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ABSTRACT

The Qinling subspecies of giant panda (Ailuropoda melanoleuca ginlingensis), is highly endangered; fewer
than 350 individuals still inhabit Qinling Mountains. Previous research revealed captive pandas were
exposed to bromine, so we hypothesized that captive pandas were exposed to and affected by poly-
brominated diphenyl ethers (PBDEs). To test this hypothesis, we tested blood and feces of captive and
wild pandas, their drinking water, food (bamboo leaves) from SWARC (Shaanxi Wild Animal Research
Center)and FNNR (Foping National Nature Reserve) and supplemental feedstuff given to captive panda at
SWARC. We found 13 congeners of PBDEs in fecal samples, of which BDE47, BDE66, BDE71, BDE99, and
BDE154 were the dominant, total PBDE concentration in feces of captive pandas was 255% higher than in
wild pandas. We found nine PBDEs congeners in blood samples: BDE153 and BDE183 were the pre-
dominant congers. PBDEs in blood from captive pandas were significantly higher than in wild pandas.
The total concentration of PBDEs were 5473 and 4835 (pg.g) in Fargesia ginlingensis, were 2192 and 1414
(pg.g) in Bashannia fargesii (2192, 1414 pg g), 0.066, 0.038 (pg/ml) in drinking water, and 28.8 (pg.g) in
supplemental feedstuff for captive and wild pandas, which indicate that the PBDEs came from its
bamboo feed, especially from Bashannia fargesii. Our results demonstrate that BDE99 and BDE47 could be
threatening the pandas’ health especially for captive panda and there are potential health risks from
PBDEs for pandas. In the short term, this risk may be ameliorated by strict control of food quality. In the
long term, however, reducing air, water and soil contamination so as to improve environmental quality
can best reduce these risks to meet the international standard such as Stockholm Convention.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

breeding in, for example, Beijing Zoo, Wolong Breeding Center, and
Shaanxi Wild Animal Research Center. The other strategy is the

The giant panda (Ailuropoda melanoleuca) is one of the most and
rarest endangered animals in our world. Approximately 1800 in-
dividuals remain in anthropogenically fragmented habitats (SFA,
2015), of which < 350 individuals are of the Qinling subspecies
(A. melanoleuca ginlingensis) living in the Qinling Mountains, China
(SFA, 2015). In the last several decades, there are two strategies that
are now used to protect this flagship species. One strategy is ex-situ
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establishment of natural conservation zones to preserve panda
habitat. In the last several decades, 67 conservation zones, with a
total area >43,600 km?, have been established (SFA, 2015).

It is generally assumed that captive breeding centers can
effectively protect giant pandas from the adverse impacts of human
activities. However, the fatal virus is felling pandas at SWARC and
four pandas have died rapidly within a short period of time so the
news that “captive pandas succumb to killer virus” (Mara, 2015)
was published, which suggested that the captive pandas were
threatened and new measures are needed to protect this iconic
endangered species. In addition, environmental pollution further
stresses rare and endangered animals in captivity. For example, we
have shown that captive pandas are exposed to heavy metals
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including cadmium, zinc, chromium, arsenic and lead (Chen et al.,
2016). We also found that chlorine and Bromine were 690% and
330% higher in feces of captive pandas than in those of wild pandas
(Chen and Ma, 2017), and we therefore hypothesized that captive
pandas may be exposed to and affected by PBDEs (polybrominated
diphenyl ethers), which include Br and is lipophilic.

PBDEs as the brominated flame retardants that are used in
electronic equipment, textiles, cabinets for television and com-
puters and sets, and in many plastic products (WHO, 1994;
Darnerud et al., 2001; Kim et al, 2012). PBDEs can be bio-
accumulate in humans and other mammals' tissue via food chain,
which are released slowly into environment, and are toxic to
humans and other mammals (Hooper and McDonald, 2000; De Wit,
2002). Exposure of laboratory animals n the life tissue to high
concentrations of PBDEs can suppress production of antibodies and
proliferation of lymphocytes (Darnerud and Thuvander, 1998),
decrease thymic weights (Fowles et al., 1994), cause immuno-
modulatory turbulence, and lead to hormonal deficits (Eriksson
et al., 2001; Branchi et al., 2003). Modulating effects of PBDE
exposure on wild animal endocrine systems also have been docu-
mented (Legler and Brouwer, 2003; Darnerud, 2003). The recent
research had found that giant pandas were exposed to PCDDs,
PCDFs, PCBs, and heavy metals in both captive breeding centers and
in situ conservation areas, but concentrations of these toxins are far
greater for pandas in captivity via the bamboo (Fargesia ginlingensis
and Bashania fargesii), and soil of their core activity area (Chen et al.,
2016). However, there is no research on the giant panda exposed
PBDEs, especially PBDEs exposure in captive and wild pandas’
dropping and blood.

Therefore, the objective of this paper to (1) test whether captive
or wild pandas are exposed to PBDEs, blood and feces, drinking
water, food (bamboo) were collected from SWARC and FNNR, and
supplemental feedstuff was collected from SWARC within the
Qinling Mountains (Fig. 1); (2) document and compare the

: g T
\F 3 - . £ ~-c o Ny .')
Typical wild giant panda

dropping callected from
Foping Nature Reserve

o
Hanzhong

Foping Nature Reserv

concentrations of PBDEs in wild and captive pandas; and (3)
identify possible sources of PBDEs contamination.

2. Materials and methods
2.1. Samples collection

The giant panda (Ailuropoda melanoleuca) as the most endan-
gered animals in our world, they are protected by law in China, and
capture panda is a crime behavior. Therefore using the directly gi-
ant panda sample was an impossible things, a non-invasive samples
was required. Fecal samples of wild pandas which can be used as
non-invasive were collected from 16 different sites of FNNR. Sam-
pling locations were spaced 10-km apart and every four indepen-
dent samples were pooled into a mixed sample. Feces of 16 captive
pandas were collected from SWARC, which was established in 1987
to conserve the Qinling panda. These samples were also pooled into
four samples each consisting of four independent samples.

Fresh leaves of living plants (500 g) of the two bamboo species
(Fargesia qinlingensis, Bashania fargesii) that are the primary food
for panda were collected in FNNR and around SWARC and the
sampling sites were very close the droppings locations. Water
samples (500 ml) were collected from streams using Pyrex boro-
silicate amber glass bottles, which are also near by the droppings
location of at FNNR, and from the SWARC water supply. At both
FNNR and SWARC, 12 samples of each bamboo species and of
freshwater were collected and pooled to produce four mixed
samples each consisting of three samples. In addition, four samples
of mixed feedstuff, provided as a nutrient supplement for captive
pandas, were also collected from SWARC.

Finally, blood samples were obtained from three similarly-aged
pandas rescued from the Qinling Mountains and three captive
pandas bred at SWARC because the blood sample was difficult to
get in the wild, so the blood samples used in this study were
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Fig. 1. Sample Collection Sites. The Shannxi Wild Animal Research Center (SWARC) is located at 34° 04’ N, 108°19’" E in Zhouzhi County, Shaanxi province. The Foping National
Nature Reserve (green shaded area) is located in the area bounded by 33° 33'—33° 44’ N, 107° 40'—107° 55’ E within Qinling Mountains (blue shaded area). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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residuals from physical examinations of the individual pandas.
Prior to examination, the pandas were anesthetized with 25% ke-
tamine (dosage = 8 mg/kg). After collection, the blood was placed
in EDTA tubes and frozen at —80 °C for analysis of PBDEs.

2.2. Sample preparation and extraction

PBDE congeners were analyzed using U.S. EPA method 1614 with
minor modifications (Li et al., 2008). After freeze-dried, bamboo,
feces, and feedstuff samples were used a stainless steel (0.5 mm)
sieve to homogenize. Each 3 g was spiked with a'>C-labeled sur-
rogate standard (BDE-LCS) before accelerated solvent extraction
(ASE) with dichloromethane (150 ml) and hexane (150 ml). After
ASE, acidic silica (15 g, 30% w/w) was added into the sample to
remove lipids. Then, 5 g of anhydrous sodium sulfate was added in
the extract. The extract sample was rotary-evaporated to 2 ml and
then passed through the multi-layered silica gel column that was
pre-cleaned by hexane (100 ml), after sample was loaded, the
congeners of PBDE were eluted with hexane followed by
dichloromethane (70 ml) and hexane (70 ml). The eluant was then
concentrated to 2 ml on the rotary evaporator. Its volume was
further reduced with a gentle nitrogen flow and the solvent was
changed to 20 ul nonane in a minivial.

PBDEs water were extracted using U.S. EPA method 1614. Prior
to extraction, 1 L filtered liquid samples were spiked with al>C-
labeled BDE-LCS standard, concentrated with the nitrogen stream,
and through a multilayer silica gel column packed with glass wool
to clean up. PBDEs in these samples were eluted with n-hexane and
decreased to 200 pL.

2.3. Instrumental analysis

BDEs 17, 28, 47, 66, 71, 85, 99, 100, 138, 153, 154, 183, and 190
were analyzed by gas chromatography—mass spectrometry (Agi-
lent 6890, USA) coupled with a high-resolution mass spectrometer
(HRMS). The HRMS operated in SIM mode with resolution >10,000.
Exactly 1 pL sample was injected with a CTC PAL autosampler in
splitless mode into an HB-5 (30 x 250 um i.d. x 0.1 um film thick-
ness) capillary column for separation. The flow rate of carrier gas
was 1.2 ml/min. The program was as follows: 80 °Cheld for 1 min,
increased to 200 °C at 10 °C/min, held at 200°Cfor 1 min, increased
to 300 °C at 20 °C/min, and held at 300 °Cfor 5 min.

2.4. Quality assurance and quality control

All solvents were pesticide residue grade and were purchased
from Fisher (Hampton, NH, USA). Silica gel was obtained from
Merck (silica gel 60, Darmstadt, Germany). '>C labeled surrogate
and labeled injection standards were purchased from Wellington
Laboratories (Guelph, Canada).

All analytical procedures were checked by the strict quality
assurance and control measures to avoid samples pollution and
cross pollution. A total of 3 blank control samples were analyzed in
same methods. Triplicate samples were analyzed to determine
repeatability and reproducibility. To monitor analyze losses, all
samples were spiked with internal standards of >C-labeled BDE47,
99, and 153. The mean recoveries of >C-labeled surrogate PBDE
congeners 47, 99 and 153 were in the range of 54.2 + 12.1%,
66.0+ 10.1%, 102.2+ 20.1%, which were well in the limits according
to U.S. EPA Method 1614 and all the content of PBDEs in control
blank samples below the detection limit and if the practical results
of concentrations below the detection limit, 1/2 LOD values to
calculate, and if the concentrations don't check out, the value is 0.

2.5. Data analysis

Correlation analysis (CA) and principal components analysis
(PCA) were used to analyze the association between 13 PBDE
congers in different samples. Paired samples were analyzed using t-
tests. All statistical analyses were used IBM statistical package SPSS
20.0 (IBM Corp., USA).

2.6. Evaluation methods

The giant panda's health risk evaluation is calculated using the
equation which detailed in USEPA's Exposure Factors Handbook
(USEPA, 1997). ADD, Average daily dose is analyzed as follow:

C x IRs x EF x ED

ADD = = AT

C is PBDEs concentration (mg/kg), IRs is ingestion rates of bamboo,
the IRs of giant panda compared with that of adult's IR, EF is the
exposure frequency, 350 day/year, ED is the exposure duration,
10.36 years, BW is the average body weight, which is 80—130 kg
(Zhang and Wei, 2006), but in our research we choose the average
weight 105 kg. AT = 3781.4 which is averaging time.

Noncancer toxic risk is determined by the model hypothesis of
HQ (Hazard Quotient):

ADD
Hq — APD
Q=%m,

RfDo is PBDEs' reference dose (USEPA, 1997). When HQ < 1, rela-
tively safe for risk exposure was considered. When 1 < HQ < 10,
considerable threaten was suggested, When HQ > 1, the high
chronic risk was considered. The risk is increasing with the value of
HQ increase (Hang et al., 2009).

3. Results
3.1. Concentrations of PBDEs

Total PBDEs concentrations were consistently and significantly
greater of captive pandas and their food supply than in wild pandas
and their food and water supply (Fig. 2). In the fecal samples,
SPBDE of captive pandas was 2.55 times greater than in wild
pandas (Fig. 2A). =PBDE of Fargesia ginlingensis was 1.13 times
higher, and of Bashania fargesii 1.55 times higher, in leaves eaten by
captive pandas (Fig. 2B and C). Water samples had low concentra-
tions of PBDEs (Fig. 2D).

Thirteen congeners of PBDEs were found in fecal samples;
BDE47, BDE66, BDE71, BDE99 and BDE154 predominated in captive
pandas (Fig. 3A). Of the dozen congeners found in the two bamboo
species eaten by captive pandas, BDE47 and BDE99 predominated
in Fargesia qinlingensis and Bashania fargesii, respectively (Fig. 3B
and C). Although captive pandas were exposed to somewhat higher
concentrations of PBDEs in their water supply (Fig. 2D), the con-
centrations of each congener were quite low and none predomi-
nated (Fig. 3D). Ten PBDE congeners were found in the
supplemental feedstuff provided for captive pandas, with BDE28
and BDE183 predominating (Fig. 3E). Finally, nine PBDE congeners
were determinated in the blood samples collected from SWARC.
BDE153 and BDE183 were the predominant congeners in captive
panda blood samples, and occurred in significantly higher con-
centrations than in blood sampled from wild pandas (Fig. 3F).
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Fig. 2. Total concentrations of PBDEs in (A) fecal samples; (B) leaves of Fargesia ginlingensis; (C) leaves of Bashania fargesii; (D) drinking water; (E) supplemental feedstuff; and (F)
blood sample of wild (gray bars) and captive (cross-hatched bars) giant pandas. In (F), the wild panda was three 17-year old individual rescued from Qingling and the captive panda
was 8—9-years old. Bars (means + 1 SE of the mean from n = 4 independent replicates comprising three or four pooled samples) with different letters between the wild and captive
pandas (a or b), Different letters indicate significant differences identified using Tukey HSD test (all P < 0.01). pg.glw~! = nanograms per gram lipid weights.

3.2. Statistical analysis

To analyze the association between fecal samples and other
samples including the Fargesia qinglingensis, Bashania fargesii,

drinking water, supplemental feedstuff and dropping samples in
the captive pandas, CA and PCA were used. Before multivariate
statistical analysis, all data was checked and standardized and all

data met the certain requirements.
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Fig. 3. The concentrations of individual PBDE congeners in (A) feces; (B) leaves of Fargesia qinlingensis; leaves of Bashania fargesii; (D) drinking water; (E) supplemental feedstuff;
and (F) blood from wild (cross-hatched bars) and captive (black bars) giant pandas. Numbers on the x-axis denote different congeners: 1 = BDE17; 2 = BDE28; 3 = BDE47;
4 = BDE66; 5 = BDE71; 6 = BDE85; 7 = BDE99; 8 = BDE100; 9 = BDE138; 10 = BDE153; 11 = BDE154; 12 = BDE183; 13 = BDE190. Different letters show significant differences
between pairs (P < 0.05).

The most significant positive correlations in SPBDEs were (r = 0.79—0.93). Concentration of PBDE in water samples was not
detected between feces and bamboos, blood and feedstuff significantly correlated with any of the other samples (Table 1).

Table 1
Spearman correlation matrix for PBDEs measured in captive samples.
Fargesia qinglingensis Bashania fargesii Blood Water Feces
Bashania fargesii 0.89**
Blood 0.92** 0.92**
Water -0.11 -0.10 0.15
Feces 0.90** 0.88** 0.93** —0.09
Feedstuff 0.73** 0.75** 0.88** 0.309 0.79**

**P < 0.01 level (2-tailed test).
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PCA (Fig. 4) grouped the congeners into three main clusters,
different samples have different main cluster. Fig. 4A was grouped
the congeners into three main cluster and the cumulative variance
contribution rate were 32.1%, 65.5% and 87.8%; the congeners of
PBDE in leaves of Bashania fargesii and stuff were grouped into
three main cluster and variance contribution rate were 16.1%, 25.6%
and 20.8% (Fig. 4B), and 28.0%, 29.3% and 20.1% (Fig. 4C); that of
drinking water was grouped one cluster and the rate is 19.8%
(Fig. 4D). The result illustrated a clustering of congeners BDE47,
BDEG6, BDE71, BDE99 and BDE154 in leaves of Bashania fargesii that
matched the predominant congeners found in fecal samples
(compare Figs. 4B and 3A).

3.3. Health risk assessment

The order of Hazard Quotient of thirteen kinds of congeners of
PBDEs in captive panda is BDE99 (1.60) > BDE47(1.10)
> BDE100(1.07) > BDE153(0.97) > BDE154(0.55) and so on. That in
wild panda is BDE47 (1.20) > BDE100(0.99) >
BDE154(0.75) > BDE153(0.57) > BDE99(0.55) and so on. The HQ
values > 1, showing that BDE99 and BDE47 can pose health risk to
captive giant panda, whereas BDE47 is the essential congener,
which can threaten the health risks of wild panda.

4. Discussion

The first objective of our research was to test this hypothesis
that giant pandas were exposed to PBDEs. Our previous research
had found that Br in the captive pandas' fecal samples were 3.3
times higher than that in wild pandas (Chen and Ma, 2017), and
data reported here supported the resulting hypothesis that captive
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exposure of wild and captive pandas. Not surprisingly, given the
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fargesii growing around the captive breeding center was signifi-
cantly higher than that growing in the nature reserve (Fig. 2B and
C). The panda captive breeding center at SWARC, which location is
close to some city and is near to several potential sources of PBDE
contamination including waste incinerators, electronic-waste pro-
cessing facilities, and industrial discharges (He et al., 2014; Kosior
et al,, 2015; Wang et al., 2015).

The final objective of our research was to identify possible
sources of exposure for PBDE pollution by pandas. This study is the
first time to measure PBDEs concentrations in bamboo, so the
concentration could only be compared with unrelated plant spe-
cies. The =PBDEs of Fargesia ginlingensis and Bashania fargesii
growing at FNNR and SWARC in our study were higher than that of
Pleurozium schreberi in uncontaminated area (the value is 755.6 pg/
g dry mass) and urban areas (the value is 3062.9 pg/g dry mass).
Pandas eat little besides bamboo. They can consume >20 kg/day
(Tuanmu et al., 2013) and bamboo accounts for > 99% of their diet
(Hu, 1991, 2000), yet only 25% of the nutrients in bamboo can be
assimilated (Zhou et al., 2008). The similarities in congener profiles
of panda fecal samples (Fig. 3A) and the clustering in the PCA
(Fig. 4B), suggest that bamboo is the primary source of PDBE
exposure for pandas.

The very low concentrations of PDBEs in water (Figs. 2D, 3D and
4D) are unlikely to be an important source of PDBEs for pandas.
Likewise, the feedstuff appears an unlikely route of exposure. In
captivity, pandas are fed a steamed bread supplement (“feedstuff”)
that includes additional ingredients, including milk powder, apple,
carrot, steamed bran, rice flour, maize flour, bean flour, fishmeal,
bone meal, and mineral additives that provide supplemental nu-
trients essential for successful breeding programs (Chen and Ma,
2017). The SPBDE in feedstuff (28.8 pg g~!; Fig. 2E) exceeded
PBDE concentrations in some farmland grains (13.7 pg g~ ': Luo
et al., 2009) but not others (30—440 pg g~!: Zheng et al,, 2015).
This might due to the feedstuff used in our research was purchased
from local market instead of from locally-grown ingredients.

To our knowledge, this is the first investigation of exposure of
pandas to PDBEs, and one of only a very few studies of PDBE
exposure and bioaccumulation in a terrestrial species (Hoshi et al.,
1998; Christensen et al., 2005) and there no some values be
compared in our study, so we according to the HQ model to access
the exposure risk and the results showed that HQ(BDE99),
HQ(BDE47) and BDE(153) >1 could be threatening the health of
giant panda especially BDE99 and BDE47 for captive panda.

Pandas in captive breeding centers are generally thought to be
better protected from human activities than are wild pandas in
nature conservation zones, primarily because these zones have
become more fragmented and less suitable for supporting this
species over time (Chen et al., 2016). However, our data provide
direct evidence that giant pandas are exposed to PCDEs in both
captive breeding centers and in situ conservation areas thought test
the feces, blood and so on, but concentrations of these toxins are
significant greater in captivity than that in wild.

PBDEs most likely through the bamboo they eat. Mean 30 kg
bamboo shoots and leaves every day can be consumed by giant
panda (Tuanmu et al., 2013). Therefore, even relatively low con-
centrations of PBDEs in bamboo tissue can still lead to a higher
dietary exposure, which can threaten giant pandas' health. For
mammals, PDBEs can be transferred to nursing offspring via
mother's milk (Travis and Hattermer-Frey, 1991; Beineke et al.,
2005, 2007). Because PBDEs can also be immunosuppressants
(Arkoosh et al., 2010; Frouin et al., 2010; Lv et al., 2015), they could
make pandas more vulnerable to bacterial and viral infections.
Therefore, it should be taken seriously for other animals and human
in captivity.

5. Conclusions and recommendations

Our data suggest that pandas are exposed to high levels of
PDBEs in captive breeding centers, and may represent a significant
health risk for pandas in captivity. We recommend that managers
of these centers and captive breeding programs, including the
Chinese State Forestry Administration (SFA) seek strategies to
minimize PDBE exposure by pandas lest decades of successful ex
situ conservation efforts become compromised by the increasing
pollution associated with Chinese economic development. A short-
term solution to addressing this issue is to reduce the supply of
contaminated Bashania fargesii and to grow uncontaminated
bamboo strictly for captive pandas. In the long term, however,
sustaining a successful captive breeding program for pandas will
require reduction of air, water, and soil pollution that will lead to
improvements in the environmental quality of the giant panda's
natural habitat.
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