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Physiological and ecological mechanisms that define treelines are still debated. It has been suggested that
the absence of trees above the treeline is caused by low temperatures that limit growth. Thus, we hypoth-
esized that there is a critical minimum temperature (CT,;,) preventing xylogenesis at treeline. We tested
this hypothesis by examining weekly xylogenesis across three and four growing seasons in two natural
Smith fir (Abies georgei var. smithii) treeline sites on the southeastern Tibetan Plateau. Despite differences
in the timing of cell differentiation among years, minimum air temperature was the dominant climatic
variable associated with xylem growth; the critical minimum temperature (CT,;,) for the onset and
end of xylogenesis occurred at 0.7 + 0.4 °C. A process-based modelling chronology of tree-ring formation
using this CT;, was consistent with actual tree-ring data. This extremely low CT,;, permits Smith fir
growing at treeline to complete annual xylem production and maturation and provides both support

Vaganov-Shashkin model

and a mechanism for treeline formation.

© 2017 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

1. Introduction

The explanations for treeline formation focus on limitations of
available resources [1,2], establishment sites [3], or time available
for growth [4], although these ecophysiological causes remain
debated [5-8]. Based on notable similarities in temperatures at
treelines [9], the growth limitation hypothesis proposed that low
temperatures limit the time available for meristematic growth
and cell division [4,10]. This hypothesis has been supported by
phenomenological data. For example, treeline trees tend to have
higher amounts of non-structural carbohydrates than trees grow-
ing at lower elevation, suggesting that treeline is limited more by
growth processes than by photosynthesis and carbon assimilation
[11-13]. In parallel, dendroclimatic studies have identified a signal
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of reduced growth during periods with low temperatures at treeli-
nes in cold and humid areas [14-17].

Physiological manifestations of the growth limitation hypothe-
sis include a constraint on the production of new cells by meris-
tems below a CT,, [4] and a trade-off between taking maximal
advantage of the length of the growing season while avoiding cel-
lular damage due to early (fall, winter) or late (winter, spring)
freezing events [18,19]. Such a trade-off would suggest a narrow
thermal window for the onset and cessation of Xxylogenesis at tree-
line and recent studies have described temporal dynamics in xylo-
genesis of various tree species at treeline [20-24]. Some studies
reported that a gradual increase in temperature (heat sum) was
associated with the onset of cambial activity [21,25], whereas
others estimated a CT,;, of 6-8 °C for xylogenesis at the altitudinal
treeline in the Eastern Alps [20,26]. Separating gradual (heat-sum)
and threshold (CT,,,) effects on xylogenesis at treeline has not yet
been accomplished.
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A mechanistic model can provide a deeper understanding on
the climatic control on tree growth dynamics. The process-based
Vaganov-Shashkin (VS) model has been used to simulate climatic
controls on conifer tree-ring growth [27-29]. In the VS model,
the critical temperature for cambial activity is a key parameter
for modelling tree growth, but there are limited data available to
estimate this parameter.

Our observations at the upper treeline of Smith fir (Abies georgei
var. smithii) on the southeastern Tibetan Plateau, including a dec-
ade of uninterrupted in situ micrometeorological measurements
and weekly collection of microcores containing cambium activity
and wood formation during three consecutive growing seasons
provide an opportunity to examine both gradual and threshold
effects of temperature on xylogenesis at a natural alpine treeline.
Specifically, we tested the potential for thermal control of xyloge-
nesis to be a mechanism underlying the growth limitation hypoth-
esis by (1) identifying the timing and dynamics of xylogenesis in
Smith fir growing at treeline as a function of climatic factors; and
(2) detecting a plausible CTy,, for xylogenesis. Previous studies
have found that the growth of Smith fir near treeline is constrained
by the minimum temperature in summer [30,31]. The onset of bud
swelling and needle unfolding in Smith fir is delayed by 3.5 days
for each 100-m increase in elevation [32], indicating a thermal
limitation of tree phenology. Therefore, we hypothesized that
minimum temperature limits xylogenesis and that a threshold
minimum temperature controls the timing of the onset and ending
of xylogenesis.

2. Materials and methods
2.1. Study sites and tree selection

We studied the natural alpine treeline of Smith fir growing on
the eastern side of the Sygera Mountains (29°10'-30°15'N, 93°12'-
95°35’E) on the southeastern Tibetan Plateau [33]. The southeastern
Tibetan Plateau is characterized by a cold and humid climate, and
has the highest natural treeline (up to 4900 m a.s.l.) in the Northern
Hemisphere [34]. Smith fir is a shade tolerant tree species and is one
of the dominant treeline species in this region. The upper treeline
position depends on topographic aspect and ranges from 4250 to
4400 m a.s.l. We studied two sites at open-canopy treelines: site 1
was at 4360 ma.s.. on an east-facing slope, and site 2 was at
4250 m a.s.l. on a southeast-facing slope. The sites were 200 m apart,
on slopes <15°. Rhododendron aganniphum var. schizopeplum domi-
nated the understory. The coverage of Smith fir was <20% and the
podzolic soils had an average pH value of 4.5.

At each site, five dominant trees were selected in April 2007.
These trees had a mean age of 201 +24 and 117 £ 14 years, and
mean diameters at 1.3 m aboveground of 34 +4 and 44 +7 cm in
sites 1 and 2, respectively. Because repeated sampling could cause
severe wounding that could modify xylogenesis, another five trees
per site with similar diameters at breast height were chosen for
samplings in 2009 and 2010. Trees with polycormic stems, par-
tially dead crowns, reaction wood, or other evident damage were
avoided.

2.2. Meteorological data

An automatic weather station (Campbell Scientific, CR1000)
was installed in November 2006 in an open area above the treeline
(29°39'N, 94°42’E, 4390 m a.s.l.) at a linear distance of ~150 m and
200 m from sites 1 and 2, respectively. Measurements of air (3 m
aboveground) and soil temperature (at 10-, 20- and 40-cm depths),

precipitation, snow fall, and soil water content (at 10-, 20-, and
40-cm depths) were collected at 30-min intervals. These data were
used to compute daily averages, minima, and maxima of each
variable.

2.3. Microcoring and histological analyses

Xylem growth was studied from 2007 until 2010 at site 1 and
from 2007 to 2009 at site 2. One microcore (15-mm long, 2-mm
diameter) was collected from each tree weekly from May until
October around the stem at breast height (1.3 m aboveground)
using a Trephor tool. Immediately after removal from the trees,
the microcores were fixed in a formalin-ethanol-acetic acid (FAA)
solution. The microcores contained innermost phloem, cambium,
developing xylem, and at least three previous xylem growth rings.
In the laboratory, the microcores were dehydrated with successive
immersions in a graded series of ethanol and d-limonene, then
embedded in paraffin. Transverse sections (9-12 pm in thickness)
were cut from the samples with a Leica RM 2245 rotary microtome
using Feather N35H knives (Osaka, Japan). Sections were stained
with a mixture of safranin (0.5% in 95% ethanol) and astra blue
(0.5% in 95% ethanol) and observed with a Nikon Eclipse 800 light
microscope under bright field and polarized light to identify the
phases of differentiation of the developing xylem cells [35]. In
cross-section, cambial cells were characterized by thin cell walls
and small radial diameters [36,37]. Newly-formed xylem cells in
the phase of cell enlargement contained protoplasts, had thin
primary walls, and a radial diameter at least twice the size of the
cambial cells [38]. The onset of cell-wall thickening was determined
by birefringence in the cell walls under polarized light. Mature cells
had completely red-stained walls and empty lumen. For each
sample, the total current xylem cell number was determined by
counting the number of cells undergoing enlargement, cell-wall
thickening, and the number of mature cells along three radial files.

2.4. Data standardization and fitting of xylem growth

The data were standardized to compensate for variation in the
number of xylem cells along the tree circumference. The total cell
number of the previous years was counted on three radial files per
sample and used for standardization. The standardized number of
cells nc; in the ith phase of the jth sample was calculated as:

nc; = ny(am/ ), (1)

where n;; is the number of cells in the current year, a, is the mean
number of cells of the previous ring of all j-samples, and a; is the
mean number of cells of the previous ring in each j-sample.

We modelled the dynamics of xylem growth by fitting a Gom-
pertz function to the number of xylem cells that were produced
through time:

y = Aexp[-e)], @)

where y is the weekly cumulative sum of tracheids, t is the time of
the year computed as day of the year, A is an asymptote (constant),
and p and k are constants reflecting the x-intercept placement and
rate of change, respectively. Model parameters were estimated
using the Origin software package (Version 8.5, OriginLab Corpora-
tion, Northampton, MA, USA).

2.5. Estimation of the onset and ending of xylogenesis
We used observations of cell differentiation to identify the

onset, ending, and duration of xylogenesis from counts of the num-
ber of cells in three radial files per tree. In spring, xylogenesis was
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considered to have started when at least one tangential row of cells
was observed in the enlarging phase. Because of the weekly reso-
lution of the monitoring, we used the occurrence of 1-2 enlarging
xylem cells along any of the checked three radial files as an indica-
tor the xylogenesis had begun [35]. In late summer, when cells
were no longer observed in the wall thickening and lignification
phase, xylogenesis was considered to have ended. The duration
of xylogenesis was estimated as the number of days between the
dates of onset and ending of xylogenesis.

Comparisons between sites in onset, duration, and ending of
differentiation in the developing xylem ring were done with gener-
alized linear models (GLM). Homoscedasticity was checked using
Shapiro-Wilk and Levene tests.

2.6. Identifying CTnin

Logistic regression (LOGISTIC procedure in SPSS 16.0) was used
to model the probability of xylogenesis as a function of air temper-
ature. Xylogenesis was coded as zero (not occurring) or one (occur-
ring). CTmin Was estimated as that temperature for which the
probability of ongoing xylem growth equalled 0.5 [39]. For each
tree and year, the model was fitted with three respective daily
temperature series (mean, minimum, and maximum). Therefore,
the CT, represents the critical night temperature for xylogenesis.
Model verification included the likelihood-ratio 2, Wald’s y? for
regression parameter and goodness of fit, and Hosmer-Lemeshow

C for possible lack of fit. None of the models were excluded because
of a lack of fit. CTy,;, values were compared between sites and years
using analysis of variance (ANOVA) models. Model validation was
performed by comparing the observed and predicted CTy;, values.
Degree-day sum (DD) is an index representing a measure of accu-
mulated heat. In spring, accumulation of DD began when daily air
average temperature >5 °C for five consecutive days. The temper-
ature 5 °C is a commonly used standard in calculating the effective
heat sum in agriculture and forestry [40].

2.7. Climate-growth relationships

We used two approaches to identify relationships between
intra-annual xylem growth and climatic variables during four
growing seasons. One approach consisted of computation of
Pearson’s correlation coefficients between xylem cell production
and weather data for weekly intervals. Weather data here include
daily mean, daily absolute minimum, daily absolute maximum
temperatures, growing degree-days (GDD)>5°C, and sums of
precipitation.

Intra-annual xylem growth may be controlled both by endoge-
nous (e.g., hormonal regulation) and exogenous factors (e.g.,
climate). To analyse the climatic effect, a common approach was
used to remove the endogenous growth trend by fitting a growth
curve, and to estimate the growth departure, calculated as the
dimensionless ratio between observed and expected growth [41].
This ratio (hereafter called the ‘growth index’) was calculated as
the number of tracheids produced during the week divided by
the expected values estimated using the Gompertz function [42].
To account for possible effects of time-lags, daily weather data
were averaged (temperature) or summed (precipitation) weekly
from 1 to 10d prior to each sampling date (referred to as
P1-P10). To minimize the effects of temporal autocorrelation,
correlation coefficients were calculated on first-order differences
for both datasets.

2.8. Tree-ring modelling

We used the Vaganov-Shashkin (VS) model to simulate tree-
ring growth at the Smith fir treelines in the Sygera Mountains.
The VS model estimates xylem growth and its internal character-
istics based on equations relating daily temperature, precipitation,
and sunlight to the kinetics of xylem development [43]. It
assumes that climatic influences are directly but nonlinearly
related to tree-ring characteristics through controls on the rates
of cambial activity processes. To date, it has been successfully
used to simulate and evaluate the relationships between climate
and tree-ring formation under a variety of environmental condi-
tions in many different regions [28,29,44-47]. Values from field
observations were used for input parameters needed by the VS
model: soil moisture, depth of root system, temperature sum for
initiation of growth, soil water drainage rate, and maximum daily
precipitation infiltrating into soil. We used our estimates of CTpp
as the starting value for the minimum temperature parameter.
Model fit was evaluated against an actual tree-ring width
chronology from Smith fir treeline in the Sygera Mts., which
had been developed and used for paleoclimatic reconstructions
in this region [31]. The best estimate of physiological CTyi, was
found by iteration and comparison between simulated and
observed chronologies (1960-2006).

Finally, a single simulated tree-ring width chronology was cre-
ated for the Smith fir treeline in the Sygera Mts. based on daily cli-
mate data from the Nyingchi meteorological station (3000 m a.s.l.).
To account for the altitude differences between Nyingchi and the
study sites, we extended the time series of daily temperatures at
the treeline back to 1960 based on a linear regression of the
Nyingchi data and our own micrometeorological data (r > 0.89,
2007-2010, Supporting Information Fig. S1).

3. Results
3.1. Micrometeorological conditions at the upper treeline

The sampling sites at the upper treeline were cold and humid.
Despite a difference of 110 m in elevation and different topograph-
ical aspects of the two treeline sites, they had similar temperatures
(Supporting Information Fig. S2). Annual average temperatures
(2007-2010) ranged from 0.1 to 0.9 °C, while growing-season
(June-September) temperatures ranged from 6.4 to 7.1 °C (Fig. 1).
On average, annual precipitation was 951 mm, of which 62% fell
during the monsoon season (June-September). Snowfall occurred
mainly from November to May. Because of snowmelt and
increased precipitation, soil moisture content increased rapidly
from the beginning of April and remained above 30% from early
May until November, and finally decreased to near zero in late
November and early December. The year 2008 was characterized
by heavy spring snowfall and had the latest snowmelt and soil
thawing during the four studied years (Fig. 1).

3.2. Xylogenesis

The onset of xylogenesis occurred from late May to early June
and differed significantly among years (F=15.73, P<0.001). The
onset of xylogenesis was observed 4-9 days later in 2008 than in
the other years, at both sites (Fig. 2a). No difference was found in
onset of xylogenesis between sites (F=2.31, P> 0.05). Xylogenesis
ended between the beginning and the end of September and
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Fig. 1. Micrometeorological conditions (2007-2010) at the upper treeline in the Sygera Mts., southeastern Tibetan Plateau, showing (a) daily mean air temperature and daily total
precipitation, (b) daily soil temperature (at depths of 10, 20 and 40 cm) and snow depth, and (c) daily mean soil volumetric moisture contents (at depths of 10, 20 and 40 cm).

differed significantly among years (F=10.42, P<0.005), and
occurred 1-2 weeks later in 2010 at site 1 (Fig. 2b).

Overall, the duration of xylogenesis lasted from 109 to 125 days
(Fig. 2c), with no significant differences detected between sites
(F=3.80, P>0.05). Conversely, there were significant variations
among years (F=4.71, P<0.05). From 2007 to 2009, the average
period between the onset and ending of xylogenesis was 113 days,
whereas the average of 125 days was required to complete xyloge-
nesis in 2010.

3.3. Relationship between climate and xylem growth

Weekly cumulative xylem production was fit well by the Gom-
pertz function (0.96 < r* < 0.98; Supporting Information Table S1
and Fig. S3). Intra-annual xylem cell production was significantly
and positively correlated with daily minimum and mean air
temperatures and GDD > 5 °C at both sites (Fig. 3a, b). However,
only minimum temperature was significantly correlated with
growth indices after removing the growth trends (Fig. 3¢, d). At site
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Fig. 2. Onset (a), ending (b), and duration (c) of xylem formation of Smith fir (Abies
georgei var. smithii) based on weekly xylogenesis observations at site 1 (4360 m a.s.
1.) (grey columns) and site 2 (4250 m a.s.l.) (white columns). Error bars indicate
standard deviations among trees.

1, positive correlations between growth indices and minimum
temperatures were found for time lags of 0-3 days (r=0.34,
P <0.05), whereas the corresponding time lags were 7-10 days at
site 2 (r=0.42, P<0.05). No significant correlations were found
between xylem cell production or growth index and precipitation
from PO to P10.

3.4. CTonin

CTmin at which there was a 0.5 probability that xylem formation
was ongoing is shown in Fig. 4 and Table 1 for site 1 (2007-2010)
and site 2 (2007-2009). The values for minimum, mean, and max-
imum temperatures of 0.6, 4.0, and 9.3 °C were estimated for the
onset of xylogenesis, whereas the corresponding values for the
ending of xylem differentiation were 0.7, 3.9, and 9.0 °C. There
were no differences among critical temperatures for the onset

X. Li et al./Science Bulletin 62 (2017) 804-812

and ending of xylogenesis (ANOVA, P>0.05), with values of
0.7+0.4, 3.9%0.5, and 9.1 £0.6 °C for the minimum, mean, and
maximum temperatures, respectively. No significant differences
were found between the two sites in terms of the estimated air
temperature thresholds for the onset and ending of xylogenesis
(ANOVA, P>0.05). The mean air temperature during the period
of xylem formation at both sites was 6.8 £ 0.4 °C.

Among years, degree-day sum until the onset of xylogenesis at
site 1 ranged from 8 to 41 DD, whereas corresponding temperature
sums ranged from 12 to 34 DD at site 2 (Table 2). Accumulated heat
sum from 1 January until onset of xylem growth varied strongly
between study years at both sites (F=17.6, P<0.01).

3.5. Tree-ring modelling

Initializing the Vaganov-Shashkin (VS) model with an estimated
CTimin=0.7°C yielded a best-fit estimate of physiological
CTmin = 0.9 °C (Table 3, Fig. 5). The correlation between observa-
tions and predictions varied slightly for CT;, of 0.3-1.0°C,
whereas it decreased rapidly for CTy,;, > 1 °C (Fig. 6). Overall, sig-
nificant, positive correlations were found between the modelled
and measured chronologies when CTp,;, varied within the range
0f 0.7 £0.4 °C (r=0.62, P < 0.01).

4. Discussion

The importance of temperature for xylogenesis during and after
its onset has been demonstrated repeatedly [25,37,48-51]. These
and other data suggest that air temperature, not soil temperature,
directly limits xylogenesis at high Ilatitudes and altitudes
[20,24,52]. Minimum temperature is assumed to be an important
driver of tree species range limits [7,19], and so a CTy,;, with nar-
row bounds should exist for the onset and ending of xylogenesis.
However, long-term monitoring of xylem growth at natural
treelines is limited, which has precluded assessment of CT,;, for
xylogenesis by direct observations.

4.1. Effects of climate on xylem growth

As predicted, minimum air temperature strongly limited xylem
growth of Smith fir at the upper treeline on the southeastern Tibe-
tan Plateau. This finding agrees with those from dendroclimatolog-
ical analysis in the same study area [31] and wood formation
studies at high latitudes and altitudes [22,37]. The importance of
minimum air temperature may be related to the timing of cell dif-
ferentiation, which may occur mainly during the night when the
temperature is lower [53,54]. Controlled experiments also showed
that night temperatures could directly influence xylem cell expan-
sion of Podocarpus latifolius [55]. According to Korner [7], cell
doubling time, which is highest and fairly constant at temperatures
of 10-25 °C, approaches infinity at 1-2 °C, suggesting a minimum
temperature limit on cell division. The simulated ring-width
chronologies produced by the VS model of tree-ring formation also
exhibit similar positive correlations with the minimum tempera-
ture during summer (Supporting Information Fig. S4, P<0.01).
CTmin is thus expected to limit xylogenesis of Smith fir at the
treeline.

4.2, Critical temperatures for xylogenesis
Our results suggest that threshold effects, not heat sum effects,

play a key role in the onset of xylogenesis at Smith fir treeline.
Despite the variance in timing and duration of xylogenesis during
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our four years of observations, minimum, average, and maximum
temperatures for the onset and ending of xylogenesis were nar-
rowly bounded with average values of 0.7, 3.9, and 9.1°C,
respectively.

Most studies to date have indicated that xylogenesis in conifers
growing in cold climates can take place when the daily minimum
temperatures >4-5 °C [39,56]. However, based on the presented
4-year observations of xylogenesis and uninterrupted in situ
micrometeorological measurements directly at the treeline, we
found that the CTy,;, for Xylogenesis in Smith fir is as low as 0.7 °C.
In particular, based on this CT;,, the modelled chronology pro-
duced by VS model is consistent with actual tree-ring data, suggest-
ing that minimum temperature could be considered as a significant
driver of xylem growth. Such a low CT.,;, may have evolved to
provide sufficient time to complete xylogenesis at alpine treelines.
The length of the growing season for stem growth diminishes with
altitude and reaches a minimum at the alpine treeline. According to
some authors [10,39], a tree can only survive when the growing
seasons are at least 3 months long and the mean air temperature
during the growing season is 6.4 °C; each of these constraints
critically limit the growth and development of trees. At Smith fir
treelines in southeastern Tibet, the duration of xylem growth of
115 days provided by a CTi,in < 1 °C and a mean air temperature of
6.8 °C during the growing season extended by this low CTyy
together meet these prerequisites for tree growth and development.

The dates of snow melting and soil thawing also are thought to
be critical for the onset of xylogenesis and could therefore deter-
mine the annual xylem production [27]. At our treeline sites, the
onset of xylem growth occurred 4-46 days after snow melting
and 4-29 days after soil thawing in spring, which coincided with
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Table 1
Mean (tstandard deviation) of the threshold daily maximum (Tyax), mean (Tyean) and
minimum (Ty;,) temperatures for the onset and ending of xylogenesis.

X. Li et al./Science Bulletin 62 (2017) 804-812

Table 3
The best-fit parameter estimates for the VS model used in this study.

Model Description (unit) Value
Site Year Onset of xylogenesis Ending of xylogenesis parameter
Tumin (°C)  Tmean(°C)  Tmax(°C)  Tmin(°C)  Tmean (°C)  Tmax (°C) CTmin Minimum temperature for tree growth (°C) 0.9
1 2007 06£02 43%01 97:04 0803 39:03 9.0£04 ;"1’“ t"""g :23 2? ranee g? gp::gll:} cemperatures €O g";’
2008 08402 3.7+03 89:04 0.6+02 35:02 87:0.1 o Mp‘)’(im o e % o ‘; e ar “’Nth 0 199
2009 0.8+03 44:01 98:02 1101 4701 99:0.1 e i D e for troe oroth e 0.06
2010 0.3+0.1 3.4+0.2 9.1+£03 04+0.1 29+03 8.0+0.2 min . g . :
Wopt1 Lower end of range of optimal soil moisture (v/v)  0.18
2 2007 05+03 43+02 94+05 09+04 41+05 9306 Woptz Upper end of range of optimal soil moisture (v/v)  0.22
2008 1.0+£03 3903 87+04 07+03 36+02 87z%0.1 Winax Maximum soil moisture for tree growth (v/v) 0.50
2009 0.8+0.3 44+04 98+02 1.1+03 45+04 9.8+03 Theg Temperature sum for initiation of growth (°C) 30
Droot Depth of root system (mm) 50
Prax Maximum daily precipitation for saturated soil 20
(mm)
Ki Fraction of precipitation penetrating soil 0.86
Table 2 (dimensionless)
Mean (tstandard deviation) of degree-day sums (>5°C) at onset of xylogenesis, Ky First coefficient for calculation of transpiration 0.12
number of days from the date of snow melting (Dategnow) and soil thawing (Dateso;;) (mm/day)
to the onset date of xylogenesis (Dateyyiem). K3 Second coefficient for calculation of transpiration 0.175
(1/°0)
Year Degree-day Number of Number of K; Coefficient for water infiltration from soil 0.006
sum at onset days between days between (dimensionless)
of xylogenesis Dateg,ow and Date; and
(DD) Dateyyjem (days) Dateyyiem (days)
Site 1 2007 41 +£13 4+5 4+3
2008 110 18+3 6+3 rates and higher non-structural carbohydrate levels than trees at
2009 812 29+3 11£3 lower altitudes [11-13], suggesting a carbon sink rather than car-
2010 8x3 46+3 29£5 bon gain limitation [57]. However, some authors have argued that
Site2 2007 3420 6+5 6+3 tree populations with the highest non-structural carbohydrate
2008 13+£12 214 9+5 : P :
2009 127 2913 1123 concentrations may be the most carbon limited in terms of growth

the surpassing of CT,;, (Table 2). This temporal lag also suggests
that threshold effects exist for the onset of xylogenesis at Smith
treeline.

The growth limitation hypothesis predicts that the absence of
trees above the treeline is attributable to critical minimum tem-
perature for growth [4]. Treeline trees often have slower growth

[58,59]. Although our observations of xylogenesis cannot differen-
tiate between carbon limitation and a carbon sink in Smith fir, the
significant effect of a narrowly bounded CT,;, on xylem growth
provides a physiological mechanism for the growth limitation
hypothesis.
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