance, which could be complicated for an arbitrary
ν. Resampling methods provide alternatives that could help estimate the asymptotic variance of the
sample version of the SCCC. Castillo-Páez et al. (2019) present recent work along these lines in a
spatial framework.

The images and all the code used in this paper are available from the Environmental Data
Initiative doi: 10.6073/pasta/4a975798efc9e099104a1e4391f73574.

8. Discussion

With the work presented herein, we have extended the standard methodology for estimating
concordance into the spatial domain. Our approach consisted in defining a new coefficient that
preserves the interpretation of Lin’s (1989) concordance correlation coefficient (CCC) for two spatial
variables and for a fixed spatial lag. Our new spatial concordance correlation coefficient (SCCC)
compares the correlation between two spatial variables with respect to their fit to a 45◦ line that
passes through the origin. The properties of Lin’s (1989) CCC are inherited by our SCCC. The ML
estimator of our SCCC for the Wendland–Gneiting covariance function is asymptotically normal for
an increasing domain sampling scheme. We defined a local SCCC and established its asymptotic
normality for the sample version. From the local SCCC, we derived two estimates for the overall
SCCC, one based on the average of the p local coefficients and the other based on the average
of the parameters in the correlation function. Deriving the global SCCC from local coefficients

estimated in small non-overlapping windows is computationally more efficient and permits the
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estimation of spatial concordance for large images that are used commonly in a wide range of
applications.

The Monte Carlo simulation study presented in Section 6 revealed that for the Matérn and
Wendland–Gneiting covariance functions, the sample version of the SCCC produced accurate es-
timates of the SCCC that decreased with distance (spatial lag). However, the time required to
compute SCCC grows exponentially with window size, implying that for a large image size it is
unfeasible to compute ρ̂(·) using an interpreted language like R. Although we are exploring ways
to improve computational efficiency, the local approach introduced here (Section 5) appears to be
a straightforward way to estimate SCCC for large images.

The camera comparison experiment conducted by Sonnentag et al. (2012) found that images
recorded with a variety of different camera makes and models, all mounted on the top of the
same canopy access tower and with a similar field of view, varied in visual appearance, including
color balance, saturation, contrast, and brightness. These differences can be attributed to internal
differences in sensor design and image processing, and external factors such as lighting. How-
ever, Sonnentag et al. (2012) also found that when simple normalized indices were calculated from
the image data, and the emphasis was placed on the seasonality – rather than absolute magnitude
– of those indices, the phenological information derived from the imagery was extremely similar
across all cameras. Notably, their analysis focused on information about the average color across a
large ‘‘region of interest’’ drawn across the canopy (Sonnentag et al., 2012). Although this approach
is widely used (Richardson, 2018) and it has the advantage of enabling integration across multiple
individuals or species that may comprise a typical forest canopy, it lacks spatial information.

The SCCC we developed and presented here summarizes and accounts for the spatial information
in the images, permitting more rigorous characterization of agreement between high-resolution
digital images recorded by different sensors. Other applications include using images from different
satellite remote-sensing platforms as part of ongoing efforts to harmonize, for example, imagery
with different spatial resolution, spectral sensitivity, and angular characteristics (e.g., Landsat–
Sentinel efforts: Claverie et al., 2018). Calculation of concordance statistics before and after sensor
harmonization could provide critical and objective information about the success of different
harmonization methods. There also could be potential applications in the fusion of remotely-
sensed data obtained at different spatiotemporal resolutions, such as MODIS with its 500-m spatial
resolution and daily temporal resolution, and Landsat with its 30-m spatial resolution and 16-day
temporal resolution (Gao et al., 2015). Another application in ecology in which the SCCC coefficient
could be used is for improving census information or better estimating detection probability of
mobile organisms captured on camera traps. The aim could be to try to match animal coat or
skin markings to reliably identify a re-sighting of the same individual versus different ones. In
environmental sciences it is also of interest to test the agreement between different sensors that
measure air quality in polluted cities. For example, Santiago, Chile has only 12 air-quality monitoring
stations ( The World Air Quality Index project: http://aqicn.org/contact/es/). The need for new
stations makes relevant the spatial concordance analysis between different types of sensors in a
calibration context.

An important part of the analysis of agreement between two images using the SCCC is the pre-
processing applied to the images before computing the concordance index. Most filters deteriorate
the spatial information contained in both images. Concordance indices calculated after image pro-
cessing capture only relationships between the remaining patterns and could yield low concordance
values that underestimate the real spatial agreement. The question of what kind of filters preserve
spatial concordance is left as an open problem to be tackled in future research as, to the best of our
knowledge, this problem has not yet been treated in the image-processing literature.

Another important aspect in modeling the spatial concordance between images is their subdivi-
sion into small windows to estimate the SCCC using a local approach. We are aware that when fitting
each window using a different Matérn model, there is no continuity of the smoothing parameters.
Therefore, two contiguous processes could have very different estimates of the smoothing parame-
ters, producing a discontinuity at their edges. One way to approach this problem is to use the local
likelihood to define a smoothing function in the lines (Anderes and Stein, 2011). With respect to the
estimation of the bivariate Matérn model, we observed that when all parameters were estimated,
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the ML estimates could be highly inefficient. Thus, we agree with Gneiting et al. (2010) that the best
predictive models tend to be the most parsimonious, subject to retention of key characteristics, such
as the negative dependency between the two process components (see also Makridakis and Taleb,
2009). Finally, the selection of the spatial lag h is crucial if there is no information about which
direction to prefer. One way to approach this issue is to consider an average of spatial concordance
values corresponding to the four cardinal directions with respect to the origin (Vallejos et al., 2015),
i.e., for h1 = (1, 0) and h2 = (0, 1), we can define the average concordance coefficient as

ρc
AV (h1, h2) :=

1
4

[
ρc(h1) + ρc(−h1) + ρc(h2) + ρc(−h2)

]
.

9. Future work

Several related theoretical and applied problems arise from the methodology suggested in this
article that would be fruitful directions for future research. First, SCCC could be applied to images
taken at two points in time by the same camera. The decay of the SCCC as a function of the norm
would be expected to be similar to that seen in Fig. 13 for each sequential pair of images. Another
approach for dealing with the same problem would be to consider a sequence of n images taken
with the same camera to be a spatiotemporal process. Then, the SCCC and its estimation properties
could be studied in that context. This generalization of the SCCC would have applications in, for
example, spatiotemporal analysis of satellite images taken weeks, months, or years apart as a way
of characterizing patterns of landscape change.
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Appendix

Mardia and Marshall theorem.
Let

{
Y (s) : s ∈ D ⊂ Rd

}
be a Gaussian random field such that Y (·) is observed on Dn ⊂ D. It is

assumed that Dn is a non-random set satisfying ∥s − t∥ ≥ γ > 0 for all s, t ∈ Dn. This ensures
that the sampling set is increasing as n increases. Denote Y = (Y (s1), . . . , Y (sn))⊤ and assume that
E[Y ] = Xβ, cov(Y (t), Y (s)) = σ (t, s; θ), X is n × p with rank(X) = p, β ∈ Rp, and θ ∈ Θ , where Θ
is an open set of ∈ Rq. Let Σ = Σ (θ) be the covariance matrix of Y such that the ij-th element of
Σ is σij = σ (si, sj; θ). We can estimate θ and β using ML, by maximizing

L = L(β, θ) = k −
1
2
ln |Σ | −

1
2
(Y − Xβ)⊤ Σ−1 (Y − Xβ) , (A.1)

here k is a constant.
Let L(1)

n = ∇L = (L⊤

β , L
⊤

θ )
⊤ and

L(2)
n =

(
Lββ Lβθ

Lθβ Lθθ

)
e the gradient vector and Hessian matrix, respectively, obtained from Eq. (A.1). Let F n = −E[L(2)

n ]

e the Fisher information matrix with respect to β and θ. Then, F n = diag(F n(β), F n(θ)), where
(β) = −E[L ] and F (θ) = −E[L ].
n ββ n θθ
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For a twice differentiable covariance function σ (·, ·; θ) on Θ with continuous second derivatives,
ardia and Marshall (1984) provided sufficient conditions on Σ and X such that the limiting

distribution of (̂β
⊤

n , θ̂
⊤

n )
⊤ is normal, per the following:

Theorem. Let λ1 ≤ · · · ≤ λn be the eigenvalues of Σ , and let those of Σ i =
∂Σ

∂θi
and Σ ij =

∂2Σ

∂θi∂θj
be λik and λijk , k = 1, . . . , n, such that |λi1| ≤ · · · ≤ |λin| and |λ

ij
1| ≤ · · · ≤ |λ

ij
n| for i, j = 1, . . . , q.

Suppose that as n → ∞

(i) lim λn = C < ∞, lim |λin| = Ci < ∞ and lim |λ
ij
n| = Cij < ∞ for all i, j = 1, . . . , q.

(ii) ∥Σ i∥
−2

= O(n−
1
2 −δ) for some δ > 0, for i = 1, . . . , q.

(iii) For all i, j = 1, . . . , q, aij = lim
[
tij/(tiitjj)

1
2

]
exists, where tij = tr

(
Σ−1Σ iΣ

−1Σ j
)
and

A = (aij) is nonsingular.
(iv) lim(X⊤X)−1

= 0.

Then, (̂β
⊤

n , θ̂
⊤

n )
⊤

L
−→ N

(
(β⊤, θ⊤)⊤, F−1

n

)
as n → ∞, in an increasing domain sense.

Proof of Theorem 1. The proof consists of verifying the Mardia and Marshall (1984) conditions.
In Theorem 1, E[Z(s)] = 0; thus the fourth condition in Mardia and Marshall’s 1984 theorem
(above), lim(X⊤X)−1

= 0, is trivially satisfied. Satisfying the first three conditions is somewhat
more complex.

For the first two conditions, we start by considering ν to be fixed. Then

CX (h) = σ 2
X

(
1 + (ν + 1)

∥h∥

bX

)(
1 −

∥h∥

bX

)ν+1

+

,

CY (h) = σ 2
Y

(
1 + (ν + 1)

∥h∥

bY

)(
1 −

∥h∥

bY

)ν+1

+

,

CXY (h) = CYX (h) = ρXYσXσY

(
1 + (ν + 1)

∥h∥

bXY

)(
1 −

∥h∥

bXY

)ν+1

+

.

Let us consider an increasing domain scenario for process Z(s), with points s1, . . . , sn located in
rectangle Dn ⊂ ∆Zd, for 0 < ∆ < ∞, and Dn ⊂ Dn+1, for all n.
Define the distance matrix Hn =

[
Hlq
]n
l=q=1, where Hlq = ∥sl−sq∥, and ∥·∥ denotes the Euclidean

norm. Then the covariance matrix of (Z(s1)⊤, . . . , Z(sn)⊤)⊤ can be written as

Σ n(θ) =

(
σ 2
X σXσYρXY

− σ 2
Y

)
⊗ Γ n,

where Γ n =

[(
1 +

(ν + 1)Hlq

bXY

)(
1 −

Hlq

bXY

)ν+1

+

]n

l=q=1

and θ = (σ 2
X , σ

2
Y , ρXY , bXY )

⊤. Taking deriva-

tives, we obtain

∂Σ n(θ)
∂σ 2

X
=

(
1

σYρXY

2σX
− 0

)
⊗ Γ n,

∂Σ n(θ)
∂σ 2

Y
=

(
0

σXρXY

2σY
− 1

)
⊗ Γ n,

∂Σ n(θ)
∂bXY

=

(
σ 2
X σXσYρXY

− σ 2
Y

)
⊗ Sn,

∂Σ n(θ)
∂ρXY

=

(
0 σXσY
− 0

)
⊗ Γ n,

here Sn is given by

Sn =
∂Γ n

=

[
(ν + 1)Hlq

2

(
1 −

Hlq
)ν (

−

(
1 −

Hlq
)

+

(
1 +

(ν + 1)Hlq
))]n

.

∂bXY bXY bXY +

bXY +
bXY l=q=1
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For any matrix norm, the spectral radius λmax{A} of an n × n matrix A satisfies λmax{A} ≤ ∥A∥.
hen, considering the norm ∥ · ∥∞, we have

λmax{Γ n} ≤ ∥Γ n∥∞ = max
l

n∑
q=1

⏐⏐⏐⏐⏐
(
1 +

(ν + 1)Hlq

bXY

)(
1 −

Hlq

bXY

)ν+1

+

⏐⏐⏐⏐⏐
= sup

1≤l≤n

n∑
q=1

⏐⏐⏐⏐⏐
(
1 +

(ν + 1)Hlq

bXY

)(
1 −

Hlq

bXY

)ν+1

+

⏐⏐⏐⏐⏐
<
∑
s∈∆Zd

(
1 +

(ν + 1)∥s∥
bXY

)(
1 −

∥s∥
bXY

)ν+1

+

.

One can check that∫
s∈Rd

(
1 +

(ν + 1)∥s∥
bXY

)(
1 −

∥s∥
bXY

)ν+1

+

ds < ∞.

hus supn λmax{Γ n} < ∞, which implies that supn λmax{Σ n(θ)} < ∞. Because Γ n is positive
definite, λi{Γ n} > 0, i = 1, . . . , n. In particular, λmin{Γ n} > 0, so infn λmin{Γ n} > 0 and
nfn λmin{Σ n} > 0. Further,

sup
n
λmax

{
∂Σ n(θ)
∂σ 2

X

}
= sup

n
λmax

[(
1

σYρXY

2σX
− 0

)
⊗ Γ n

]
< ∞, for

σYρXY

2σX
< ∞.

Similarly,

sup
n
λmax

{
∂Σ n(θ)
∂σ 2

Y

}
, sup

n
λmax

{
∂Σ n(θ)
∂ρXY

}
< ∞.

Moreover, λmax{Sn} ≤ ∥Sn∥∞ < ∞ because of the form of the polynomial in s ∈ Rd and the
ompact support in bXY . Then, for σ 2

X , σ
2
Y , σXσYρXY < ∞,

sup
n
λmax

{
∂Σ n(θ)
∂bXY

}
< ∞.

This implies that,

sup
n
λmax

{
∂Σ n(θ)
∂θc

}
< ∞, c = 1, 2, 3, 4.

The second derivatives are:

∂2Σ n(θ)
∂σ 2

X ∂σ
2
Y

=

(
0

ρXY

4σXσY
− 0

)
⊗ Γ n,

∂Σ n(θ)
∂σ 2

X ∂bXY
=

(
1

σYρXY

2σX
− 0

)
⊗ Sn,

∂Σ n(θ)
∂σ 2

X ∂ρXY
=

(
0

σY

2σX
− 0

)
⊗ Γ n,

∂Σ n(θ)
∂σ 4

X
=

(
0 −

σYρXY

4σ 3
X

− 0

)
⊗ Γ n,

∂Σ n(θ)
∂σ 2

Y ∂bXY
=

(
0

σXρXY

2σY
− 1

)
⊗ Sn,

∂Σ n(θ)
∂σ 2

Y ∂ρXY
=

(
0

σX

2σY
− 0

)
⊗ Γ n,

∂Σ n(θ)
∂σ 4

Y
=

(
0 −

σXρXY

4σ 3
Y

− 0

)
⊗ Γ n,

∂Σ n(θ)
∂bXY ∂ρXY

=

(
0 σXσY
− 0

)
⊗ Sn,

∂Σ n(θ)
∂b2XY

=

(
σ 2
X σXσYρXY

− σ 2
Y

)
⊗ SSn,

∂Σ n(θ)
∂ρ2

XY
= 0,

here SSn =
∂Sn .

∂bXY
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Because supn λmax{0} < ∞, the compact support of SSn in bXY , and the previous results,
λmax{SSn} ≤ ∥SSn∥∞ < ∞. Then, for σ 2

X , σ
2
Y , σXσY < ∞,

sup
n
λmax

{
∂2Σ n(θ)
∂b2XY

}
< ∞.

n addition,∂Σ n(θ)
∂θi


∞

≤

∂Σ n(θ)
∂θi

 ≤
√
n
∂Σ n(θ)

∂θi


∞

.

This satisfies the first two conditions of Mardia and Marshall’s theorem.
For the third condition, we consider A = [aij]

p
i=j=1, with aij =

{
tij

(tmmtnn)1/2

}
, and tij =

r
{
Σ n(θ)−1 ∂Σ n(θ)

∂θi
Σ n(θ)−1 ∂Σ n(θ)

∂θj

}
for all i, j = 1, . . . , p; we prove that A is non singular.

Notice that

T = [tij]4i=j=1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n(ρ2
XY − 2)

4σ 4
X (ρ

2
XY − 1)

nρ2
XY

4σ 2
X σ

2
Y (ρ

2
XY − 1)

1
2σ 2

X
tr{An}

nρXY
2σ 2

X (ρ
2
XY − 1)

−
n(ρ2

XY − 2)
4σ 4

Y (ρ
2
XY − 1)

1
2σ 2

Y
tr{An}

nρXY
2σ 2

Y (ρ
2
XY − 1)

− − tr{[An]
2
}

ρXY

ρ2
XY − 1

tr{An}

− − −
n(ρ2

XY + 1)
(ρ2

XY − 1)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ith An = {Γ−1
n ◦ Sn} where the operator ◦ denotes the matrix Hadamard product.

Then,

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
ρ2
XY

ρ2
XY − 2

tr(An)(
n(ρ2

XY − 2)tr([An]
2)

ρ2
XY − 1

)1/2

ρXY(
(ρ2

XY − 2)(ρ2
XY + 1)

ρ2
XY − 1

)1/2

− 1
tr(An)(

n(ρ2
XY − 2)tr([An]

2)
ρ2
XY − 1

)1/2

ρXY(
(ρ2

XY − 2)(ρ2
XY + 1)

ρ2
XY − 1

)1/2

− − 1
−ρXY tr(An)

(ntr([An]
2)(ρ2

XY + 1))1/2
− − − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A.2)

For matrix A in Eq. (A.2),we have extended the result established by Bevilaqua et al. (2015). Thus
is positive definite. By Mardia and Marshall’s Theorem the ML estimator of θ = (σ 2

X , σ
2
Y , ρXY , bXY )

⊤

s asymptotically normal with variance F n(θ)−1.
Eq. (10) implies that

ρc(h) = g(θ) =

2ρXYσXσY

(
1 + (ν + 1)

∥h∥

bXY

)(
1 −

∥h∥

bXY

)ν+1

+

σ 2
X + σ 2

Y
.

Fixing ν > 0, noting that g(·) is a continuously differentiable function for σX ̸= 0 and σY ̸= 0, and
using the multivariate delta method for g(·) we obtain(

∇g(θ)⊤F (θ)−1
∇g(θ)

)−1/2
(g(θ ) − g(θ))

D
−→ N(0, 1),
n n
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where

∇g(θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σYρXY (σ 2
Y − σ 2

X )
(
1 + (ν + 1)

∥h∥

bXY

)(
1 −

∥h∥

bXY

)ν+1

+

σ1(σ 2
X + σ 2

Y )2

σXρXY (σ 2
X − σ 2

Y )
(
1 + (ν + 1)

∥h∥

bXY

)(
1 −

∥h∥

bXY

)ν+1

+

σY (σ 2
X + σ 2

Y )2

2σXσY

(
1 + (ν + 1)

∥h∥

bXY

)(
1 −

∥h∥

bXY

)ν+1

+

σ 2
X + σ 2

Y
2σXσYρXY f (bXY )

σ 2
X + σ 2

Y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

f (bXY ) =

(
−

(ν + 1)∥h∥

b2XY

)(
1 −

∥h∥

bXY

)ν+1

+

+

(
1 +

(ν + 1)∥h∥

bXY

)(
1 −

∥h∥

bXY

)ν
+

(ν + 1)∥h∥

b2XY
,

F−1
n (θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ 4
X (ntr(B

2) − C)
nC

σ 2
X σ

2
Y ([tr(B)]

2
− 2ρ2

XYC)
nC

−
σ 2
X tr(B)
C

−
σ 2
X ρXY (ρ

2
XY − 1)

n

−
σ 4
2 (ntr(B

2) − C)
nC

−
σ 2
Y tr(B)
C

−
σ 2
Y ρXY (ρ

2
XY − 1)

n
− −

n
C

0

− − −
(ρ2

XY − 1)2

n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B =

(
R−1 ∂R

∂φ

)
, C = ntr(B2) − [tr(B)]2, and R = [R(h,φ)]ni,j=1. □

References

Anderes, E.B., Stein, M.L., 2011. Local likelihood estimation for nonstationary random fields. J. Multivariate Anal. 102,
506–520.

Atkinson, G., Nevill, A., 1997. Comments on the use of concordance correlation to assess the agreement between two
variables. Biometrics 52, 775–778.

Barnhart, H.X., Haber, M.J., Line, L.I., 2007. An overview on assessing agreement with continuous measurements. J.
Biopharm. Statist. 17, 529–569.

Bevilacqua, M., Morales-Oñate, V., 2018. Geomodels: a package for geostatistical gaussian and non gaussian data analysis.
https://vmoprojs.github.io/GeoModels-page/. R package version 1.0.3-4.

Bevilaqua, M., Faouzi, T., Furrer, R., Porcu, E., 2019. Estimation and prediction using generalized wendland covariance
functions under fixed effects asymptotics. Ann. Statist. 47, 828–856.

Bevilaqua, M., Vallejos, R., Velandia, D., 2015. Assessing the significance of the correlation between the components of a
bivariate gaussian random field. Environmetrics 26, 545–556.

Bustos, O., Ojeda, S., and, R.V., 2009. Spatial ARMA models and its applications to image filtering. Braz. J. Probab. Stat. 23,
141–165.

Castillo-Páez, S., Fernández-Casal, R., García-Soidán, P., 2019. A nonparametric bootstrap method for spatial data. Comput.
Statist. Data Anal. 137, 1–15.

Chodhary, P., Nagaraja, H., 2017. Measuring Agreement, Models, Methods, and Applications. Wiley, New York.
Claverie, M., Ju, J., Masek, J.G., Dungan, J.L., Vermote, E.F., Roger, J.-C., Skakun, S.V., Justice, C., 2018. The harmonized landsat

and sentinel-2 surface reflectance data set. Remote Sens. Environ. 219, 145–161.
Clayton, J., Modat, M., Presles, B., Anthopoulos, T., Daga, P., 2018. Package RNiftyReg. https://cran.r-project.org/package=R

NiftyReg.
Cohen, J., 1968. Weighted kappa: nominal scale agreement with provision for scale disagreement or partial credit. Psycol.

Bull. 70, 213–220.
Daley, D., Porcu, E., Bevilacqua, M., 2015. Classes of compactly supported covariance functions for multivariate random

fields. Stoch. Environ. Res. Risk Assess. 29, 1249–1263.
Gao, F., Hilker, T., Zhu, X., Anderson, M., Masek, J., Wang, P., Yang, Y., 2015. Fusing landsat and MODIS data for vegetation

monitoring. IEEE Geosci. Remote Sens. Mag. 3, 47–60.

http://refhub.elsevier.com/S2211-6753(19)30156-3/sb1
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb1
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb1
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb2
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb2
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb2
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb3
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb3
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb3
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
https://vmoprojs.github.io/GeoModels-page/
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb5
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb5
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb5
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb6
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb6
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb6
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb7
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb7
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb7
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb8
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb8
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb8
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb9
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb10
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb10
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb10
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
https://cran.r-project.org/package=RNiftyReg
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb12
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb12
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb12
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb13
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb13
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb13
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb14
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb14
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb14


26 R. Vallejos, J. Pérez, A.M. Ellison et al. / Spatial Statistics 40 (2020) 100405
Gillespie, A., Kahle, A., Walker, R., 1987. Color enhancement of highly correlated images. 2. Channel ratio and chromaticity
transformation techniques. Remote Sens. Environ. 22, 343—365.

Gneiting, T., 2002. Compactly supported correlation functions. J. Multivariate Anal. 83, 493–508.
Gneiting, T., Kleiber, W., Schlather, M., 2010. Matérn cross-covariance functions for multivariate random fields. J. Amer.

Statist. Assoc. 105, 1167–1177.
Hiriote, S., Chinchilli, V.M., 2011. Matrix-based concordance correlation coefficient for repeated measures. Biometrics 67,

1007–1016.
Lawrence, I., Chinchilli, V., 1997. Rejoinder to the letter to the editor from Atkinson and Nevill.
Leal, C., Galea, M., Osorio, F., 2019. Assessment of local influence for the analysis of agreement. Biom. J. 61, 955–972.
Lin, L., 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 255–268.
Lin, L., 2000. Total deviation index for measuring individual agreement: with application in lab performance and

bioequivalence. Stat. Med. 19, 255–270.
Lin, L., Hedayat, A., Sinha, B., Yang, M., 2002. Statistical methods in assessing agreement: models, issues, and tools. J.

Amer. Statist. Assoc. 97, 257–270.
Lin, L., Hedayat, A.S., Wu, W., 2012. Statistical Tools for Measuring Agreement. Springer Science & Business Media.
Makridakis, S., Taleb, N., 2009. Living in a world of low levels of predictability. Int. J. Forecast. 25, 840–844.
Mardia, K.V., Marshall, T.J., 1984. Maximum likelihood estimation of models for residual covariance in spatial regression.

Biometrika 19, 135–146.
Mizunuma, T., Mencuccini, M., Wingate, L., Ogee, J., Nichol, C., et al., 2014. Sensitivity of colour indices for discriminating

leaf colours from digital photographs. Methods Ecol. Evol. 5 (10), 1078–1085.
Nguy-Robertson, A.L., Buckley, E.M.B., Suyker, A.S., Awada, T.N., 2016. Determining factors that impact the calibration of

consumer-grade digital cameras used for vegetation analysis. Int. J. Remote Sens. 37, 3365–3383.
Ojeda, S., Vallejos, R., Bustos, O., 2010. A new image segmentation algorithm with applications to image inpainting. Comput.

Statist. Data Anal. 54, 2082–2093.
R Core Team, 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing,

Vienna, Austria, http://www.R-project.org/.
Richardson, A.D., 2018. Tracking seasonal rhythms of plants in diverse ecosystems with digital camera imagery. New

Phytol. 00, http://dx.doi.org/10.1111/nph.15591.
Schall, R., Williams, R.L., 1996. Towards a practical strategy for assessing individual bioequivalence. J. Pharmacokinet.

Biopharm. 24, 133–149.
Skiljan, I., 2014. Irfanview. https://www.irfanview.com/.
Sonnentag, O., Hufkens, K., Teshera-Sterne, C., Young, A.M., Friedl, M., Braswell, B.H., Milliman, T., O’Keefe, J., Richard-

son, A.D., 2012. Digital repeat photography for phenomenal research in forest ecosystems. Agricult. Forest Meteorol.
152, 159–177.

Stevens, N.T., Steiner, S.H., MacKay, R.J., 2017. Assessing agreement between two measurement systems: an alternative to
the limits of agreement approach. Stat. Methods Med. Res. 26, 2487–2504.

Toomey, M., Friedl, M.A., Frolking, S., Hufkens, K., Klosterman, S., et al., 2015. Greenness indices from digital cameras
predict the timing and seasonal dynamics of canopy-scale photosynthesis. Ecol. Appl. 25, 99–115.

Urbanek, S., 2014. Package jpeg. https://cran.r-project.org/package=jpeg.
Vallejos, R., Mallea, A., Herrera, M., Ojeda, S., 2015. A multivariate geostatistical approach for landscape classification from

remotely sensed image data. Stoch. Environ. Res. Risk Assess. 29, 369—378.
Vonesh, E.F., Chinchilli, V.M., Pu, K., 1996. Goodness of fit in generalized nonlinear mixed-effect models. Biometrics 52,

572–587.
Wendland, H., 1995. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree.

Adv. Comput. Math. 4 (1), 389–396.

http://refhub.elsevier.com/S2211-6753(19)30156-3/sb15
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb15
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb15
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb16
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb17
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb17
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb17
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb18
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb18
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb18
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb20
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb21
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb22
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb22
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb22
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb23
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb23
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb23
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb24
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb25
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb26
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb26
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb26
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb27
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb27
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb27
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb28
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb28
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb28
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb29
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb29
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb29
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://dx.doi.org/10.1111/nph.15591
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb32
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb32
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb32
https://www.irfanview.com/
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb34
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb34
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb34
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb34
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb34
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb35
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb35
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb35
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb36
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb36
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb36
https://cran.r-project.org/package=jpeg
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb38
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb38
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb38
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb39
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb39
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb39
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb40
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb40
http://refhub.elsevier.com/S2211-6753(19)30156-3/sb40

	A spatial concordance correlation coefficient with an application to image analysis
	Introduction
	Preliminaries and notation
	A spatial concordance coefficient and its properties
	Inference
	A local approach
	Monte Carlo simulations
	An application
	Motivation
	Imagery
	Estimating concordance
	Estimates of concordance

	Discussion
	Future work
	Acknowledgments
	Appendix
	References


