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Abstract. Dominance and evenness can be two sides of the same coin or opposite ends of a spectrum.
Although evenness and diversity are community-level concepts, dominance can be applied at both com-
munity and species scales. Nevertheless, there is not a metric applicable at both these scales that are unified
with a single mathematical framework in the existing literature. Here, by extending Lloyd’s meaning
crowding concept from the population to community scale, we propose a dominance concept and associ-
ated metrics that are applicable at both scales. Such metrics can act as proxies for diversity in diversity—
stability and diversity—ecosystem service analyses or for population abundance in species interaction
network analysis and population stability analysis, with advantages in cross-scale and unified analyses.
Our concept of dominance includes three measures (metrics) that link communities and species. The met-
rics have the same mathematical form, but different interpretations at the community and species scales.
Our community-level metric is a function of Simpson’s (1949) diversity index, for which we present a rigor-
ous mathematical proof. Our species-level metrics quantify the difference between community dominance
and the dominance of a virtual community whose mean population size, per species, equals the population
size of the focal species. We demonstrate the use of these metrics using data from a longitudinal study of
the human vaginal microbiome and provide new insights relevant for microbiome stability and disease eti-
ology at the community scale. The new metrics also can be used for species dominance network (SDN)
analysis at the species scale. Since the species dominance is a function of both species (population)
abundance and community dominance, it has an advantage of capturing both community-scale global and
species-scale local information, which becomes even more evident when it is used to construct SDNs.
These results demonstrate the significance and applications of our unified dominance concept and metrics.
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INTRODUCTION as two sides of the same coin. Evenness refers to
the similarity of abundances of co-occurring spe-

In community ecology, dominance and even- cies, whereas dominance of one or a few species is
ness (one form of diversity) often are considered indicated by unevenness in species abundances
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(Magurran 2004). Both evenness and dominance
as normally measured and used by ecologists are
properties of the entire community (Magurran
2004, Hooper et al. 2005, Hillebrand et al. 2008).
The relationship between community-level diver-
sity and community stability or ecosystem func-
tions and services is of central importance for
both theoretical and applied ecology (Hooper
et al. 2005, Thibaut and Connolly 2013, Wang and
Loreau 2016), but has been approached largely for
organisms we can easily see, monitor, and mea-
sure. Sequence-based metagenomics are revealing
high levels of microbial diversity, but the stability
of microbial communities remains poorly under-
stood (Lozupone et al. 2012, Moya and Ferrer
2016, Oh et al. 2016). Similarly, ecosystem func-
tions that microbes provide are just beginning to
be defined, explored, and related to diversity
(Sechi et al. 2017, Young 2017).

Communities dominated by a single species
(i.e., those with low evenness) tend to have either
lower stability or reduced productivity (Rodri-
guez et al. 2015). However, one could argue that
dominance also can be a property of individual
species (Crase et al. 2015), with dominant species
in a community being assigned large values of a
dominance index and subordinate species being
assigned smaller (or negative) values. Alterna-
tively, dominance may reflect the contribution of
a dominant species to its community. Either way,
we suggest that understanding dominance at
both the community and species levels will pro-
vide new insights into how diversity affects sta-
bility and ecosystem functioning.

Here, we introduce and develop a new frame-
work for quantifying dominance that includes
three dominance metrics for describing commu-
nities of organisms and the species that make up
the communities. Our metrics are based on
Lloyd’s index of mean crowding (Lloyd 1967),
but we extend it to include both species and com-
munities in a single framework. Our approach is
applicable to both communities and populations
of individual species, which is a property that, to
the best of our knowledge, is not a characteristic
of other dominance or diversity metrics used by
ecologists. This approach is applicable to any
ecological community, but we illustrate it
through an exploration of the diversity—stability
relationship in the human vaginal microbial com-
munity (HVMC). Our exploration also generates

ECOSPHERE % www.esajournals.org

MA AND ELLISON

new insights into the etiology of bacterial
vaginosis (BV).

BACKGROUND AND MOTIVATION

Lloyd (1967) developed his index of mean
crowding (m”) for measuring aggregation in pop-
ulations of animals. Although Lloyd (1967) was
inspired by neighborhood- or distance-based
approaches for investigating tree competition
and spatial point patterns in forests, he recog-
nized that it was infeasible to measure distances
between individuals of animals that move.
Instead, Lloyd defined m* based on the mean
population density per quadrat and its corre-
sponding variance:

2
c

w1 1

m m+m D

where m is mean population density (abun-
dance) across 1 spatial point samples and o is
its corresponding variance.

This measure of mean crowding not only
included an estimate of neighborhood informa-
tion, but also overcame a critical issue associated
with abundance data: its non-normality. Iwao
(1968) extended Lloyd (1967) by discovering a
linear relationship between m* and mean popula-
tion density (m) and applied the m*—m model
(m* = o + Pm) to assess insect population aggre-
gation and their patterns of spatial distribution.
The work of Iwao and his colleagues (Iwao 1968,
Kuno 1991) and Taylor’s variance-mean (V-m)
power relationship (V = am"”) identified by Taylor
(1961, 1984, 1986) remain the two primary
approaches for describing spatial patterns of
many animal populations (Ma 2013, 2015, Cohen
and Xu 2015).

Discussions about the relative merits of the
m*~m and V-m models have focused on two
issues: which model has more general applicabil-
ity to field data; and which model’s parameters
(o, B or a, b) have better statistical properties and
more reasonable biological interpretations (Iwao
1968, Taylor 1984, 1986, Kuno 1991). There are
two points of agreement in these discussions.
First, both models are better than an index of
aggregation (dispersion) (e.g., V/m) or fitting fre-
quency distributions (e.g., negative binomial) to
abundance data. Second, the validity of either
model depends on a third parameter, m,, the
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population aggregation critical density (PACD),
and the two models are nearly equivalent in
terms of the PACD (Ma 1989, 1991, 2015).

We also note that there are obvious analogies
between measures of aggregation of individuals
within a population and measures of diversity
(unevenness) of a community, and between
fitting frequency distributions to individual
abundances within a population and the species
abundance distribution used by community ecol-
ogists. Ma (20124, 2015) extended Taylor’s V-m
power law model to the community level. Zhang
et al. (2014) and Oh et al. (2016) applied this
extended power law to assess spatial heterogene-
ity in the human gut microbiome and the tempo-
ral stability of the human skin microbiome. In
this paper, we describe how to extend meaning
crowding to the community level for analyzing
dominance. This extension has the additional
advantage, unavailable with the V-m model, of
being applicable to both community dominance
and species dominance. Furthermore, it has a uni-
fied mathematical framework.

APPROACH AND ORGANIZATION OF THE PAPER

We extend the mean crowding concept from
the scale of populations of individuals of a single
species to encompass assemblages of species
(communities) by defining three new dominance
metrics: community dominance (D), species domi-
nance (Ds), and species dominance distance (Dsq).
(We note that in the community ecology litera-
ture, index, measures, and metrics have been
used interchangeably. Here, we use metric in a
general sense [as a “type”], as opposed to index,
which is an “instance” of a metric.) With respect
to a microbiome, we think that dominance is
more meaningful than other measures of diver-
sity for two reasons. First, D. is a simple linear
function of Simpson’s diversity index (see mathe-
matical proof in Appendix S1), but it is easier to
examine dominance and its relationship to stabil-
ity in microbial assemblages like the HVMC.

Second and more generally, the concept of dom-
inance can be applied to both populations of indi-
vidual species and multi-species communities.
For example, we commonly refer to communities
with high species diversity. However, it often mat-
ters greatly which species dominates an assem-
blage (Ellison et al. 2005, Ma et al. 2011, Valls
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et al. 2015), and its identity refers to an individual
species or population. Except in population genet-
ics, when we are discussing genetic diversity
within a population (Romiguier et al. 2014), we
rarely refer to high-diversity species. To the best
of our knowledge, there is not an existing index of
dominance or diversity that can be applied simul-
taneously to species and assemblages.

In the following sections, we first sketch how
to extend Lloyd’s (1967) index of mean crowding
to both species and community scales (complete
technical details and mathematical proofs are
provided in Appendix S1). We then use a phe-
nomenological modeling approach to domi-
nance-stability relationships, focusing on five
linear and non-linear diversity—stability models
(linear, logistic, sine-logistic, linear—quadratic,
and quadratic—quadratic). This approach reveals
three fundamental components of the diversity—
stability relationship: dominance-dependent sta-
bility (DDS), dominance-inversely-dependent
stability (DID), and dominance-independent sta-
bility (DIS). Our modeling approach also distin-
guishes between stability and resilience; the
latter is defined as the derivative of the former
and characterizes the rate of changes in stability,
analogously to the relationship between accelera-
tion and velocity. Last, the models illustrate the
(in)stability of the community equilibrium in
HVMC.

THE DoMINANCE CONCEPT AND ITs METRICS

Community and species dominance based on
mean crowding

Lloyd (1967) defined aggregation or dispersion
of an animal population, m*, as “the mean num-
ber per individual of other individuals in the
same quadrat” (Lloyd 1967) or “the average
number of other individuals per quadrat, per
individual” (ISI 1986). As mentioned in
Background and Motivation, m* includes some
neighborhood information—that is, density of
individuals in a given area—but does so without
measuring distances between individuals in the
neighborhood. Such measurements generally are
infeasible for free-living animals in a relatively
continuous habitat (Lloyd 1967). The measure-
ment of mean crowding also should be applica-
ble to free-moving bacterial species in a largely
continuous habitat such as the HVMC.

*
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Another motivation for using mean crowding
(or the V—m power law model) was to avoid esti-
mating an arithmetic mean from the commonly
encountered, highly skewed, long-tailed distribu-
tion of abundances of organisms that are either
aggregated or patchily distributed (Ma 2015).
Measures of aggregation, dispersion, patchiness,
heterogeneity, skewness, evenness, and domi-
nance often are used to characterize the abun-
dance distribution of biological species; their
temporal variability often is associated with the
(in)stability of populations. Because aggregation
essentially is inversely related to evenness,
extending mean crowding to dominance (i.e.,
unevenness) should be straightforward.

Mean crowding of a community and community
dominance.—We start by defining the mean crowd-
ing of a community using the same mathematical
structure as that for mean crowding of a popula-
tion (Eq. 1):

2

mt = me + Z— —1 2)
where m, = the mean abundance per species of
all species in the community and o2 is its vari-
ance. Note that m. is computed across species,
not individuals of a single species, as in Eq. 1. By
analogy with m*, m? is a measure of community
unevenness or dominance, and we interpret m
as the average abundance of other species per
individual species. Essentially, we treat each spe-
cies as a virtual quadrat (sensu Lloyd 1967); the
quadrat is the sampling unit for m* (Eq. 1), and
the species is the sampling unit for m} (Eq. 2).

Since there are many species in the community,
it makes sense to divide m by the mean abun-
dance of all the species in the community, m..
This standardized value of m we call community
dominance, which we abbreviate as D_:

* 2 1
De="Te—142 3)
Me m2  me

and which is the direct counterpart of popula-
tion-level patchiness or heterogeneity (aggrega-
tion) of population distribution (Lloyd 1967,
Iwao 1968). We interpret D. as unevenness in a
community and express it in terms of the devia-
tion from the average species. Analogously with
aggregation of individuals in a population, D,
also can be interpreted as the “center of gravity”
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of a community, measuring how crowded the
individuals of the average species are crowded
by the individuals of its neighbor species.

We also observe that D, is precisely linearly
related to Simpson’s (1949) diversity index D:

4)

where 1 is the number of species in the commu-
nity, and m;, is the mean abundance (size) of the
ith species (see mathematical proof in Appen-
dix S1, where we also examine the relationship
between D, and two other familiar measures of
community dominance or diversity: Shannon—
Weiner’s H' and the Berger—Parker index of dom-
inance, Berger and Parker 1970). We fit a simple
linear model between D, and the existing domi-
nance indexes (Fig. 1; Appendix S1: Table S1).
The dominance of individual species.—We use D,
to define a dominance index for each species in
the community. We define the species dominance
distance of an individual species s as follows:

2
m:  m c 1
C c c
Dyg=-Ct=—°< - )
Mg ms menig ms

which defines a dominance index that “dis-
tributes” the mean community crowdedness (1)
over a specific species (focal species) () rather
than over an average species (1.). Dsq ranges from
0 to +oo. Although the behavior of Dyy seems
counterintuitive—dominant species may have
large values of mg and hence small values of Dsq—
its interpretation is intuitive if we imagine commu-
nity as a sphere with a center of gravity = D.. The
dominant species (in terms of abundances) are
arrayed closer to the center of this metaphorical
sphere than are the rare (“satellite”) species, which
should be farther from the center and have larger
value of the species dominance distance.

We define species dominance (range = —0 to
D.) as the difference between community domi-
nance (D.) and species dominance distance (Dsq):

*

m: m
c c
Ds = Dc - Dsd = -
me Mg
2 2 (6)
me O G Me — Mg
—1-Tey 2 Ze [ TeT
ms  m: mems Mg

Dominant species have larger values of Dy than
other species, which accords with our intuition.
Two considerations led us to this definition of
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Fig. 1. Associations between our community dominance metric (D.) and other existing diversity indexes. See
Appendix S1 for fitted parameters and additional discussion.

species dominance. First, we used the difference
between community dominance and species dom-
inance distance rather than the inverse of species
dominance distance, to avoid a non-linear trans-
formation. Second, D, turns out to be more suit-
able than Dgy for analyzing dominance by
individual species with an approach to analyzing
species dominance networks (SDNs) (Z. Ma and
A. M. Ellison, unpublished manuscript).

Phenomenological modeling of community
dominance (diversity)-stability relationships

We start by defining community dominance sta-
bility (referred to hereafter as community stability),
S(t), as follows:

D(t+1) — Dc(t)
D.(t)

Sc(t) measures the rate of change of commu-
nity dominance (for many other definitions of
ecological stability, see Grimm and Wissel 1997).

Similarly, we define population dominance stabil-
ity (hereafter, population stability), S«(t), as the rate
of change of species dominance over time,

Sc(t) =

@)
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Ds(t+1) — Ds(t)
Ds(t)

5(t) = ®)
noting that there would be a separate measure of
stability for each species in the community.
Finally, we assume that community dynamics
can be modeled by a general (set of) differential
equation(s) such as:

S(0) = gy = /1D ©)

where D(t) is one of the dominance metrics at
time t, S(t) is the parallel stability metric at time ¢,
and Z is an optional vector of covariates.

Since we do not know the categorical form of
function fin Eq. 8, we adopt a data-driven, phe-
nomenological modeling approach. Through
trial-and-error and exploratory curve-fittings, we
found that five alternative models can describe
basic community dominance dynamics:

1. atwo-parameter linear model

Se(t) = a + bD(b);

November 2018 ** Volume 9(11) % Article e02477



CONCEPTS & THEORY

2. afive-parameter linear—quadratic (L-Q) model
Sc(t) =a -+ bDc(t) + cD2(t) + [De(t) — d]
x Sign(Dc(t) — d)[c(Dc(t) +d) +e));

3. a six-parameter quadratic-quadratic (Q-Q)
model

Sc =a+bD. + cD? + (D, — d)
x Sign(D. — d)[e(Dc + d) +f)];

4. a three-parameter logistic

K
Selt) = 1+ a exp[—rDc(t)];

5. and a three-parameter periodic logistic-sine
model

K e
Se(t) = 1 + a*exp[—rDc(t)] sm( n )

A detailed discussion of these five models and
the derivations of their parameters are given in
Appendix S1.

For each of the stability models listed above,
there is a corresponding dominance dynamics
model. For community dominance, this would
be:

De(t+1) = De(£)[1 + Sc(t)] (10)

and so, for example, the corresponding model
for dominance dynamics with the three-
parameter logistic stability model would be as
follows:

Dc(t+1) :Dc(t){l—i— . (11)

K

[1+4 aexp(—rDc(t))] }

Like density-dependence models for popula-
tion regulation (Kot 2001, Berryman et al. 2002,
Pastor 2008), the generalized stability model
(Egs. 7-9) may display three types of local
behavior: (1) DDS, in which stability increases
with dominance; (2) dominance-inversely-
dependent stability (DID), in which stability
decreases with dominance; and (3) DIS, in which
stability does not change with dominance level.
That is, S(t) « kD(t), with k <0, k > 0, k = 0, cor-
responding, respectively, to DDS, DID, and DIS.

In practice, except for the simple two-parameter
linear model (where the parameter b is equivalent
to k in the generalized stability model), we may
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not be able to determine precisely the value of k.
However, the non-linear models we considered
are simple enough that we can evaluate piece-
wise relationships between dominance and stabil-
ity. We also note that the three-parameter logistic
and two-parameter linear model may capture
only one of the three dominance-dependence
behaviors in a specific model, whereas the other
three models are more flexible and may capture
all three behaviors in a single model. The three-
parameter logistic-sine model also can capture
periodic fluctuation of the three types of depen-
dence relationships.

Since our dominance metrics also are related
to common measures of diversity, this modeling
approach offers an equally powerful method for
modeling classic diversity—stability relationships.
For the simple linear model, the slope b is the
derivative of the linear stability function, that is,
the rate of change of stability with respect to
dominance. It is a measure of resilience: the
speed at which a community returns to local
equilibrium after perturbation.

DEMONSTRATION OF THE METRICS

The HYMC dataset

We compare our dominance metrics to three
standard diversity indices (Appendix S1) and
illustrate the phenomenological model selection
approach to dominance-stability modeling using
a “32-healthy cohort dataset.” This dataset is from
a longitudinal study of 32 healthy women done in
2006-2007 at the Johns Hopkins University School
of Medicine, Baltimore, Maryland, USA (Gajer
et al. 2012). The participants self-collected mid-
vaginal swabs and vaginal smears twice weekly
for 16 weeks. The extraction of genomic DNA
from frozen vaginal swabs, PCR amplification,
sequencing of the V1-V2 region of bacterial 16S
rRNA genes, and the archive of sequence data are
described by Gajer et al. (2012). QIIME (Caporaso
et al. 2010), UCLUST (Edgar 2010), UCHIME
(Edgar et al. 2011), RDP Naive Bayesian Classifier
(Wang et al. 2007), and speciatelT (https://speciate
IT.sourceforge.net) were used to obtain the OTU
table and included sequence read counts and rela-
tive abundances of the taxonomic assignments at
the bacterial species level of 97% similarity (Gajer
et al. 2012).
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Comparisons between our dominance metrics
and existing diversity indices

Fig. 1 compares D. with three other diversity
indexes. As D, is a linear transformation of
Simpson’s D, those two are perfectly correlated
(r =1). Correlations between D, and both the
Shannon-Weiner and the Berger—Parker diver-
sity indices exceeded 0.95 among all but two of
the HVMC samples (r for those two outliers
equaled 0.94 and 0.75) and were statistically
significant in all cases (P < 0.001). The overall
correlation between D. and Simpson’s measure
of evenness (D/S) averaged 0.61 (median
r = 0.69; Fig. 1) and again was statistically sig-
nificant (P < 0.001). We conclude that D. is

MA AND ELLISON

comparable quantitatively to existing measures
of diversity.

Why introduce another diversity (dominance)
metric? We assert that the utility of D. is its
straightforward extension to, and interpretation at,
the species level, with the same mathematical form
(but with different interpretations). This extension
(D) allows us to identify quantitatively which spe-
cies dominates a community and to what extent it
dominates the community. An example is shown
in Tables 1, 2 for seven microbial species from one
of the subjects in the 32-healthy cohort HVMC
dataset (the results for all species of this subject
[number 400] are given in the Appendix S1 and
computed with code in Data S1).

Table 1. The species dominance distances (Dsq) of seven species selected from the 29 longitudinal samples of Subject

number (#) 400.

Sample ID OTU#1 OTU#8 OTU#28 OTU#11 OTU#115 OTU#57 OTU#2
400_0101 0.774 13.259 2.175 1325.9 e8] o [es}
400_0105 0.884 858.50 9.090 o e8] o 00
400_0108 0.953 159.27 oo 2269.6 oo oo 2269.6
400_0112 0.941 304.78 o [e8) o 00 [es}
400_0119 0.931 35.271 oo o) oo oo 2160.4
400_0122 0.989 44494 o [es) o o o)
400_0126 0.906 909.75 61.102 (e} e8] o} 00
400_0129 42.40 186.56 4.056 (e 3.97 o o
400_0202 0.945 132.94 o (e o o 2226.8
400_0205 0.973 86.030 2365.8 [eo) co o 00
400_0209 0.825 1.329 o (e o o 1227.9
400_0212 0.803 1.655 1303.2 o o 0o 00
400_0216 0.730 2.816 292.36 46.889 o9} 236.7 552.24
400_0219 0.884 6.310 [oe] [ee] [oe] o 1918.2
400_0226 0.915 20.559 oo [eo) o 0o oo
400_0302 0.949 22.730 o 3000.4 o o o
400_0305 0.970 48.249 (o) o) oo oo oo
400_0309 0.874 5.644 o 1493.5 o o 1866.8
400_0312 0.920 27.218 o) 1054.7 e} ©o o}
400_0316 0.910 18.772 [e9) 1030.1 [e9) o5} o5}
400_0319 0.904 20.039 o) [e8) o 00 [es}
400_0323 1.961 23.229 84.107 6.222 e} 84.11 o
400_0326 2486.7 2486.7 0.997 1243.4 o o o5}
400_0330 0.714 5.830 17.997 59.846 o) 00 o
400_0402 0.916 37.855 149.39 597.57 [es} o o5}
400_0406 0.944 78.693 o (e o o 2223.1
400_0409 0.922 36.539 oo [eo) ©o 00 oo
400_0413 0.931 39.450 o [es) o) o oY)
400_0416 0.931 31.615 oo 2165.6 [ee) oo 00

Notes: Top three most abundant species are as follows: OTU#1 = L. iners, OTU#8 = L. jensenii, and OTU#28 = Staphylococ-
cus. Two moderate abundant species are as follows: OTU#11 = Anaerococcus and OTU#115 = Pseudomonas. Two least abundant
species (but excluded species with total reads <10) are as follows: OTU#57 = Facklamia and OTU#2 = L. crispatus. Theoretically,
Ds4 € (0,+00). When population abundance = 0, Dgq = 00. Obviously, dominance rank and abundance rank can be very
different because the most abundant species are not necessarily the most dominant species, and least abundant species are not
necessarily least dominant.

ECOSPHERE *%* www.esajournals.org 7 November 2018 ** Volume 9(11) %* Article e02477



CONCEPTS & THEORY MA AND ELLISON

Table 2. The community dominance metric (D.) and species dominance metric (Ds) of seven species selected from the
29 longitudinal samples of Subject number (#) 400.

D
SampleID  Community dominance D. ~ OTU#1 OTU#8 OTU#28  OTU#11  OTU#115 OTU#57 OTU#2
400_0101 31.82 31.050 18.566 29.649 —1294.1 —3688.8 —3688.8  —3688.8
400_0105 46.36 45.471 —812.14 37.265 —3688.8 —3688.8 —3688.8  —3688.8
400_0108 54.46 53.507 —104.81  —-3688.8  —2215.2 —3688.8 —3688.8  —2215.2
400_0112 53.03 52.090 —251.75  —3688.8  —3688.8 —3688.8 —3688.8  —3688.8
400_0119 51.85 50.918 16.577 —3688.8  —3688.8 —3688.8 —3688.8  —2108.5
400_0122 58.74 57.749 —386.21  —3688.8  —3688.8 —3688.8 —3688.8  —3688.8
400_0126 49.13 48.220 —-860.62  —11.976  —3688.8 —3688.8 —3688.8  —3688.8
400_0129 11.19 —31.206  —175.37 7.138 —3688.8 7.224 —3688.8  —3688.8
400_0202 53.45 52.504 —79.495  —3688.8  —3688.8 —3688.8 —3688.8 21734
400_0205 56.79 55.818 —29.239  —-2309.0  —3688.8 —3688.8 —3688.8  —3688.8
400_0209 29.48 28.651 28.147 —3688.8  —3688.8 —3688.8 —3688.8  —1198.5
400_0212 31.27 30.470 29.618 —12719  —3688.8 —3688.8 —3688.8  —3688.8
400_0216 29.83 29.097 27.011 —262.54  —17.061 —3688.8 —206.849  —522.42
400_0219 46.04 45.156 39.731 —3688.8  —3688.8 —3688.8 —3688.8 —1872.1
400_0226 50.08 49.166 29.523 —3688.8  —3688.8 —3688.8 —3688.8  —3688.8
400_0302 54.01 53.063 31.282 —3688.8  —2946.3 —3688.8 —3688.8  —3688.8
400_0305 56.45 55.476 8.197 —3688.8  —3688.8 —3688.8 —3688.8  —3688.8
400_0309 44.80 43.929 39.159 —3688.8  —1448.6 —3688.8 —3688.8  —1822.0
400_0312 50.63 49.710 23.412 —3688.8  —1004.1 —3688.8 —3688.8  —3688.8
400_0316 49.45 48.540 30.678 —3688.8  —980.64 —3688.8 —3688.8  —3688.8
400_0319 48.82 47.916 28.781 —3688.8  —3688.8 —3688.8 —3688.8  —3688.8
400_0323 14.63 12.668 —8.601  —69.478 8.407 —3688.8 —69.478  —3688.8
400_0326 59.69 —2427.0  —2427.0 58.690 —1183.7 —3688.8 —3688.8  —3688.8
400_0330 29.79 29.081 23.964 11.797 —30.052 —3688.8 —3688.8  —3688.8
400_0402 50.18 49.265 12.326 —99.211 —547.39 —3688.8 —3688.8  —3688.8
400_0406 53.35 52.410 —25.339  —3688.8  —3688.8 —3688.8 —3688.8  —2169.7
400_0409 50.86 49.935 14.318 —3688.8  —3688.8 —3688.8 —3688.8  —3688.8
400_0413 51.84 50.912 12.392 —3688.8  —3688.8 —3688.8 —3688.8  —3688.8
400_0416 51.97 51.033 20.350 -3688.8  —2113.7 —3688.8 —3688.8  —3688.8

Notes: Top three most abundant species are as follows: OTU#1 = L. iners, OTU#8 = L. jensenii, and OTU#28 = Staphylococ-
cus. Two moderate abundant species are as follows: OTU#11 = Anaerococcus and OTU#115 = Pseudomonas. Two least abundant
species (but excluded species with total reads <10) are as follows: OTU#57 = Facklamia and OTU#2 = L. crispatus. Theoretically,
D, € (—00,4+00). When population abundance = 0, Dy = —00. In practice, for each subject, we replace the (—0) with the species
dominance value of the least dominant member in all time-series samples of the subject. Obviously, dominance rank and abun-
dance rank can be very different because the most abundant species are not necessarily the most dominant species, and least
abundant species are not necessarily least dominant.

Dominance metrics for very rare and very
common species

view the capability to represent discontinuous
points or local (temporary) extinctions as an

Because Dgq = +00 and Dy = —0c0 when the advantage because temporary disappearance or
abundance of the focal species = 0, we replace local extinction of bacterial species frequently is
Ds = —0 in a particular sample with its lowest observed in the HVMC (Gajer et al. 2012). We

value in all the time-series samples of that sub-
ject. We note that at the most extreme value
(abundance = 0, Dy = —o0) that the distance
Dgq — +00 and the relevant species becomes
“disconnected” from the community; it is locally
(or temporarily) extinct. Of course, it is possible
to artificially convert the value of each metric
into a small range such as [0, 1], but we do not
see any need or benefit to doing so. Rather, we
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note that the most abundant species are not nec-
essarily the most dominant species, and the least
abundant species are not necessarily the least
dominant, and vice versa, so there is no require-
ment that abundance and dominance rankings
be perfectly aligned.

We also observe that values of D of rare spe-
cies may have large fluctuations. Time series of
Dy or Dgy illustrate this phenomenon (Fig. 2),
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Fig. 2. Community dominance (D.) and species dominance (Ds) metrics of seven representative species
selected from the time-series data of Subject number 400, including the three most abundant species (Lactobacillus
iners, Lactobacillus jensenii, and Staphylococcus), two moderately abundant species (Anaerococcus and Pseudomonas),
and the two least abundant (rare) species (Facklamia and Lactobacillus crispatus), raw data in Table 1. One phe-
nomenon this graph reveals is that (rare species) may have even larger fluctuations including local or temporal

extinctions, which may help identify potential associations between rare microbes (such as opportunistic patho-
gens) and pathological changes (such the occurrence of bacterial vaginosis).

and we think that such illustrations (e.g., using
exploratory data analysis) could help identify
potential associations between rare microbes and
pathological changes such as the occurrence of
BV (e.g., opportunistic pathogens should be rare,
at least initially). Indeed, this was one of the
major motivations for our development of domi-
nance metrics that could be used at both commu-
nity and species levels. Fig. 2 shows the
community dominance as well as the species
dominance of seven selected species including
the three most abundant species, two moderately
abundant species, and two rare species.

Fig. 3, which illustrates community and spe-
cies dominance of the three most abundant spe-
cies using polar coordinates, reveals that
community dominance seems to be “controlled”
by one of the top three species (two circles repre-
senting the community dominance and the
“master” species overlapped), but the “control”
is dynamic and may be transferred from one spe-
cies to another with time progression (change of
angular coordinate degree). This possible control
mechanism is more obvious in species domi-
nance network analysis constructed with our
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species dominance metric (Z. Ma and A. M.
Ellison, unpublished manuscript).

It could be argued that other diversity or even-
ness indices could be extended similarly, but we
suspect that such extensions would be difficult.
For example, the Berger—Parker (1970) diversity
index yields the same value if the most abundant
species in two communities are equally abundant
in each community, regardless of whether they
are the same species. However, two communities
may be dominated by different species with
equal abundances.

Phenomenological modeling of community
dominance—stability relationships

We illustrate qualitative patterns of stability
and its relationship with measures of dominance
as modeled with the linear, linear—quadratic (L—
Q), quadratic-quadratic (Q-Q), logistic, and
logistic-sine models. For each model, we exam-
ined how well it fit the 32-healthy cohort HVMC
data and whether it revealed biologically inter-
pretable patterns. As with most statistical mod-
els, our approach is a compromise between
realism and simplicity and includes biological
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Fig. 3. A polar coordinate graph showing community dominance and the species dominance metrics of the
three most abundant species in the vaginal microbial community of Subject number 400: The graphs reveal that
the community dominance seems to be “controlled” by one of the top three species (two circles representing the
community dominance and the “master” species overlapped), but this “control” is dynamic and may be trans-
ferred from one species to another with time progression (change of angular coordinate degree).

interpretations of model parameters, statistical Table 3. A summary of the single best-fitted model

tests (coefficient of determination r* and stan- (logistic model) for individuals in the 32-healthy
dard errors of parameters), and an appeal to par- cohort, summarized from Appendix S1: Table S2.
simony (details of model selection are discussed : =

. . Subject ID K r a R n
further in Appendix S1).

The most appropriate model for each subject is #400 4741 -0.206 0.026 091 28
summarized in Tables 3-7. Both the logistic #412 4168  -0647 000002 059 27
model and the linear model can capture only one 2 4168 —0.647 000002 099 27
kind of diversity—stability mechanisms with a Note: Dominance-dependent stability with an asymptotic

equilibrium line when D, — ©o.

single model, depending on the sign of the
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parameter b (linear model) or r (logistic model).
In contrast, each of the other three models can
capture all three diversity—stability mechanisms,
that is, the same community may exhibit

Table 4. A summary of the single best-fitted model (lo-
gistic-sine model) for individuals in the 32-healthy
cohort, summarized from Appendix S1: Table S3.

Subject ID K r a R? n

#420 —0.294 0.048
#431 —0.142 0.060

-1.677 0.71 27
—1.822 0.36 26

Note: Dominance-dependent stability and dominance-
independent stability alternate periodically.

Table 5. A summary of the single best-fitted model
(linear model) for individuals in the 32-healthy
cohort, summarized from Appendix S1: Table S4.

Subject ID a b R n
#401 0.594 —0.012 0.53 29
#403 1.361 —0.047 0.80 31
#404 0.488 —0.010 0.37 29
#405 1.551 —0.033 0.85 30
#406 0.800 —0.014 0.52 30
#407 1.783 —0.021 0.56 27
#410 0.642 —0.012 0.49 28
#413 0.789 —0.028 0.45 27
#414 0.941 —0.056 0.57 31
#424 1.260 —0.016 0.68 27
#430 0.539 —0.037 0.45 26
#432 1.269 -0.017 0.63 28
#443 0.718 —0.008 0.43 27
#444 0.486 —0.014 0.39 26

Note: Globally dominance-dependent stability, but the
mechanism may be complex locally.

MA AND ELLISON

alternately the three diversity—stability mecha-
nisms (DDS, DID, and DIS). Detailed information
about the model selection criteria and process is
exposed in Appendix S1: Tables S2-56.

The parameters (r) of the two logistic models
and the slopes (b) of the linear models were nega-
tive for all subjects; hence, there is no need to note
the sign of the model parameters in Table 5. For
the HVMC data, the dominance-stability relation-
ships modeled by the logistic and linear models
were dominance-dependent, that is, the higher
the dominance, the more stable the community.
Equivalently, when diversity was high (i.e., domi-
nance was low), stability declined. However, we
emphasize that not all the HVMCs exhibited
DDS, as suggested by the other three models (i.e.,
logistic-sine, L-Q, and Q-Q models).

Additional examination of the slopes (b) of the
linear models (Appendix S1: Table 54) suggested
further nuances in the relationship between domi-
nance (diversity) and stability in the HVMC. The
slope b is the derivative of the linear stability func-
tion, that is, the rate of change of stability with
respect to dominance. This slope is a measure of
resilience: the speed at which a community
returns to local equilibrium after perturbation.

Simulations

We used mobsim—an R package for the simu-
lation and measurement of biodiversity across
spatial scales, developed by May et al. (2017)—to
simulate three commonly used species abun-
dance distributions, that is, the lognormal distri-
bution, log-series distribution, and power law

Table 6. A summary of the single best-fitted model (linear—quadratic [L-Q] model) for individuals in the 32-
healthy cohort, summarized from Appendix S1: Table S5.

Subject ID a b c d e R? bi=b—e ¢ =2c
#402 0.331 0.014 0.00033 28.341 —0.108 0.68 0.122 0.0007
#416 2.210 —0.059 0.00099 23.740 —0.149 0.74 0.09 0.00198
#429 -28.13 0.728 0.00058 38.752 —0.888 0.67 1.616 0.0011
#408 49.023 —5.947 0.00067 8.187 5.862 0.85 -11.8 0.0013
#445 1.608 —0.091 0.00032 19.639 0.016 0.66 —0.107 0.00064
#411 2.001 —0.067 —0.00027 27.018 0.106 0.68 -0.173 —0.0005
#423 —-0.371 0.020 —0.00029 61.448 0.071 0.77 —0.051 —0.00058
#435 1.714 —0.054 —0.00042 28.569 0.119 0.73 -0.173 —0.00084
#436 —5.741 0.171 —0.00142 51.078 0.223 0.47 —0.052 —0.0028
#437 —4.670 0.127 —0.00094 66.958 0.180 0.54 —0.053 —0.00188

Notes: DDS, dominance-dependent stability; DIS, dominance-independent stability. When b; > 0,

¢, > 0, DIS followed by

DDS, a possible stable equilibrium and DIS (#402, #416, #429). When by < 0, ¢, > 0, DDS followed by a possible equilibrium and
DIS (#408, #445). When b; < 0, c; < 0, DDS followed by possibly two equilibriums and DDS (#411, #423, #435, #4306, #437).
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Table 7. A summary of the single best-fitted model (quadratic-quadratic model) for individuals in the 32-healthy

cohort, summarized from Appendix S1: Table S6.

Subject ID a b c d e f R? cg=c—e o=cte
#415 —3.361 0.269 —0.0007 18.353 0.0017 —0.385 0.73 —0.0024 0.001
#418 —1.945 0.176 —0.0032 43.002 0.0032 —0.168 0.86 —0.0064 —0.00001
#446 -12.71 0.572 —0.0066 43.061 —0.0027 0.333 0.59 —0.0039 —0.0093

Notes: DDS, dominance-dependent stability; DIS, dominance-independent stability. When c¢; < 0, ¢, > 0, DDS and DIS alter-
nate, two parabolas connected at D, = d ~ 18, with a possible stable equilibrium (#415). When ¢; < 0, ¢; < 0, DDS and DIS
alternate, two parabolas connected at D. = d ~ 43, stability of equilibriums is uncertain (¥418, #446).
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Simpson’s Diversity Index
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T T T
0 100 200

T T T
300 400 500
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Fig. 4. The linear relationship (Eq. 4) between community dominance (x-axis) and Simpson’s diversity index
(y-axis), plotted with the simulated data from power law distribution with K = 2.

distribution. Overall, the results from the simula-
tions supported our use of the dominance con-
cept and findings discussed in previous sections.
For example, Fig. 4 shows the linear relationship
(Eq. 4) between community dominance and
Simpson’s diversity index, confirmed by the sim-
ulated data. More detailed simulation results are
discussed in Appendix S1.

DiscussioN

In late 1990s, clinical microbiologists (Sobel
1999) using culture-dependent technology applied
ecological interpretations—notably community
diversity, species dominance, and the diversity—
stability relationship—to interpret BV etiology.
With the advent of metagenomic sequencing
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technology, a much larger number of uncultivable
microbial OTUs have been detected in the HVMC
and associated with BV (Ravel and Gordon 2011,
Gajer et al. 2012). Whether considering culturable
or unculturable microbes in the HVMC, many
more questions are raised than answers are avail-
able. The state-of-the-art remains: “BV remains a
riddle, wrapped in a mystery, and inside an
enigma” (Fredricks 2011); and “BV is not a single
entity, but a syndrome linked to various commu-
nity types that cause somewhat similar physiolog-
ical symptoms. This suggests that a yet unknown
common community function may account for
BV and the differing responses to antibiotic thera-
pies” (Ma et al. 2012).

Until recently, the prevailing opinion was that
more diverse (higher diversity) HVMCs are less
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stable and prone to BV. Although Ma et al. (2012)
rightly rejected this opinion by citing counter-
examples, they did not present a mechanistic
explanation for why the diversity—instability rela-
tionship should fail to result in BV. On first glance,
our identification of DDS mechanism as displayed
by the standard logistic and the linear model
(Appendix S1: Tables S2, S4) appears to support
the prevalent opinion about diversity—instability
leading to BV because dominance-dependence
mechanism predicts that lower dominance
(higher diversity) corresponds to lower stability.
However, more careful consideration of the slope
(b) of the linear models provides a counter-
argument. The slope b is the derivative of the lin-
ear stability function, that is, the rate of change of
stability with respect to dominance. A community
that has a steeper slope (b) should be easier to sta-
bilize with the same units of dominance increase
than a community with a less steep slope.

The range of differences in slopes (b) among
communities in Appendix S1: Table S4 exceeded
15-fold (smallest b = —0.123 for Subject number
412, and largest b = —0.008 for Subject number
443). This suggests that a diverse community—the
community that usually lacks apparent dominant
species—is not necessarily inherently unstable
because it can be quicker in stabilizing itself than a
counterpart that is with highly dominant species.

The above apparent contradiction can be
resolved by a careful distinction between the sta-
bility and resilience of a community. There are
numerous definitions of stability (Grimm and
Wissel 1997), and resilience is often treated sim-
ply as one component or dimension of stability
(Ma 2012b). We defined community stability as
S«(t) (Eq. 7), but in the case of linear model, the
slope (b) represents resilience: the speed at which
a community returns to local equilibrium after
perturbation. It should be noted that in our defi-
nition of community stability, time (f) is implic-
itly included in the stability function (Egs. 7-9),
so the slope (b) of the linear model can be inter-
preted as a measure of resilience.

By distinguishing community stability from
resilience in the context of the linear stability func-
tion, we can draw the following insights from
Appendix S1: Table S4: The DDS mechanism
suggests that high-diversity (low dominance)
community can be less stable than low-diversity
(high dominance) community, but the former, if
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its slope is steeper than the slope of the latter,
may have higher resilience than the latter. This
distinction resolves the apparent paradox regard-
ing the diversity—stability relationship in the case
of HVMC and presents a more comprehensive,
cohesive, and quantitative argument to support
Ma et al’s (2012) rejection of the dominance—
instability mechanism for BV.

In summary, when discussing community sta-
bility, it is critical to distinguish between stability
and resilience. Both are needed to describe accu-
rately the diversity—stability relationship in
HVMC. A high-diversity community may have
lower stability in terms of the magnitude of com-
munity dominance change, as suggested by the
prevalent opinion on the stability of HVMC, but
the community may still be resilient. In other
words, a high-diversity community may be able
to stabilize itself more efficiently or effectively, as
is suggested by more general ecological para-
digms of diversity and stability. For example,
high-diversity communities may have higher con-
nectivity among its species that results in more
efficient stabilization following perturbations.

We note in closing that our dominance—stabil-
ity analysis is imperfect. First, we chose what are
arguably the simplest definitions of stability and
resilience to avoid opening the Pandora’s box of
stability definitions (Grimm and Wissel 1997,
Green et al. 2006, Ma 2012b). Second, our model-
ing strategy followed the principle of parsimony
and was essentially a compromise between real-
ism and simplicity. Third, our modeling
approach was phenomenological and lacks rigor-
ous theoretical assumptions (May 1973, 1975,
Allesina and Tang 2012). Overcoming these limi-
tations is beyond the scope of the present article,
but we begin to address them in a follow-up
paper in which we apply our species-level domi-
nance metric to construct a species dominance
network (SDN) of the HVMC (Z. Ma and A. M.
Ellison, unpublished manuscript).
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