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Abstract. The diversity–stability relationship is a long-standing, central focus of commu-
nity ecology. Two major challenges have impeded studies of the diversity–stability relationship
(DSR): the difficulty in obtaining high-quality longitudinal data sets; and the lack of a general
theoretical framework that can encompass the enormous complexity inherent in “diversity,”
“stability,” and their many interactions. Metagenomic “Big Data” now provide high quality
longitudinal data sets, and the human microbiome project (HMP) offers an unprecedented
opportunity to reinvigorate investigations of DSRs. We introduce a new framework for explor-
ing DSRs that has three parts: (1) a cross-scale measure of dominance with a simple mathemat-
ical form that can be applied simultaneously to individual species and entire communities and
can be used to construct species dominance networks (SDNs); (2) analysis of SDNs based on
special trio motifs, core-periphery, rich-club, and nested structures, and high salience skeletons;
and (3) a synthesis of coarse-scale core/periphery/community-level stability modeling with
fine-scale analysis of SDNs that further reveals the stability properties of the community struc-
tures. We apply this new approach to data from the human vaginal microbiome of the HMP,
simultaneously illustrating its utility in developing and testing theories of diversity and stability
while providing new insights into the underlying ecology and etiology of a human microbiome-
associated disease.

Key words: community dominance; core-periphery network; diversity–stability relationship; human
microbiome; mean crowding; nestedness; skeleton network; species dominance network; trio motifs.

INTRODUCTION

The relationship between diversity and stability
(henceforth, the “diversity–stability relationship” or
DSR; see Box 1 for acronyms and variables) has been a
central focus of community ecology for more than one-
half century (see, e.g., reviews by Pimm 1984, McCann
2000, Green et al. 2006, Donohue et al. 2016). Although
the development of DSR theory and most data collected
to test it have relied on the relatively large (>1 mm long)
macroorganisms that we can see easily, the DSR is now
receiving increasing attention from microbial commu-
nity ecologists as DNA sequencing and metagenomic
technology have revolutionized our understanding of
microbial diversity (e.g., Gibbons and Gilbert 2015). As
metagenomic technology has presented unprecedented
opportunities for studying microbial communities, it
also has raised new challenges. For example, millions of

sequences of bacterial 16s rRNA can be collected rapidly
and may be useful for resolving long-standing issues in
theoretical ecology, but visualizing, let alone under-
standing, these high-dimensional “Big Data,” requires
new analytical approaches. In this article, we introduce
and develop a new framework, dominance network anal-
ysis, to explore the DSR, and illustrate its application
with a large microbial data set from the human vaginal
microbiome (henceforth, the human vaginal microbial
community or HVMC). Dominance network analysis
includes three parts (Fig. 1): (1) a new cross-scale mea-
sure (or metric) of dominance (Ma and Ellison 2017)
derived from Lloyd’s mean-crowding index (Lloyd 1967,
1986) that is applicable not only to populations and indi-
vidual species but also to entire communities; (2) the use
of this dominance metric to construct species dominance
networks (SDNs) and conduct dominance network anal-
ysis; and (3) topological and stability analyses of SDNs,
including the synthesis of parts 1 and 2.
The motivation for using one part of the human

microbiome as our illustrative application rather than a
classical “macrobial” system is two-fold. First, the
Human Microbiome Project (HMP) has revealed that
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the number of microbes distributed within (gut, repro-
ductive tract, oral, airway) or on (skin) our body is vast,
at least an order of magnitude larger than the number of
our own somatic cells, and these microbes express at
least two orders of magnitude more genes than we do
(e.g., Turnbaugh et al. 2007, Clemente et al. 2012, HMP
Consortium 2012a, b, Lloyd-Price et al. 2016). Although
the long coevolution between macrobes and microbes
has forged pervasive, strong, and generally beneficial
interconnections (e.g., digestive efficiencies of the host
and a steady nutrient supply for microbes; for additional
examples, see Bittleston et al. 2016), changes in these
relationships often happen, leading to well-known
pathological (“unstable”) conditions (e.g., Hooper et al.
2012, Estrela et al. 2015). Indeed, ecological theory has
been both a unifying driving force and tested for the
metagenomic revolution (e.g., Costello et al. 2012, Lozu-
pone et al. 2012, HMP Consortium 2012a, b, Faust

et al. 2012, Barber�an et al. 2014, Ding and Schloss
2014, Ma et al. 2012a, 2015, 2016a, b, Ma 2015, Coyte
et al. 2016). Today, ecologists can test major ecological
theories across not only taxa (plants, animals, and
microbes) but also ecosystem types (e.g., forest, lakes,
ocean, human, and animal microbiomes), and novel
findings and insights are revealed more frequently than
ever. For example, Sunagawa et al. (2015) found that the
global ocean microbiome and human gut microbiome
share a functional core of prokaryotic gene abundance
with 73% similarity in the ocean and 63% in the gut,
despite the huge physiochemical differences between the
two ecosystems.
Second, clinical microbiologists (e.g., Sobel 1999)

using culture-based technology have already applied
basic ecological measures of species diversity and domi-
nance to explore the etiology of a disease associated with
the HVMC: bacterial vaginosis (henceforth, BV; Eschen-
bach et al. 1988). Nearly two decades on, however,
metagenomics and additional assessment of the diversity
of uncultivatable bacteria in the HVMC together have
raised new and unanswered questions about bacterial
diversity, stability, and the etiology of BV (Fredricks
et al. 2005, Fredricks 2011, Ma et al. 2012a, Ravel et al.
2011, 2013, Srinivasan et al. 2010, White et al. 2011). If
our framework for dominance network analysis can shed
new light on BV and its etiology, it would suggest that it
has predictive value in a field that long has been domi-
nated by heuristic, phenomenological analysis (e.g.,
Donohue et al. 2016). Tackling the tough questions in
BV etiology not only can illustrate the general utility of
DSR in species-rich systems but also should be an ideal
arena in which to assess whether our proposed frame-
work and approach can be applied successfully in a sys-
tem of real-world importance.
This article is the second in a three-part series in which

we develop and test our novel framework for analyzing
DSRs. In the first article (Ma and Ellison 2017), we pre-
sented and validated our new dominance concept (met-
rics), including phenomenological modeling of the
community-level DSR. The focus of this article is to
illustrate the analysis and synthesis of SDNs with the
data sets from a longitudinal HMP metagenomic study
of 32 healthy women (Gajer et al. 2012). The third paper
(Ma and Ellison unpublished data) extends these analy-
ses to additional HMP data sets from BV patients to
hypothesize mechanisms underlying the ecological
“causes” of BV associated with DSRs.

DOMINANCE NETWORK ANALYSIS

General framework

Dominance network analysis includes phenomenolog-
ical modeling of community dominance dynamics, spe-
cies dominance network (SDN) analysis, and their joint
synthesis (Fig. 1). Common to all three parts of this
analysis is a set of three measures of dominance: Dc, Ds,

Box 1. Acronyms and symbols

BV: bacterial vaginosis
CNS: core-nested-skeleton structures
CST: community state types
CNS: core, nested, skeleton structure
DDS: dominance-dependent stability
DIDS: dominance-inversely-dependent stability
DIS: dominance-independent stability
DSR: diversity–stability relationship
HMP: Human Microbiome Project
HSS: high salience skeleton
HVM: human vaginal microbiome
HVMC: human vaginal microbial community
MAO: most abundant OTU
MDO: most dominant OTU
OUT: operational taxonomic unit
SDN: species dominance network
SCN: species correlation network
SIN: species interaction network
P:N ratio: ratio of positive to negative links
PM: partial mutualism
TM: total mutualism
L-Q: linear-quadratic models
Q-Q: quadratic-quadratic models)
Dc: community dominance metric (index)
Ds: species dominance metric (index)
Dsd: species dominance distance metric (index)
mc: mean population abundance (size) per species
m�

c : community mean crowding
Sc(t): community stability
Ss(t): population(species) stability
q: strength of core
C:P: core :periphery ratio)\
qðkÞ: rich club coefficient
rHSS: assortativity
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and Dsd (for community dominance, species dominance,
and species dominance distance, respectively), which are
based on Lloyd’s mean crowding index for population
aggregation (Lloyd 1967, 1986). We focus our attention
on dominance as a proxy for diversity because it has
intuitive meanings for both species and communities.
For example, we often describe a community as high or
low in diversity but rarely describe a species as high or
low in diversity (except when referring to its genetic
diversity). In contrast, we routinely describe one or more
species as dominating a community, because individual
species (e.g., keystone, dominant, or foundation species)
may regulate community-wide diversity through

bottom-up or top-down effects (e.g., Baiser et al. 2013).
Since dominance (unevenness) and diversity (evenness)
can be considered as both sides of the same coin, our
new concept of dominance metric (Ma and Ellison 2017)
provides a common currency applicable at both the spe-
cies and community levels.
Specifically, our measure of community dominance,

Dc, can be interpreted directly as community-level diver-
sity along the lines of, for example, Simpson’s D (Ma
and Ellison 2017). At the same time, our measure of spe-
cies dominance, Ds, identifies which species dominates
the community. A unique ecological property of this set
of measurements is that they have the same

FIG. 1. A diagram showing the dominance-metric-based, species-dominance-network (SDN)-centered, framework for investi-
gating the classic diversity–stability relationship (DSR): (a) The evolution from Lloyd’s (1967) population mean crowding concept
to a dominance concept applicable at both the community and species (population) levels, as indicated by the arrow. On the left are
the individuals of the same species distributed over various sampling units, and on the right are the individuals of different species,
shown in different colors. The formula refers to the community dominance metric, which is a linear function of the familiar Simp-
son’s diversity index (D). The right-most polar coordinate graph shows the interactions of three species in a community, and their
interactions seemed to control the dominance of the community, which inspired the methodology for detecting the special trios in
SDN (see Ma and Ellison [2017] for additional details). (b) The main SDN methods for supporting our framework include special
trio motifs, P:N ratio (positive to negative), core/periphery/nested networks, and skeleton networks. All of the networks were built
with species dominance index (Ds). This block shows the focus of this article. (c) Phenomenological modeling of the DSR based on
the dominance matrix, which can be performed for the population, community, or community guild (such as core and periphery
identified with SDN analysis). (d) The third part of three-part series study focusing on diversity–stability–disease relationships and
the extension of bacterial vaginosis (BV) etiology.
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mathematical form when applied to either individual
species or multispecies communities (Ma and Ellison
2017). In brief, Dc is a linear function of the well-known
Simpson’s (1949) diversity index, whereas for individual
species, Ds measures the difference between the commu-
nity dominance and the dominance of a virtual commu-
nity whose mean population size (per species) is equal to
the population size of the focal species whose contribu-
tion Ds is being measured. Each measure is defined in
more detail, below; technical details are given in Ma and
Ellison (2017).

Roadmap

We first lay out key mathematical details and notation
used throughout the paper. Less detail is provided for
the measures of dominance and methods of phenomeno-
logical modeling, which are described fully by Ma and
Ellison (2017). The characterization of species domi-
nance networks is more comprehensive because it is pre-
sented here for the first time. Additional technical
details on all elements of the mathematical methods are
provided in Ma and Ellison (2017). Second, we use our
three dominance measures to model phenomenologically
the dominance (or diversity)–stability relationship.
Specifically, we apply six models (linear, quadratic,
reciprocal, logistic, liner-quadratic, and quadratic-quad-
ratic) to examine dominance-dependent stability (DDS),
dominance-inversely-dependent stability (DIDS), and
dominance-independent stability (DIS) in the HVMC.
These models help identify and determine the (in)stabil-
ity of potential equilibria in the community. An addi-
tional useful feature that emerges from this modeling
approach is that resilience is defined quantitatively as
the derivative of stability (rather than qualitatively, as is
done more commonly: see, e.g., Fig. 4a of Donohue
et al. 2016). Third, we move beyond relatively simple
definitions of diversity and stability based on species
numbers to explore the DSR in a community defined as
a network of interacting species. This approach is espe-
cially important for microbial communities. Data sets
from longitudinal studies of microbial community
dynamics typically are “high-dimensional.” Microbial
metagenomic data sets, for example, usually have hun-
dreds, if not thousands, of operational taxonomic units
(OTUs) sampled repeatedly through time or space. Net-
work analysis is one of the most powerful approaches
for dealing with complex, high-dimensional data because
the basic network structure still holds and can be com-
puted when the dimensions of the data far exceed the
number of data points (Lau et al. 2017).
Our approach to analyzing SDNs differs from most

previous analyses of ecological networks because it uses
species dominance, not abundance, as a characteristic of
individual species (network nodes). We quantify core-
nested-skeleton (CNS) structures in a SDN because
these structures play critical roles in stabilizing ecologi-
cal networks. By integrating species-scale CNS network

analysis with community-scale dominance dynamics, we
reveal how underlying topological structures shape the
DSR. We search for special node-connected trios (trio
motifs) that include the most dominant OTU (MDO),
which has the highest value of Ds in the network; the
most abundant OTU (MAO) in the network; hubs (those
nodes with the largest number of connections); and the
sign (positive or negative) of interactions between OTUs.
Through this analysis of trio motifs, we uncover network
properties that existing standard network analysis can-
not reveal, such as the existence of specific functional
groups, including BV-associated bacteria in the HVMC.
Last, we synthesize results from the phenomenological
DSR models, the SDN analysis, and characteristics of
the microbial host (human). This synthesis provides a
“big picture” of community dynamics, especially the
potential influences of environmental, habitat, and host-
specific factors on diversity and stability (Ma and
Ellison unpublished data).

Community dominance and species dominance derived
from mean crowding

We start by defining community dominance, Dc, as:

Dc ¼ m�
c

mc
¼ 1 þ r2

c

m2
c
� 1
mc

(1)

where m�
C is community mean crowding:

m�
c ¼ mc þ r2

c=mc � 1 (2)

mc is the mean of the population abundances (size)
across all species (i.e., per species) in the community, and
r2
c is corresponding variance. Note that m�

c also can be
interpreted as a measurement of community unevenness,
and there is a direct linear relationship between Dc and
Simpson’s diversity index (D; Ma and Ellison 2017). As
a result, Dc is well-correlated with other measures of
diversity, such as Shannon-Weiner’s H´, the Hill-number
equivalents of H0 and D (Chao et al. 2014), and the Ber-
ger-Parker dominance index (Berger and Parker 1970).
One advantage of Dc is that it can be used to define a

dominance index Ds for each species in the community.
To do this, we first define the species dominance distance
Dsd as

Dsd ¼ m�
c

ms
¼ mc

ms
þ r2

c

mcms
� 1

ms
(3)

where ms is the population abundance (size) of the focal
species of interest (s) in the community. We then define
species dominance (Ds) as the difference between Dc and
Dsd:

Ds ¼ Dc �Dsd ¼ m�
c

mc
�m�

c

ms
¼ r2

c

m2
c
� r2

c

mcms
� 1
mc

þ 1
ms

:

(4)
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Like Dsd, Ds is species specific. The latter measures
the dominance of a specific (focal) species in the commu-
nity; more dominant species have larger values of Ds. In
subsequent sections, we use Dc to model community-
level DSRs, and use Ds to perform dominance network
analyses such as searching for CNS and special trio
motifs with significant DSR implications.

Phenomenological modeling of community stability

Despite its widespread use and perceived importance,
there is no commonly accepted definition for community
stability in the literature (Grimm and Wissel 1997, Ma
2012, Donohue et al. 2016). Here, we define community
dominance stability (henceforth, community stability) as

ScðtÞ ¼ Dcðt þ 1Þ �DcðtÞ
DcðtÞ : (5)

This definition of community stability measures the
temporal change in community dominance. Similarly,
we can define population dominance stability (hence-
forth, population stability) as:

SsðtÞ ¼ Dsðt þ 1Þ �DsðtÞ
DsðtÞ ; (6)

noting that there is a separate value of population stabil-
ity for each species.
Next, we make the reasonable assumption that that

temporal dynamics of dominance can be described by a
differential equation:

SðtÞ ¼ dDðtÞ
DðtÞdt ¼ f ½DðtÞ;Z� (7)

where D(t) is species- or community-level dominance at
time t, Z is an optional vector of covariates, and S(t) is
the stability of the community (Sc) or the species (Ss) of
interest. Since we do not know the form of the stability
function f [∙], our modeling strategy is phenomenological
and data driven; for the latter, we use discrete difference
equations. In a previous paper (Ma and Ellison 2017),
we identified five models for f [∙], linear (L), linear-quad-
ratic (L-Q), quadratic-quadratic (Q-Q), logistic, and
sine-logistic models, which could capture a broad spec-
trum of complex DSRs.
As does density-dependent theory for population reg-

ulation (e.g., Cushing et al. 2003, Pastor 2008), our gen-
eralized stability model (Eqs. 5–7) may exhibit three
types of dynamic behavior: dominance-dependent stabil-
ity (DDS), in which (local) stability increases with domi-
nance; dominance-inversely-dependent stability (DIDS),
in which stability decreases with dominance; and domi-
nance-independent stability (DIS), in which stability
does not change with dominance. That is, if

SðtÞ / kDðtÞdt (8)

then k < 0, k > 0, and k = 0 correspond to DDS, DIDS,
and DIS, respectively.
In practice, except for the simple linear model for

which the slope (b) � k in Eq. 8, we may not be able to
determine “the” value of k since it may be infeasible to
describe a nonlinear relationship with a single parame-
ter. However, the nonlinear models we use are simple
enough that we can estimate piecewise (i.e., local) domi-
nance–stability dependence relationships based on mul-
tiple parameter combinations. Ma and Ellison (2017)
illustrated this estimation for basic DSRs.
Also in practice, necessary caution should be taken in

adopting our phenomenological modeling approach.
First, like many other approaches using time-series data,
sufficient length of data points is a must for obtaining
reliable analysis. Second, both the choice and interpreta-
tions of the stability models are both science and art.
Furthermore, the expectation from the modeling analy-
sis should be realistic, only identifying the three DSR
mechanisms (DDS, DISS, DIS). It is generally not possi-
ble to use the approach for predictive purpose. As to the
model choice, we recommend fitting multiple models to
the same data sets, and choosing a most appropriate one
based on model-fitting performance (r2, standard error
of coefficients), ecological realism, and parsimony, as
demonstrated in Ma and Ellison (2017). That is, condi-
tional upon statistically satisfactory model fitting judged
by sufficiently high r2 and simultaneously sufficiently
low standard errors of model parameters (guarding
against over-fitting), one should choose a model that
can reliably and parsimoniously identify the above-men-
tioned three DSR mechanisms.

Species dominance networks (SDNs)

Avariety of different methods grouped under the rub-
ric of network analysis that emphasize species interac-
tions and food webs can be used to analyze ecological
systems (e.g., Junker and Schreiber 2008, Ings et al.
2009, Lau et al. 2017). We constructed SDNs for the
HVMC using Spearman’s rank correlation coefficient
(q) computed between pairs of species-specific species
dominance indices Ds (Eq. 4). Our resulting SDNs are
similar to species interaction networks in macroecology
(e.g., Ings et al. 2009) or cooccurrence networks in
microbial ecology (e.g., Barber�an et al. 2012), but we use
Ds rather than population abundance as species weights.
Other than the adoption of dominance metric, we can
use the standard correlation network analysis to build
SDNs.
We used the iGraph package (Cs�ardi 2006) in the R

statistical software environment (R Core Team 2015)
and Cytoscape software (Shannon et al. 2003) to do the
standard correlation network analysis (iGraph available
online).5 The former was used to compute the Spearman
rank correlation coefficients (r) between species

5 http://igraph.org/r
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dominance indexes (Ds). We choose the significance level
of P = 0.05, and the correlation cutoff thresholds of
r ≤ �0.5 or r ≥ 0.6 to build the species dominance net-
works (SDN). After filtering at the specified significance
and correlation coefficient thresholds, the resulting cor-
relation coefficient values were input into Cytoscape to
produce SDN graphs.
We computed these SDNs for each of 32 individuals

from a NIH-HMP longitudinal study of healthy women
at reproductive ages (Gajer et al. 2012; henceforth, the
“32-healthy cohort data set”). This study applied
metagenomic sequencing technology to 16s-rRNA mar-
ker genes and generated a time series of vaginal bacterial
OTU abundance data for each of the 32 subjects over a
16-week period. Data are publicly available as described
by Gajer et al. (2012). Figs. 2 and 3 illustrate two such
graphs corresponding to two selected subjects, and the
graphs for all 32 subjects are displayed as Appendix S1:
Fig. S1.

Characterizing species dominance networks (SDNs) with
new approaches

Identification of special trio motifs.—By identifying what
we call trio motifs in SDNs, we aim to resolve several
deficiencies associated with standard correlation net-
work analysis as applied to analysis of ecological sys-
tems. First, standard network analysis does not account
for identities or characteristics of nodes other than their
topological properties (e.g., Erd€os and Renyi 1960,
Watts and Strogatz 1998, Barabasi and Albert 1999; also
see Bollob�as 2001, Durrett 2006, Newman and Clauset
2016). For example, in a microbial network, aerobes and
anaerobes have different roles that are not distinguish-
able from network topology alone. Second, although
many ecological networks include both positive and neg-
ative relationships, network topology does not distin-
guish between these types of connections (edges)
between nodes. Computation of the degree of a node
requires knowing only the numbers of edges into or out
of a node, not their sign. In real ecological networks,
however, the number of negative and positive connec-
tions, and their magnitude, can make a large difference
in network dynamics (e.g., Newman and Clauset 2016).
Third, although many types of modular techniques can
be applied to topological networks (e.g., Lecca and Re
2015), most of them are computationally expensive because
the general module detection problem is “NP-hard:” the
search time for finding all instances grows exponentially
or even faster with the size of network (Fortunato 2010).
This is especially problematic for large networks of
OTUs derived from metagenomic data. Our method for
identifying trio motifs overcomes these two ecologically
important issues and also is computationally simple and
efficient.
Our trio motifs are similar to triads identified in social

network analysis (O’Malley and Marsden 2008, Kitts
and Huang 2010). Whereas social-network triads are

sub-graphs consisting of three nodes and possible edges
between them, Ma and Ye (2017) identified 19 trio
motifs (15 of which are of particular biomedical impor-
tance) and classified them hierarchically based on the
special role of node, the interaction type (+ or –), and
their combination.

Core-periphery, rich club, and nested structures in
SDNs.—Three related concepts of network structures,
core-periphery, rich-club, and nestedness, were applied
to enhance our understanding of SDNs. The identifica-
tion of structuring within networks was inspired by
May’s (1973) observation that increasingly complex sys-
tems should show decreasing stability, but that network
stability could be achieved through modularity or other
substructuring (e.g., Allesina and Tang 2012, 2015).
Such substructuring is thought to increase network resi-
lience in fluctuating or stochastic environments (e.g.,
Grilli et al. 2016). It has been found that networks with
strong mutualistic interactions, such as the human
microbiome network and pollination networks, are more
robust if they have nested subnetworks (Scheffer et al.
2012). Hence, the three network structures we explore
here should be particularly useful for exploring the sta-
bility (resilience) of SDNs.
We used the equations described below and coded in

Python (version 2.7, www.python.org) to detect core-
periphery, rich-club, and nested structures in the 32-
healthy cohort data set. OTUs unconnected to any other
OTUs (i.e., nodes of degree 0) were deleted prior to anal-
ysis because they are irrelevant for these connectedness-
related topological structures.
A core-periphery network consists of two groups of

nodes. Nodes in the first group are connected tightly to
one another and form a cohesive sub-graph as the core
of the network. Nodes in the second group, i.e., the
periphery, are connected more loosely to the core or its
nodes and lack cohesion with the core (Rombach et al.
2014). A simple measure of how well the structure of a
real network approximates the ideal or perfect core is
characterized by the following definitions:

/ ¼
X
i;j

aij dij (9)

dij ¼ 1 if ci ¼ core or cj ¼ core
0 otherwise

�
(10)

In the equations, aij indicates the presence or absence
of a tie in two species (OTUs), and it is an element of the
adjacency matrix (A) of the species (OTU) interaction
(correlation) network; ci refers to the class (core or
periphery) to which node i is assigned, and dij (subse-
quently called the pattern matrix) indicates the presence
or absence of a tie in the idealized pattern (Borgatti and
Everett 1999, Csermely et al. 2013). With a fixed distri-
bution of values, the measure (/) attains its maximum
value if and only if A (the matrix of aij) and D (the
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matrix of dij) are identical, which indicates that the
observed and ideal interaction matrices are identical,
and the network represented by matrix A has a perfect
core/periphery structure.

We can also compute the core ratio CR of core nodes
(OTUs) to periphery nodes in the network, and the link-
age density 2L/n(n � 1), where L is the number of links
and n is the number of nodes (OTUs), for each of the

FIG. 2. The SDN (species dominance network) for subject number 424 (multiple hubs and separate hub, MDO [most dominant
operational taxonomic unit (OTU)] and MAO [most abundant OTU], core nodes [dark blue], periphery nodes [light blue], and high
salience skeletons [heavy line for links]), see Appendix S1: Table S1 for detailed legends of the network symbols. Note that the edges
in this network are somewhat too dense to see the skeletons, and readers are referred to Fig. 3 or Appendix S1: Fig. S1 for better
visualization of the skeletons.
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four quadrants (or blocks) in the core-periphery matrix,
i.e., block 11 (core-core), block 12 (core-periphery),
block 21 (periphery-core), and block 22 (periphery-per-
iphery). Block density measures how densely connected
are any two nodes in each block.
First characterized for the topology of the Internet,

rich clubs in complex networks are a particular type of
core-periphery network. Rich clubs are observed when
hubs (i.e., high-degree nodes, which have many links to
other nodes) are more densely connected with one
another than are low-degree nodes (Zhou and Mon-
dragon 2004, Julian et al. 2007). In general, a rich club
is defined when nodes of degree > k are more densely
connected to one another than are nodes of degree ≤ k
(Colizza et al. 2006). That is, richer nodes (with degree
of a threshold of >k) tend to connect with each other in
the rich club.
The topological rich-club coefficient /(k), i.e. the pro-

portion of edges connecting the rich nodes, with respect
to all possible number of edges between them is

/ðkÞ ¼ Ef k

Nf k

2

� � ¼ 2Ef k

Nf kðNf k � 1Þ (11)

where Nf k refers to the nodes having a degree higher
than k, and Ef k denotes the number of edges among the
Nfk nodes in the rich-club. If /ðkÞ ¼ 0, the nodes do
not share any links; if /ðkÞ ¼ 1 the rich nodes form a
fully connected sub-network, a clique. Plotting /(k) as a
function of k can provide insights into network topology
and functioning (Colizza et al. 2006). Colizza et al.

(2006) proposed the first null model to detect rich clubs
using the randomization procedure of Maslov and Snep-
pen (2002), and the null model preserved the degree
sequence of the original network. Formally, the rich-club
coefficient is defined as

qðkÞ ¼ /ðkÞ
/randðkÞ

; (12)

where /rand(k) is the topological rich-club coefficient of
the null model.
In nested networks, nodes (OTUs) of low degree are

linked primarily (or exclusively) to nodes (OTUs) of
higher degree (Atmar and Patterson 1993). For a net-
work matrix A = {aij} with elements indexed by OTUs i
and j, Lee et al. (2012) defined nestedness S as

S ¼ 1
NðN � 1Þ

XN
i¼1

XN
j¼1

P
l ailajl

minðki; kjÞ ; (13)

where ki ¼
P

ail is the degree of node i, and kj ¼ P
ajl

is the degree of node j.
The custom Python program we wrote to implement

above described core-periphery and nestedness network
analyses is provided in Appendix S1 of the OSI.

High salience skeleton (HSS) structure.—Trio motifs,
core-periphery structure, rich clubs, and nestedness all
focus on the OTUs themselves (network nodes). In con-
trast, the high salience skeleton (HSS) of a network
focuses on the links between OTUs (network edges).
Edges with high salience can be thought of as the
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43
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68
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36

95
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11

31

12

165

FIG. 3. The SDN (species dominance network) for subject number 408 (hub, MDO, and MAO are the same), core nodes (dark
blue), periphery nodes (light blue), and high salience skeletons (heavy lines for links), see Appendix S1: Table S1 for detailed
descriptions of the network symbols.
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highways of a network. Following Grady et al. (2012),
we computed the weights of the edges in our SDN
between nodes (OTUs) as wij ¼ 1=jqij j, where qij is the
Spearman’s correlation coefficient between the species
dominance index of OTU i and OTU j.
Grady et al. (2012) then defined a salience matrix (S)

for a network, whose elements (sij) are the salience values
for each edge. The computation of the salience (sij) is
based on the notion of shortest paths in weighted net-
works. Given a weighted network defined by the matrix
of weights wij and a shortest path that originates at node
x and terminates at node y, the indicator function is
defined as

rijðy; xÞ ¼
1 if link i ! j is on the shortest

path from x to y
0 otherwise

8<
: ð14Þ

The shortest path tree (SPT) T(x) rooted at node x
can be represented as a matrix Τ = (x) whose elements
are

Tij ¼ 1 if
P
y

rijðy; xÞ [ 0

0 otherwise

(
: (15)

Then, the salience matrix S is a linear superposition of
all SPTs, i.e.,

S ¼ ðsijÞ ¼ hTi ¼ 1
N

X
x

TðxÞ (16)

Intuitively, the process of finding the HSS is to convert
a weighted network matrix (which here is the SDN
weighted by the inverse of Spearman’s correlation coeffi-
cients of species dominance) into a new network matrix
of edges. In the conversion process, those links whose
weights were reduced to zero are removed, and the
remaining links and nodes form a new network, the
HSS. The custom Python program we wrote to imple-
ment Grady (2012) HSS detection approach is provided
in Data S3.

Statistical distributions of properties of SDNs

We also used fits of three statistical distributions to
the aforementioned network properties, topological
structures, nestedness, and stability, of the SDNs to shed
light on inter-subject heterogeneity. We tested the fit of
the data to Poisson, normal, and power distributions.
The two distributions for continuous variables (normal,
power) differ in their symmetry (the normal is symmetric
around its mean, the power is asymmetric and long
tailed) and representativeness of their expected value
(the mean of a normal distribution is a good estimator
of the expected value, but the power law has a “no-aver-
age” property). The power-law distribution is an asym-
metric, long-tail probability distribution that has some

unique properties not possessed by the normal distribu-
tion. For example, the power-law distribution usually sug-
gests heavy heterogeneity or skewed data points. It has
the so-termed “no-average” property, which means that
the average of the power law distribution can hardly rep-
resent majority of the data points because of the highly
skewed long tail. The probability density function of the
power distribution is

pðxÞ ¼ K � 1
xmin

x
xmin

� ��K

(17)

where x is the random variable, xmin is the minimum
value of x, and K is the exponent or the scaling parame-
ter (K > 1), which can be considered as a measure of
asymmetricity (skewness) of the heterogeneity in the
power distribution. A comprehensive discussion on the
power distribution can be found in Clauset et al. (2009).
Details of the Poisson and normal distributions can be
found in most standard statistical texts (e.g., Gotelli and
Ellison 2012).
In our analyses, we constructed individual SDNs, one

SDN for each of the subjects in the 32-healthy cohort,
based on their individual, longitudinal data sets. If the
power distribution provided the best fit for a network
measure (property), then we inferred that its inter-sub-
ject heterogeneity was asymmetrical and heterogeneous,
and that the variance or skewness would help define net-
work structure. The “no average” property of the power
distribution suggests that there is not an average Joe
who can represent the cohort with respect to the net-
work property. In contrast, if the Poisson distribution
provided the best fit, we inferred that inter-subject
heterogeneity was random and homogenous. Last, if the
Normal distribution provided the best fit, we inferred
that inter-subject heterogeneity was symmetrical with a
meaningful expected value (i.e., that an average property
can represent a majority of the individuals in a cohort or
population).
Although the average may be a poor indicator for the

network properties of a cohort or population, variance
(or equivalently, the standard error) and skewness can
be rather useful for assessing the heterogeneity of the
network properties. We therefore compute standard
error and skewness in the following section for each net-
work property, together with the distributions parame-
ters mentioned previously, for the 32-healthy cohort, to
cross-verify each other.

RESULTS AND DISCUSSION

Species dominance networks (SDN)

Reconstructing SDNs and visual inspection.—The indi-
vidual networks (graphs) of the 32-healthy cohort were
heterogeneous, and the networks of most individuals dif-
fered from one another. We illustrate our results with
two of these that have extreme properties (overloaded
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triple roles of MAO, MDO, and hub vs. separate roles
by three separate nodes; Figs. 2 and 3) to illustrate the
network topology of the SDNs; the remaining 30 net-
works and their associated properties are provided in
supplemental online material (Appendix S1). The sym-
bols used in all 32 SDN network graphs are described in
Appendix S1: Table S1, where the types of nodes and
edges for all individuals in the 32-healthy cohort are
illustrated in detail. In addition, in those networks, the
OTU numbers, rather than their Latin (scientific) names
are used to avoid overly crowded graphs. The look-up
lists for the OTUs and their Latin names are available in
Gajer et al. (2012), and in our Appendix S1: Table S16.
In Fig. 2 (subject 424), 12 nodes have the same highest

degree, or are hubs (green hexagons). Note that we use
the term hub slightly differently from its common usage
in the literature. We designate a node as a hub only if it
has the highest degree, whereas in the broader literature,
a hub must have “high” degree, but not necessarily the
highest degree. Our designation of node(s) with the high-
est degree (including ties) as hub(s) facilitates the quanti-
tative analysis of the network properties. Besides the hub,
two other types of nodes that deserve special attention
are the most dominant OTU (MDO; pale blue square in
Fig. 2) and the most abundant OTU (MAO; pink dia-
mond in Fig. 2). The former is a unique feature in the
SDN that is identified by our dominance metric at the
species level. MDO is the OTU node with the highest Dsd

in a SDN; for subject 424, it is OTU 20 (L. reuteri). MAO
is the OTU node with the highest species abundance in a
SDN; for subject 424 it is OTU 2 (L. crispatus).
In the SDN of subject 424, the hub, MDO, and MAO

are separate nodes. However, two or all three of these
may be identical. Among all the SDNs for the individu-
als in the 32-healthy cohort, there are only two subjects
(412, 424) whose hub, MDO, and MAO are all distinct.
For two other subjects (403, 408), their hub, MDO, and
MAO are identical.
When three roles, hub, MDO and MAO, have the

same node, we represented the overloaded node with a
hexagon in red color (taking the shape of hub, but with
a different color from the hub). When the hub and either
the MDO or MAO overlap, the overloaded symbol
shape still follows hub, but the color follows either
MDO (pale blue) or MAO (pink). When MDO and
MAO are the same OTU, the overloaded symbol takes
its shape from MDO and color from MAO, i.e., a square
colored in pink.
Another visually apparent property of the SDN for

subject 424 is the prevalence of cooperative relationships
(the ratio of positive links to negative links, P:N in
Appendix S1: Table S8 ≫ 1, also see Ma 2017). This is
consistent with the biological reality that HVMC is pri-
marily a symbiosis-dominated community. Compared
with the other networks in the 32-healthy cohort data set
(Appendix S1: Fig. S1), that of subject 424 has the most
edges (628, 39 the mean of the 32 individuals), the high-
est average degrees (12.4, 29 the cohort mean), and the

second-most number of nodes (101, 1.79 the cohort
mean) (Appendix S1: Table S2). Despite these visually
conspicuous differences, the functional implication of
these differences is obscure. A fundamental difficulty
arises from the extreme individual heterogeneity in net-
work topology exhibited by the 32 SDN networks; that
is, everyone is different, and so are her SDNs. We there-
fore use additional computational and statistical analy-
ses to gain further insights (see subsequent subsections).
The extreme inter-subject heterogeneity is obvious even

from a simple comparison between the two exemplary
networks here. The SDN of subject 408 (Fig. 3) has
many fewer nodes (40) and edges (61) than the SDN of
subject 424. An interesting observation from SDN-408 is
the two conspicuous cliques of five: one consisting of
OTU# 26, 29, 69, 212, and 258, another of 12, 31, 81,
120, and 165. Also in SDN of subject 408, OTU 3
(Atopobium) assumes the triple role of hub, MDO, and
MAO. Formally, the fewer nodes and edges in SDN-408
can be quantified by network density, which measures
how a network is densely populated with edges, and it
has a value between 0 and 1. In the case of SDN-408, net-
work density is (0.078 � 0.001) smaller than the others.

General network properties of SDNs.—Appendix S1:
Table S2 lists the results of 10 standard (general) net-
work properties of the SDNs for all individuals in the
32-healthy cohort. Appendix S1: Table S2 also includes
the results from fitting Poisson, normal, and power law
distributions to them that reveal the inter-subject hetero-
geneity of these network properties. Table 1 shows the
results for subjects 408 and 424.
The average degree per node (average number of

neighbors) measures the average connectivity of a node
in the network. Network density measures how a net-
work is densely populated with edges, and it has a value
between 0 and 1. A network of totally isolated nodes has
zero density and a clique (totally connected network)
has the density of 1. Network density is related to aver-
age degree, but the relationship is not a simple positive
correlation. Network modularity measures how a net-
work can be naturally divided into communities or mod-
ules (also known as cluster or groups). It also takes a
value between 0 and 1. In gene regulatory networks, a
module or community is considered to be a functional
group, and we hypothesize that in species dominance
networks, a module or community may represent a func-
tionally similar group, such as a group of anaerobes. A
network with high modularity should have dense con-
nections between the nodes within modules but sparse
connections between nodes in different modules.
The local clustering coefficient of a node n is defined

as Cn ¼ 2en=knðkn � 1Þ where kn is the number of neigh-
bors of n and en is the number of connected pairs
between all neighbors of n. The network-clustering coef-
ficient is the average of the clustering coefficients for all
nodes in the network. It measures the degree to which
nodes in a network tend to cluster together. The above-
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described cluster coefficient (in Table 1 and Appendix
S1: Table S2) is the local clustering coefficient, which is
an indication of the embeddedness of single nodes. We
further computed the global clustering coefficient, which
is defined as: 39 the number of type-2 triangle motifs
divided by the number of type-1 triangle motifs (Appen-
dix S1: Table S4).

Scale-free, small-world, and stability properties of
SDNs.—Appendix S1: Table S3 shows three additional
network properties: scale-free, small-world, and stability.
Scale-free networks are networks whose degree distribu-
tions follow a power distribution. Twenty-six of the 32
(81%) SDNs are scale-free (Appendix S1: Table S3), pro-
viding additional insights into the HVMCs. The hubs
play a critical role in maintaining the connectedness of
these networks. On the one hand, scale-free SDNs are
quite robust against random removal of a node, since
the chance that hubs are removed at random should be
small. But on the other hand, scale-free SDNs are vul-
nerable to the loss of hubs due to targeted removal of
highly connected critical nodes (hubs). Given the critical
importance of hubs, we present more detailed analysis of
hubs, along with analysis of MDOs and MAOs, in the
next subsection.
Twenty-five of the 32 (80%) SDNs of the HVMCs

were small-world networks (Appendix S1: Table S3). A
small-world network is characterized by the property
that most nodes are not neighbors of one another, yet
most nodes are reachable from every other by a small
number of hops. In Appendix S1: Table S3, whether the
average path length (p) exceeded the ln(Nv) in the net-
work was used to test the small-world network property.
The average path length of the 32-healthy cohort was
approximately 3, whereas the average of ln(Nv) � 4.
Appendix S1: Table S3 also shows that all 32 SDNs

were unstable to linear perturbations. This suggests that
SDN network may be “rewired” significantly under cer-
tain environmental perturbations (host factors), such as
menses possibly.
The fact that a majority of SDNs were scale-free,

small-world networks, and were unstable supports our
hypothesis that most fundamental network properties
are conserved across individuals. That is, the inter-sub-
ject heterogeneities are bounded.

General network motifs without reference to the interac-
tion types and node identities.—We investigated the gen-
eral network motifs without considering the types
(positive vs. negative interactions) or the identities of
special network nodes (MDO, MAO, or hubs). Such
motif finding can be done with standard network analy-
sis software such as iGraph (Appendix S1: Table S4,
Table 2). As before, we fitted Poisson, normal, and
power distributions to the numbers of various motifs
listed in the top section of Appendix S1: Table S4; results
are at the bottom of Appendix S1: Table S4. Once again,
the power distribution fit the distributions of all eightT
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types of motifs, whereas the normal and Poisson distri-
butions did not fit any; inter-subject heterogeneity was
highly asymmetrical and followed a long-tail distribu-
tion. The bottom of Appendix S1: Table S4 and Fig. 4
also give the exponent (K) of the power distribution,
which measures the degree of asymmetry of the inter-
subject heterogeneity of the motifs.
The standard motif detection reveals inter-subject

heterogeneity, but it does not consider the identities of
nodes of the types of their interactions. It offers little
help in identifying which node dominates a network,
which may be of fundamental importance in applica-
tions such as investigating disease etiology. Our new
mean-crowding-based dominance index makes this pos-
sible, but we still need to use the special trio-motif detec-
tion technique (Ma and Ye 2017) discussed below.

Characterizing species dominance networks (SDNs) with
special trio-motifs

The previous motif detection with standard correla-
tion network analysis, which considered neither the

identities nor the interaction types of nodes, offered lim-
ited value for analyzing the species dominance networks
or providing insights into DSRs. We therefore analyzed
special trio motifs by (1) considering the types of inter-
actions (positive vs. negative) and (2) the roles of the spe-
cial network nodes in (MDO, MAO, and hubs). As in
many other studies of biological networks, our analysis
was based on the correlation of a species dominance
index between OTUs. Although correlation is not equiv-
alent to causation, correlative data are still the only
available data type for the human microbiome. Further,
because computational time increased exponentially
with arbitrarily sized motif searching problem, we lim-
ited our search to 3- and 4-node trio motifs. The trios
not only are the most parsimonious motifs but also are
sufficient to reveal important functional insights (Ma
and Ye 2017).
We introduce two major categories of triangle motifs

or trios: three-node “trios without handle” and four-
node “Trios with handle,” where the handle can be any
of the MDO, MAO, or hub. Here, we discuss the MDO-
connected trio motifs (Appendix S1: Table S5, Fig. 5);

Subject ID
and

parameters

Three-motif Three-motif 
type 1 type 2

Four-motif Four-motif Four-motif Four-motif Four-motif Four-motif 
type 1 type 2 type 3 type 4 type 5 type 6

Global
clustering 
 coefficient

3×Column 3
Column 2

408 53 39 11 66 50 3 11 15 2.208

424 2884 4019 4463 5532 21568 342 14837 20653 4.181
Mean 635 576 961 1881 2889 94 1455 1824 3.183
SE 153.1 151.862 341.26 624.136 984.184 29.658 558.958 713.099 0.551
Skewness 2.027 2.572 2.837 3.200 2.631 2.312 3.050 3.605 2.082
Assessing the inter-subject heterogeneity by analyzing the statistical distributions of the motifs
Power law 

(k)
yes
(2.4)

yes
(2.9)

yes
(2)

yes
(2.3)

yes
(2)

yes
(2)

yes
(1.7)

yes
(2.4)

yes
(2.3)

FIG. 4. The mean number of various basic motifs found in the SDNs of the 32-healthy cohort, illustrative results excerpted from
full results in Appendix S1: Table S4.

TABLE 2. Key parameters of the core-periphery, rich-club, and nested structures in the SDNs of the 32-healthy cohort, illustrative
results excerpted from full results in Appendix S1: Table S8.

SDN q C:P

Density matrix P:N
Rich-club

qðkÞ
Nested-ness

S

Mean C/P
dominance

B11 B12 (21) B22 Whole C P C–P C P

408 0.380 0.250 0.607 0.020 0.079 2.81 0.89 8.75 0.67 1.629 0.095 5.99 14.43
424 0.735 0.639 0.717 0.003 0.055 33.89 Inf. 4.61 Inf. 1.178 0.180 1.75 38.91
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mean 0.515 0.593 0.639 0.029 0.078 14.67 N inf.
= 20†

N inf.
= 7†

N inf.
= 14†

1.298 0.160 7.14 24.09

SE 0.031 0.069 0.051 0.004 0.007 2.30 0.060 0.013 1.07 2.02
Skewness �0.055 1.625 �0.244 1.468 1.025 0.984 2.765 0.663 1.16 0.36

†Many SDN exhibited infinite P:N ratio (lack of negative links, N) in their core (C), periphery (P), and core-periphery modules,
marked here are the number of infinite P:N ratios in these modules (e.g., “N.Inf. = 20” indicating that 20 subjects or SDNs exhib-
ited infinite P:N ratio with their core structures). The core appears to be more likely free of negative links, indicating predominantly
cooperative nature in core structure.
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the results of MAO- and hub-connected trio motifs are
presented in Appendix SI. The primary objective was to
reveal the role of MDO in shaping the interactions
within the fundamental functional groups in the SDN.
We report two categories of trios in Fig. 5 and

Appendix S1: Table S5: the left side of each table shows
Trios without handle, which are three-node trios without
links to the external handle (MDO), whereas the right
side of each table shows trios with MDO handle, which
consist of three-node trios with links to the external han-
dle (MDO). In the first category, there are two subtypes:
one with MDO and the other without MDO. The type
of trios without MDO is the same as the three-motif
type 2 in Appendix S1: Table S4 that was detected with
standard motif detection methods and that should be
compared with our trios with MDO. In the second
category, there are three sub-types: single-link MDO,
double-link MDO, and triple-link MDO, with one,
two, and three links to the MDO handle from the trio,
respectively.
We also report trios per node in the section of Trios

without handle because the number of nodes or edges
should influence the number of trios. In the section of
trios with MDO handle, we report the trios per MDO
degree because this parameter should reflect the influ-
ence of MDO connections on the number of trios. The
trios per MDO degree refers to the average trios per
MDO handle to which it is connected, excluding those
trios without a MDO handle.
In summary (Fig. 5, Appendix S1: Table S5):

1) Trios without MDO handle. We only detected two of
the four possible trios without handle: “+ + +”, “+ –
–”. We name the first of these total mutualism, and
the second partial mutualism. That the other two
possible patterns “+ + –” (strongly partial mutual-
ism), “– – –” (total competitive) are missing in the
32-healthy cohort is puzzling. However, this apparent
puzzle is interpretable. A trio system consisting of
three players who try to compete with one another
(or dominate each other in term of our species domi-
nance metric) (– – –) would break down if selection
continued to exert ever-increasing pressure on each.
Similarly, when there are two pairs of cooperative

allies, a third player may be “coerced” to cooperate
with them (+++), rather than to oppose them (+ +
–). In other words, for a third player, its “life pres-
sure” from natural selection should be lower if it sim-
ply acts as a collaborator in the system (+ + +), than
to act as a “competitor” in the system (+ + –).

The ratio of the two observed trio patterns depends
on whether the MDO is part of the trio (Fig. 5 and
Appendix S1: Table S5, left). In the trios with MDO, the
ratio of partial mutualism trios (+ – –) to total mutual-
ism trios (+ + +) is 608:5. However, in trios without
MDO, the ratio is 1312:16480. We hypothesize that, in
trios with MDO, the partial mutualism trio (+ – –) repre-
sents a trio relationship with a cooperative ally (+) col-
lectively opposing a third non-cooperator (– –). In this
trio pattern, the existence of negative feedback (relation-
ship) should limit resource overconsumption, and hence,
the partial mutualism system can be more stable because
of its moderate resource consumption. On the other
hand, in the full mutualism trio (+ + +), resource over-
consumption may occur because of all positive feed-
backs. The potential of resource overconsumption
should be particularly higher when the full mutualism
trio contains MDO. Therefore, in the trios with MDO,
the full mutualism trios can be harder to sustain than
partial-mutualism trios. In contrast, in the trios without
MDO, the potential of resource overconsumption
should be low when the trio species are moderate or low
in resource consumption in the absence of MDO. This
low or moderate resource consumption can allow more
full-mutualism trios to occur when MDO is absent. The
presence or absence of MDO in the trios therefore deter-
mines the “carrying capacity” to accommodate different
levels of the full mutualism with and without MDOs.

2) Trios with MDO handle. Each type (single-link, dou-
ble-link, or triple-link) of Trios with MDO handle
was further classified based on the type of the inter-
action between MDO and the trio base, either posi-
tive (+) or negative (–) (Fig. 5 and Appendix S1:
Table S5, right). The MDO (the handle) almost
always inhibits the trios connected to it, as exhibited
by the “–” (inhibitive) column vs. “+” (facilitative)

Subject ID 
and parameters

Trios without handle Trios with MDO handle
Trios with MDO Trios without MDO Total &

Per Node Num.

+

Single-link MDO Double-link MDO Triple-link MDO Degree 
of 
MDO

Trios 
per
MDO 
degree

+
+
+

+
–
–

∑ +
+
+

+ 
–
–

∑ ∑ Trios
per
node

+ – ∑ +
+

+
–

–
–

∑ +
+
+

+
+
–

+
–
–

–
–
–

∑

408 0 9 9 27 3 30 39 1 0 2 2 0 0 1 1 0 0 0 4 4 7 1
424 0 16 16 3979 24 4003 4019 40 3 9 12 0 11 12 23 0 0 10 10 20 8 7
Mean 0 19 19 515 41 557 576 8 2 31 33 0 4 22 26 0 1 8 26 35 8 7
SE 0.1 4.68 4.72 149.9 16.5 150.6 151.9 1.713 1. 16.4 17.5 0.03 2.31 8.05 10.0 0.03 0.47 3 9 11 1.091 1.669
Skewness 4.1 1.51 1.49 2.744 2.95 2.644 2.572 1.941 4 3.92 3.87 5.39 3.22 2.33 2.54 5.39 2.83 2 2. 2 0.935 1.370
Revealing the inter-subject heterogeneity by analyzing the statistical distributions of the network triangle motifs
Power law 
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FIG. 5. The occurrence of the MDO-triangle motifs (trios) in 32-healthy cohort, illustrative results excerpted from full results in
Appendix S1: Table S5.
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column in the single-link MDO pattern, and similar
prevalence of “– –” in the double-link and “– – –” in
the triple-link patterns (Fig. 5 and Appendix S1:
Table S5). The difference is �15-fold. Similar inhibi-
tive roles of MDO are also prevalent in the “Double-
link MDO” and “Triple-link MDO”. In the former
trios, the ratio of “– –” vs. sum of (“++” and “+ –”) is
�59. In the latter, the ratio of “– – –” vs. sum of
(‘+++’, “++ –”, “+ – –”) is �39, although the inhibi-
tive force seems to decrease in the latter two types.

We hypothesize that the inhibitory role of MDO may
be a signature of healthy vaginal microbial communities,
and this hypothesis also is consistent with the conven-
tional wisdom that dominant species are beneficial for
protecting women from BV disease. In this study, we
quantitatively measured such dominance (inhibition) in
a vaginal community; such quantitative measures are
absent in the previously published literature. Dominance
is only one aspect of BV etiology; which OTU dominates
and to what extent it dominates are important too. We
hypothesize that the inhibitive role of MDO should
play a critical role in preventing potentially harmful
anaerobes from changing the vaginal environment to
BV-prone states. In the third paper in this series (Ma and
Ellison unpublished data), we will test this hypothesis
with a new data set including ABV and BV patients.
If we define the ratio of inhibition to facilitation links

as dominance power, more precisely, the number of trios
with totally inhibitory MDO-trios to the total number
of facilitative (total mutualism in the terminology in [i])
and partially facilitative (partial mutualism in [i]), the
dominance power of MDO-trios is �15, 5, and 3, for the
single-link MDO, double-link MDO and triple-link
MDO, respectively. The decreasing dominance power
series of 15, 5, and 3 is prima faciae reasonable because
it measures the power for MDO to inhibit one, two, or
three species, respectively, i.e., the more species, the more
difficult to inhibit. The dominance power of MDO can
be very useful for investigating the critical role of domi-
nant species such as Lactobacillus inners in inhibiting
some potentially harmful functional groups of anaer-
obes, and their potential implications for BV etiology.
To further investigate the inter-subject heterogeneity

in the MDO-trios motifs, we also fitted the numbers of
trios to Poisson, normal, and power distributions
(Fig. 5, Appendix S1: Table S5). Only the power distri-
bution fit all the trio patterns, whereas both Poisson dis-
tribution and normal distribution failed to fit in most
cases. The ubiquitous success of the power distribution
suggests that the inter-subject heterogeneity in these trio
patterns is not symmetrical (as would be implied by the
normal distribution), but rather is highly asymmetrical
and follows a long-tail distribution. The bottom of
Fig. 5 and Appendix S1: Table S5 also gives the expo-
nent (in parentheses) of the power distribution, which
measures the degree of asymmetry of the inter-subject
heterogeneities of those trio patterns.

3) MAO- and hub-connected trios. We also searched for
the trio motif patterns connected with MAO (most
abundant OTU), and the trios connected with hubs,
respectively (Appendix S1: Tables S6 and S7). In gen-
eral, the results of trio analysis with MAO were simi-
lar to those with MDO as, in many cases, MAO and
MDO were the same OTU in some subjects. This
appears to suggest that either MDO or MAO can be
utilized for motif analysis. However, there are cases
where MDO and MAO are different. One advantage
of using MDO is that it is based on the mean-crowd-
ing-based dominance index that is applicable at both
species and community levels.

In addition, we expect that the primary role of a hub
is connection, linking nodes together, rather than domi-
nating other nodes or being dominated by its neighbors.
In other words, a hub should be “easy” rather than
“hard” with which to interact and to connect more nodes
(i.e., to become a hub). Natural selection should favor
this strategy. We conjecture that the “ally (clique) of
hubs” in the SDN may have important functional impli-
cations. From general principles of complex networks,
we may conclude that the network with larger hub cli-
ques (i.e., cliques of the hubs with more nodes) should
be more robust than those with smaller hub cliques. For
example, SDN-424 has 12 hubs that form a clique of 12
hub nodes, which are displayed as 12 mutually con-
nected hexagons in the network (Fig. 2).

Core-periphery, rich-club, and nestedness analyses

Although standard correlation network analysis pro-
vided limited insights into the SDN, the analysis of trio
motifs was a powerful tool to detect important local
topological structures. In this study, trio motif analysis
showed extremely high inter-subject heterogeneity: it
also can be used to identify BV-associated bacteria or
trios of anaerobes and sheds important light on the
investigation of BV etiology (Ma and Ellison unpub-
lished data). In this and next section, we focus on global
topological structures, including core-periphery, rich-
club, nestedness, and skeleton, respectively, all of which
have significant effects on network stability. The first
three analyses (core-periphery, rich-club, and nested-
ness) are measured for network nodes, whereas the last
analysis (the skeleton) is measured for network links.
Together, the CNS (core, nestedness, and skeleton) anal-
yses not only complement the standard network analysis
and our trio-motif technique, but also provide an effec-
tive approach to revealing the global topological struc-
tures that shape the stability of underlying network
(community). Finally, we investigate the dynamics (sta-
bility) of these global topological structures by integrat-
ing SDN analysis with phenomenological modeling.
Table 2 (illustrative results) and Appendix S1:

Table S8 (full results) show key parameters from core-
periphery, rich-club, and nestedness analyses for each of
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the SDNs in the 32-healthy cohort. The parameter q
(2nd column) shows that the core-periphery structure is
rather strong, except for subject 444 (q = 0.097), with an
average q = 0.52 across the 32 subjects. The average
ratio of cores to periphery nodes (C:P; third column) is
0.592, indicating that, on average, the number of nodes
in the core is � 40% less than in the periphery. In the
density matrix of core-periphery (columns 4–6), blocks
12 and 21 are equal, as they represent the interaction
density between core and periphery nodes, or vice versa.
The average density of core-core is 0.639 vs. 0.029 and
0.078 of core-periphery and periphery-periphery, respec-
tively, indicating far stronger interconnections within the
core.
The next four columns (Column 7–10) report the P/N

ratio—the number of positive links (correlations) to neg-
ative links (correlations) within the whole network, core,
periphery, and core-periphery, respectively. A finding
from the P/N ratios is that the core has fewer negative
interactions than the periphery, suggesting that the core
is a more cooperative structure. In 20 out of the 32
SDNs in the healthy-cohort study, negative links were
missing from the core. The numbers of missing links in
the periphery and core-periphery are 7 and 14, respec-
tively. This difference among the three network struc-
tures is consistent with the nature of human
microbiomes, which are predominantly mutualistic sys-
tems. Compared with periphery and core-periphery
structures, the level of mutualism within core structures
seems to be stronger.
For most of the 32 SDNs, q(k) > 1 (column 11),

meaning that the rich-club phenomenon is ubiquitous.
The SDN of subject 435 has the highest rich-club index
(2.749), whereas that of subject 429 has the lowest
(0.956), which is still close to 1, suggesting that rich
clubs predominate. The last column, nestedness (S),
ranges from 0.044 to 0.321 with an average of 0.160 (lit-
tle nesting observed). The index S measures the relative
level of nestedness with a range between 0 to 1; the larger
the S, and the higher the nestedness (S = 1 for perfectly
nested).
Appendix S1: Table S9 also gives the result of fitting

normal and power distributions to these network prop-
erties. The near ubiquitously successful fitting of the
power distribution to all parameters tested suggests that
these parameters are highly heterogeneous and asym-
metrical among individuals.
Among individuals, members of the core were more

variable than those of the periphery among individuals,
as illustrated by the OTU frequency distribution in the
core and periphery, respectively (see Data S1: OTU-Fre-
quency-A.csv & OTU-Frequency-B.csv). For example,
the most widely distributed periphery OTU occurred in
24 subjects, but its counterpart in the core occurred in
only 11 subjects. The four indicator species of Ravel
et al.’s (2011) community state types (CSTs) of the
HVMC, Lactobacillus inners, Lactobacillus jensenii, Lac-
tobacillus gasseri, and Lactobacillus crispatus, occurred

more frequently in the periphery. In Figs. 2 and 3, as
well as Appendix S1: Figs. S1–S32, the core and periph-
ery nodes are colored in dark blue and light blue, respec-
tively.

High salience skeleton (HSS) network analysis

Because it is based on edges, the HSS is often utilized
to detect “highways” in a network, rather than the nodes
identified as hubs. We used the inverse of the correlation
coefficient of species dominance to construct a weighted
network in which the HSS represents species interactions
(correlations) that play critical roles (both direct and
indirect interactions) in the overall SDN. A link is
assigned high salience not only because itself has suffi-
ciently high weight, but also because it is an important
route of the global highway network.
Table 3 (illustrative results) and Appendix S1:

Table S10 (full results) lists the HSS statistics, including
percentage of links with salience >0 (links%, i.e., the per-
centage of links from the full network [weighted net-
work] that are preserved in the HSS), and the maximum,
mean, standard error, skewness, and kurtosis of the sal-
ience in each SDN. On average, approximately one-third
of the links are salient skeletons (Table 3, Appendix S1:
Table S10). The assortativity (rHSS) is the Pearson’s cor-
relation coefficient of degree between pairs of linked
nodes, and its mostly negative but rather small absolute
values suggest that the HSS network is mostly neutral or
slightly disassortative. Assortativity also is related to net-
work resilience; Newman (2002) found through both
analytic and simulation studies that disassocitative net-
works tend to be less resilient because network is less
easily percolated in such networks. The last two columns
in Fig. 5 list the P value from fitting power distributions
to salience values for each SDN, and the parameter k of
the power distribution. The salience in most (26 out of
32) SDNs followed a highly skewed power distribution,
which was also supported by the rather large skewness
and kurtosis. Both skewness (the third standardized
moment) and kurtosis (the fourth standardized moment)
are descriptors for the shape of probability distribution,
measuring “tailedness” of the distribution, while a higher
kurtosis is the result of outliers, as opposed to frequent
modestly sized deviations.
We also analyzed the inter-subject heterogeneity of

HSS parameters by fitting both normal and power dis-
tributions (Appendix S1: Table S11). All HSS parame-
ters were successfully fitted to the power distribution,
whereas the normal distribution failed to fit any of the
parameters other than skewness and kurtosis. Thus, as
were the parameters of core networks, the parameters of
HSS network were rather heterogeneous and asymmetri-
cal among individuals.
Appendix S1: Table S12 gives the salience values cor-

responding to certain percentiles in each SDN, and the
table also shows that in most SDNs, >50% links have
zero salience. Table S13 displays the distribution of
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salience over various intervals of the salience in the
SDNs of the 32-healthy cohort. Supplementary Data S2
(Top 50 skeleton links.csv and Full skeleton links.csv)
gives skeleton salience values of each SDN of the 32
SDNs, in descending order or salience (top 50 skeleton
links.csv and full skeleton links.csv list in Data S2). We
failed to detect any skeleton with salience >0 and shared
by the SDNs of all 32 individuals, which again demon-
strated the extreme inter-subject heterogeneity in SDNs
(Appendix S1: Tables S14, S15). That is, the highway
structure of SDNs differed among individuals. In Figs. 2
and 3, and Appendix S1: Figs. S1–S32, the HSSs were
drawn with heavily thickened edges. Strictly speaking,
skeleton links cannot be identified fully in the graphs of
SDNs we drew in this article, because they can only be
fully identified in weighted SDNs or the skeleton net-
works, both of which were indeed constructed in this
study (to compute those HSS parameters in Table 3 and
Appendix S1: S11–S15) but not drawn to save page
space and also improve clarity. That is, in Figs. 2 and 3,
and Appendix S1: Figs. S1–S32, the network links we
marked (with thickened lines) are but a subset of the
HSSs. The full list of HSSs is given in Full skeleton
links.csv in Data S2.

Synthesis of SDN and phenomenological modeling of
DSR

The primary objective of the synthesis here is to ask
which network structure, the core or periphery, is more
stable, and which one may exert more control or regula-
tion over the stability of the whole SDN. Previously, we
used data-driven phenomenological modeling (Ma and
Ellison 2017) to investigate the DSR at the whole com-
munity level in each of the 32 SDNs. Here, we integrated
that modeling approach with the SDN analysis pre-
sented herein to investigate the DSR of core and periph-
ery structure in each SDN (community). The
fundamental patterns we expected to obtain from the
phenomenological modeling, whether at the coarser
scale of the entire community or the finer scale of the
core-periphery, were the three dominance–stability
dependence relationships (diversity–stability dependence
relationships in Ma and Ellison [2017]): dominance-
dependent stability (DDS), dominance-inversely-

dependent stability (DIDS), and dominance-indepen-
dent stability (DID). All three types of relationships may
occur in a single community, and indeed they often alter-
nate with one another. Furthermore, the six phenomeno-
logical models are not necessarily exclusive. Rather,
some communities may be fit equally well by multiple
models because they can describe the same or similar
trends over the range of the observed data. We thus pur-
sued a compromise between realism and simplicity, and
assigned a “best” model for each community based on a
set of rules that considered the statistical appropriate-
ness of model fitting (R2, standard error of parameter,
model parsimony) and biological interpretations.
Tables 4 and 5 and Appendix S1: Table S16 (full

results) summarize the description of the DSR for the
core-periphery of each community (SDN), key model
parameters for judging the DSR types, and the R2, based
on the detailed modeling results presented in
Appendix S1: Tables S15-1–S15-6. The linear, quadratic,
and quadratic-quadratic (Q-Q) models were the most
widely applicable for the core structure, with 6, 7, and 6
SDNs, respectively, fitted successfully. The linear, quad-
ratic, and linear-quadratic (L-Q) models were the best
for the periphery structure, with 8, 12, and 7 SDNs,
respectively, fitted successfully. The DSRs of the core
and periphery of the same SDN may be the same type,
but were more likely to be different types. For example,
both the core and periphery of subject 400 had a DSR
described by a parabola (quadratic model). Since the
parabola opens upward (c < 0), the DSR is DDS with a
possible stable equilibrium at the vertex of the parabola.
The core of subject 446 exhibited logistic stability, but its
periphery was linearly stable. In addition, the DSRs of
core-periphery structure of an SDN may differ from that
of the whole SDN (Ma and Ellison 2017). For example,
the stability model of entire SDN of subject 400 is logis-
tic (Ma and Ellison 2017), rather than the quadratic of
the core-periphery. In eight cases, we failed to find
appropriate models for their core-periphery structures
(Appendix S1: Table S14).
Results from the integrated SDN analysis and phe-

nomenological modeling complemented the insights
from SDN analysis by further revealing the dynamics
(i.e., dominance-stability dependence types) of core-per-
iphery structures (i.e., network components identified by

TABLE 3. Key statistical properties of the high-salience skeletons (HSS) in the SDNs of 32-healthy cohort, illustrative results
excerpted from full results in Appendix S1: Table S10.

Subject ID and parameters

Statistics of HSS
Assortativity

Power law

Links (%) Maximum Mean SE Skewness Kurtosis rHSS P K

408 32.1 0.782 0.036 0.096 3.989 18.271 �0.019 0.435 4.763
424 23.7 0.967 0.016 0.061 7.153 68.196 �0.008 0.923 5.082
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mean 28.178 0.921 0.031 0.086 5.235 37.358 �0.016 0.441 3.743
SE 2.193 0.015 0.002 0.005 0.171 2.694 0.001 0.058 0.229
Skewness 0.910 �1.305 0.886 0.413 0.248 0.344 �0.889 0.169 1.319
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the SDN analysis). Taken together, these results help to
identify which of the network structures (core or periph-
ery) is more stable, and which one exerts more control
(regulation) of the stability of whole SDN. For example,
both core and periphery of the SDN of subject 400 have
the same dominance-stability relationship, but the over-
all SDN exhibits a different type. This suggests that net-
work stability of this SDN is likely determined by the
interaction between the core and periphery, rather than
by either of them alone.

SUMMARY AND PERSPECTIVES

SDN analysis with standard correlation network analysis

The SDN for each HVMC captures the community’s
species dominance dynamics in a multidimensional
space, and the network properties encapsulate the com-
munity’s DSR in a vector of network parameters. Sum-
marizing the information from basic network properties,
we reiterate three exemplary insights we obtained previ-
ously. First, SDNs are highly heterogeneous among indi-
viduals, but the inter-subject heterogeneities are

bounded: some network properties are highly conserved
(constant) but others are highly variable among individ-
uals or among various groups (Ma and Ellison unpub-
lished data). We use an analogy with inheritance vs.
variation in genetics to describe the phenomenon of
“bounded heterogeneity,” i.e., the balance between
homogeneity (conservation) and heterogeneity (varia-
tion). Second, most of the inter-subject heterogeneities
among individual subjects follow a power distribution,
which is asymmetrical and long tailed, and for which the
mean is a poor representation of most individuals in a
cohort. Third, the adoption of species dominance index,
rather than species abundance, in the SDNs is advanta-
geous in distinguishing between healthy and diseased
microbiomes (Ma and Ellison unpublished data).
The lack of difference in some network properties sug-

gests that they are highly robust and conserved across
individuals. We hypothesized that, from an evolutionary
perspective, inter-subject heterogeneity is similar to vari-
ation, and the lack of difference among groups or
cohorts is similar to inheritance in genetics. In other
words, evolution of the human metagenome is like evo-
lution of the human genome; both variation and

TABLE 4. An exemplary summary of the stability-model selection from six candidate models (linear, quadratic, reciprocal, logistic,
liner-quadratic, quadratic-quadratic models) fitted to each subject in the 32-healthy cohort, illustrative results excerpted from full
results in Appendix S1: Table S14.

Networks Model Dominance–stability relationship R (linear), R2 (other models)

408
Core Linear (b < 0) globally DDS, but the mechanism may be complex locally 0.645
Periphery Q (c > 0) DDS followed by a possible stable equilibrium and DIDS 0.320

424
Core Q (c > 0] DDS followed by a possible stable equilibrium and DIDS 0.421
Periphery Linear (b < 0) globally DDS, but the mechanism may be complex locally 0.709

. . . . . . . . . . . .

Mean
Core 0.597
Periphery 0.657

TABLE 5. A summary of the stability-model selection from six candidate models (linear, quadratic, reciprocal, logistic, liner-
quadratic, quadratic-quadratic models) fitted to each subject in the 32-healthy cohort, illustrative results excerpted from full
results in Appendix S1: Table S14.

Model Whole† Core Periphery Stability implications

Linear 14 6 8 Globally DDS, but the mechanism may be complex locally.
Quadratic 0 7 12 DDS followed by a possible stable equilibrium and DIDS.
Reciprocal 0 2 1 DDS with an asymptotic equilibrium line when Dc?∞
Logistic 3 2 0 DDS with an asymptotic equilibrium line when Dc?∞
Logistic-Sine 2 0 0 DDS and DIS alternate periodically
Linear-Quadratic 10 1 7 DIDS followed by DDS, a possible stable equilibrium and

another piece of DIDS
Quadratic-Quadratic 3 6 4 DIDS and DDS alternate, two parabolas connected at

Dc = d � 2, the equilibriums are uncertain (stable or unstable)
NA (failed to fit) 0 8 0

Note: Dc and d are defined in Box 1.
†The counting of fitted models for the whole community was from Ma and Ellison (unpublished data), where the whole commu-

nity level modeling was presented to demonstrate the utility of our dominance metric at the community level.
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inheritance are necessary for the evolution and adapta-
tion to occur. Furthermore, the evolutions of both gen-
ome and metagenome are likely intermingled with
complex interactions.
We also tested the applicability of two of the most

extensively studied complex network models, scale-free
(Barabasi and Albert 1999) and small-world networks
(Watts and Strogatz 1998, Gray et al. 2009), to the
SDNs of HVMCs. The good fit of a scale-free model is
consistent with the biological reality of the HVMC; the
community is robust to random losses of OTUs in the
community, but vulnerable to a targeted loss of, e.g., an
MDO or hub. The small-world network property indi-
cates that the SDNs are tightly connected and the aver-
age path distances between nodes are rather small (<3
nodes or species). A third property we tested is the linear
stability, which suggests that SDN may be rewired
(unstable) under certain environmental perturbations,
such as woman’s menses.

Special trio motifs

Methodologically, our SDN analysis introduces two
innovations. The first is the use of species dominance
index, rather than population abundance, and the sec-
ond is the special trio-motif detection techniques. The
first enables us to capture the dynamical co-dominance
relationships between species (OTUs) in a multi-dimen-
sional setting. The second allows us to answer the ques-
tion of which OTU dominates, its identity (MDO,
MAO, hub), and interaction types (mutualism or inhibi-
tive). The significance of the dominance-based SDN net-
work analysis, especially with special trio-motif
detection, lies in the fact that what matters most in prac-
tice (such as the clinical diagnosis and treatment of BV)
may be more about who dominates and less about the
degree of dominance at the community level because
there may be multiple trajectories that can lead to the
observed dominance (diversity) or stability level. The
functional redundancy can be achieved by different
guilds of species, such as the trios of anaerobes. Further-
more, it may be necessary to capture the behaviors of
species that are not in dominant groups. For example,
it has been conjectured that BV may be associated with
the resurgence or invasion by normally less abundant
species.
Network motifs are analogous to guilds or functional

groups in ecological communities. In the trio motif with-
out MDO handle, we only detected two kinds of trios
(+ + +: total mutualism or TM) and (+ – –: partial mutu-
alism or PM); the other two combinations (– – –) and
(+ + –) were missing. The ratio of TM:PM was opposite
in trios with and without MDOs, and the existence of
MDO in the trios led to a 1000-fold difference TM/PM.
We propose a resource-limited mutualism hypothesis to
explain this interesting phenomenon. That is, when the
MDO (possibly a resource sink) exists in a trio, the com-
munity can support few total mutualism trios because of

limited resources. In contrast, when there is no MDO
member in the trio, more mutualism trios can thrive
because of overall moderate or small resource consump-
tions by non-MDO species. As discussed by Ma and
Ellison (unpublished data), the extremely rare total
mutualism trios with MDO members are often associ-
ated with BV. They have the potential to become
biomarkers for personalized diagnosis of BV.
In the trio with MDO handle, we found that the

MDO handle, whether it connected to a trio with one
(single-link MDO), two (double-link MDO), or three
links (triple-link MDO), predominantly played an inhi-
bitory role to its connected trio. The decreasing domi-
nance power (inhibitory links/facilitative links) of MDO,
double-link MDO, and triple-link MDO trios, reflects
the reality that inhibiting more species is more difficult.
The dominance power of an MDO can be used to assess
the critical role of dominant species such as L. inners in
inhibiting some potentially harmful functional groups of
anaerobes, and to study their implications to BV etiology
(Ma and Ellison unpublished data).

Core-periphery, rich-club, nested network structures, and
high skeleton networks

The focus of special trio motif analysis is local, but the
core-periphery (including nestedness, and rich-club)
analysis reveals global characteristics of network struc-
ture and stability. In our core-periphery network analysis
of the HVMC, approximately one-third of nodes consti-
tute the core, and the remaining constitutes the periph-
ery. Nevertheless, the parameters of core-periphery
structures are highly heterogeneous and skewed among
individuals. The members of the core also are more vari-
able than those of the periphery among individuals.
Interestingly, the four indicator species of community

state types (CSTs; Ravel et al. 2011, Ma and Li 2017), L.
inners, L. jensenii, L. gasseri, and L. crispatus, occurred
more frequently in the periphery than in the core. In
addition, nodes in the core are more cooperative than
those in periphery; more negative interactions (small P:
N ratios) were identified in the periphery of the SDNs.
We hypothesize that interactions in the periphery are
more dynamic than those involving the dominant species
(e.g., the indicator species) in the community. However,
whether the core or periphery is more stable depends on
the type of dominance-stability dependence relationship.
Although the core-periphery, rich-club, and nested-

ness reveal the global topological and stability character-
istics of SDNs, the analysis of high salience skeleton
network accomplishes a similar mission but from a con-
trastingly different perspective, the link perspective, or
detecting “highways” in the SDN. It was shown that on
average approximately one-third of the edges in the
SDNs are high salience skeletons (HSSs), and they con-
stitute the highways in the SDNs. However, the HSS is
highly heterogeneous among individual SDNs and fol-
lows highly skewed, long-tail power distribution.
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Inter-subject heterogeneities in SDN properties

The nearly ubiquitous success of the power-law distri-
bution in fitting to the various SDN properties indicates
that the inter-subject heterogeneity in the healthy cohort
is asymmetrical and heterogeneous, and there is not an
average Joe that can represent a majority of individuals
in the cohort. A biomedical implication for the micro-
biome-associated diseases such as BV is that personal-
ized medicine would be necessary because of the
frequently extreme heterogeneities among individuals
(Ma et al. 2011). The extreme heterogeneities or individ-
ualities appear to be a characteristic of the medical ecol-
ogy of human microbiome-associated diseases such as
BV. Obviously, this characteristic also allowed us to
more thoroughly demonstrate and test our proposed
SDN analysis framework.

Synthesis of dominance dynamics modeling and SDN
analysis

Our framework consists of SDN analysis, phe-
nomenological modeling of dominance–stability dynam-
ics, and their integrations (Fig. 1). We demonstrated a
synthesis at the community level DSR in part one of this
series (Ma and Ellison 2017). Here we demonstrated the
synthesis for investigating the dynamics of core-periph-
ery structures. This synthesis aimed to address a funda-
mental question, i.e., which structure, core or periphery,
is more stable, and which structure is likely to control
the community stability to a higher extent. The answer is
that it depends on the types of dominance–stability
dependence types (i.e., DDS, DIDS, and DIS, and more
likely their alternations even in the same community).
The synthesis may be conducted in other junctions,

such as analyzing the dynamics of high salience skele-
tons, as well as incorporating the effects of meta-factors
of important biomedical significance, as demonstrated
in part three of this series. Finally, it should be pointed
out that, although the HVM time-series data sets of the
32-healthy cohort we utilized are sufficiently long for
demonstrating the SDN analysis (the primary objective
of this study), the data sets are far from ideal for con-
ducting the synthesis. Furthermore, rigorous tests
against null models or control treatments are also miss-
ing in our synthesis.
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