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Summary

� The analysis of spatial patterns in species–environment relationships can provide new

insights into the niche requirements and potential co-occurrence of species, but species abun-

dance and environmental data are routinely collected at different spatial scales. Here, we

investigate the use of codispersion analysis to measure and assess the scale, directionality and

significance of complex relationships between plants and their environment in large forest

plots.
� We applied codispersion analysis to both simulated and field data on spatially located tree

species basal area and environmental variables. The significance of the observed bivariate spa-

tial associations between the basal area of key species and underlying environmental variables

was tested using three null models.
� Codispersion analysis reliably detected directionality (anisotropy) in bivariate species–envi-
ronment relationships and identified relevant scales of effects. Null model-based significance

tests applied to codispersion analyses of forest plot data enabled us to infer the extent to

which environmental conditions, tree sizes and/or tree spatial positions underpinned the

observed basal area–environment relationships, or whether relationships were a result of

other unmeasured factors.
� Codispersion analysis, combined with appropriate null models, can be used to infer hypoth-

esized ecological processes from spatial patterns, allowing us to start disentangling the possi-

ble drivers of plant species–environment relationships.

Introduction

Environmental variability is a key driver of variation in biological
diversity (Chesson, 2000). The analysis of the spatial patterns in
species–environment relationships can reveal clues about the
niche requirements of individual species and their potential for
co-occurrence with other species (Silvertown, 2004). The quan-
tification of spatial patterns of the distribution and abundance of
species can illuminate scales of variation. These patterns often
suggest experimentally testable hypotheses about multiple inter-
acting processes that may drive species distribution and abun-
dance patterns (Hubbell, 1979; Wiegand et al., 2012).

The usual approach to relating spatial patterns of environmen-
tal gradients and populations of sessile organisms (e.g. plants, ant
nests, barnacles) starts with the recording of the positions of indi-
viduals or, in the case of composite, plot-based measures, such as
species richness or cover values, the positions of plots. This

enumeration yields a spatial point pattern (Dale, 1999). Environ-
mental variables are then sampled, but they often are not mea-
sured at the same spatial grain as the point pattern. Examples
include soil samples collected on a regularly spaced grid (John
et al., 2007; Turner & Engelbrecht, 2011), elevation and slope
measurements derived from a digital elevation model (Franklin,
1995) or climate variables derived from a spatial database, such
as ‘WorldClim’ (Hijmans et al., 2005). Relationships between
point patterns and environmental data can be analyzed using
nonspatial methods that emphasize causal relationships (e.g.
canonical correspondence analysis, Lep�s & �Smilauer, 2003;
species distribution models, Elith & Leathwick, 2009; or regres-
sion models, Shen et al., 2009), or by spatial methods that deal
with the visualization of pattern and the quantification of scales
of variability in correlations; our focus here is on the latter.

The majority of the standard spatial descriptors used by ecolo-
gists, such as semivariograms, assume that the spatial processes
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underlying the distribution of organisms (spatial point pattern),
the associated environmental gradient and their covariation are
stationary (spatial processes are invariant under translation) and
isotropic (nondirectional) within the sampling extent (Cressie &
Wikle, 2011; see Table 1 for the spatial terminology used in this
paper). However, although these assumptions are convenient
mathematically, they are typically unrealistic for most real-world
examples.

First, the strong form of spatial stationarity (invariance
under translation) is unlikely to be met in any real-world case.
As a result, most spatial processes are assumed to have only

second-order stationarity: only the mean, variance and covari-
ance need to be stationary (Vieira et al., 2010). However, even
second-order stationarity is unlikely in many ecological cases,
and we assume only the ‘intrinsic hypothesis’ – that the mean
and the semivariance of the distribution are dependent on
interpoint distances, not specific locations (Vieira et al., 2010).
Second, in many ecologically realistic cases, environmental gra-
dients create anisotropic patterns in the distributions or abun-
dances of species, where changes in the distributions or
abundances of species reflect changes in the magnitude of the
environmental variable(s).

Table 1 Definitions of spatial terminology used in this paper

Term Description References

Anisotropy When the spatial correlation is dependent on direction (opposite to
isotropy, where the correlation is the same in all directions). For
example, species across a stress gradient are anisotropic when
associations vary between aggregated and segregated with
decreasing stress (Bertness & Callaway, 1994)

Dale (1999)

Kernel bandwidth The bandwidth is the set of parameters used in the kernel function
of the codispersion analysis that is applied across all possible raster
cell-to-cell distances for each spatial lag, resulting in a spatial
variation surface. In the case of 209 20-m2 grids, we apply a
20-m bandwidth because that is the smallest scale (spatial grain)
of the data

Cuevas et al. (2013); Buckley et al. (2016); this work

Codispersion A measure of the covariation of two variables in space. For
example, covariation in the basal area of two tree species
measured in 209 20-m2 grid cells in a large forest plot

Cuevas et al. (2013); Buckley et al. (2016); this work

Marks Attributes associated with each point in a spatial point pattern. For
example, diameters or diseased/healthy status of trees in a forest
plot

Wiegand &Moloney (2014)

Semivariogram A function, usually plotted as a two-dimensional graph, revealing
spatial correlation among measurements from a set of samples. It
has three key parameters: nugget, sill and range. The
semivariogram shows at what spatial lags spatial variability occurs
in a spatial dataset, that is, the scale of variation in the data

Dale (1999)

Spatial autocorrelation Dependence of observations on spatial proximity. For example,
tree sizes may be spatially autocorrelated if growth is positively
influenced by a patchily distributed environmental resource; high-
resource patches will contain large trees and low-resource patches
will contain small trees

Wiens (1989)

Spatial lag The distance over which a process is measured. For example, when
visualizing codispersion of a species and an environmental
variable, we plot the codispersion for a range of spatial lags (and
directions), that is, we ask, what is their covariation at distances
(lags) of 20m, 40m, 60m, . . .?

Cuevas et al. (2013); Buckley et al. (2016); this work

Spatial point pattern A set of locations in X, Y space. Spatial point patterns may be simply
locations (unmarked pattern) or locations with attributes (marked
pattern). For example, the X, Y coordinate locations of trees in a
forest plot

Dale (1999); Wiegand & Moloney (2014)

Spatial processes A process whose action causes changes in a spatial pattern Wiens (1989)
Stationarity The ‘strong’ form of spatial stationarity is the situation in which the

joint distribution of the data is invariant when the pattern of either
one is moved (translated) through space. A weaker form of spatial
stationarity, ‘second-order stationarity’, assumes that only the
mean, variance and covariance must be stationary. A still weaker
form of stationarity – the ‘intrinsic hypothesis’ – is a lack of spatial
trend, such that the mean and semivariance of the distribution are
dependent only on the distance between points, not their
locations. Either second-order stationarity or the intrinsic
hypothesis is an assumption of most spatial statistical inference
methods

Dale (1999); Vieira et al. (2010)
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A familiar example of an anisotropic relationship between
environmental gradients and species distribution arises from
the ‘stress gradient hypothesis’ (Bertness & Callaway, 1994).
This hypothesis posits that, as the environment becomes less
stressful for species (e.g. salt spray decreases with distance from
the high tide line), intra- or interspecific interactions switch
from predominantly facilitative to predominantly competitive.
As a result, the pattern of species distributions may shift from
aggregated to regular (e.g. Malkinson et al., 2003; Lingua et al.,
2008) or even hyperdispersed. Additional processes that may
influence the clumping of species across environmental gradi-
ents include dispersal limitation, habitat filtering and density-
dependent interactions with natural enemies (Condit et al.,
2000; Morlon et al., 2008; McGill, 2010). Accurate identifica-
tion of the underlying causes of such complex spatial patterns
requires analytical methods that are sensitive not only to the
spatial grain of the pattern, but also to nonstationarity and
anisotropic changes over space.

Here, we illustrate how to use codispersion analysis (Cuevas
et al., 2013; Buckley et al., 2016) to detect and display both
isotropic and anisotropic spatial relationships between a spatial
point pattern of the locations and attributes of species, and
associated environmental variables measured at larger spatial
grain. The analysis is based on the codispersion coefficient
between the ecological characteristics of a plant species (e.g. the
relative abundance, biomass, size or other functional trait) and
an environmental variable in a given direction and within a
given distance across a particular spatial extent, such as a plot.
Codispersion analysis has been applied previously only to a few
data types in ecology, including the relationship between tree
size and an underlying environmental gradient (topography) at
a landscape-level spatial extent (Cuevas et al., 2013), multivari-
ate spectral data (Vallejos et al., 2015) and species co-
occurrences (Buckley et al., 2016). In this study, we apply
codispersion analysis first to simulated data, and then to tree
location and size (diameter) data from two large forest plots,
one tropical and one temperate. Our results illustrate how
codispersion analysis can be used to detect spatial patterns in
tree size across environmental gradients. In addition, we
demonstrate a framework for the use of different null models to
test the significance of these spatial patterns (i.e. the departure
of the observed patterns from random expectation), and how
differences in significance among null model tests can be used
to generate hypotheses about, and guide the structuring of,
models of underlying spatial processes. Specifically, we ask, at a
209 20-m2 grain size, what is the direction, magnitude and
spatial pattern in covariation between selected tree species and
environmental variables across these two large forest plots? For
the purposes of illustrating this method, we selected common
species that covaried with the environmental variables in a vari-
ety of ways to reflect some of the different underlying processes
that can drive species–environment relationships. For example,
we can explore whether covariation is higher between the basal
area of a tree species and an environmental variable within 50 m
in a northerly direction than would be expected if the species
was randomly distributed.

Materials and Methods

An overview of codispersion analysis

Codispersion analysis quantifies the spatial covariation of two or
more spatially explicit datasets. The result is a two-dimensional
codispersion graph that allows us to assess how the two datasets
covary across a range of spatial lags (distances between points)
and directions (Table 1; Fig. 1; Vallejos et al., 2015). Codisper-
sion analysis can be applied to datasets organized as spatial point
patterns, irregular plots or rasters. Spatial point patterns depict
the locations of individuals (e.g. trees) and possible attributes
(‘marks’) of these individuals (e.g. diameters or other functional
traits) measured at these same locations. Rasters are often used to
depict measurements of continuously varying soil or topographic
properties as regular grids of cells of a particular size (resolution)
from interpolations of variables that have been measured within
the same vicinity as, but not precisely at the locations of, the
point patterns. Spatial point patterns may also be converted (up-
scaled) into rasters before codispersion analysis, such as by the
quantification of tree abundances (stem density) or basal areas
within raster cells of a given size.

(a)

(b)

Fig. 1 (a) An illustration of the creation of directional spatial lags for
ecological data organized as rasterized surfaces (both variables are
represented by the large grid). The dashed lines represent different spatial
lags h over which codispersion is calculated in different directions. (b) The
codispersion graph. The color of each cell is the value of the codispersion
coefficient of two variables for each given spatial lag h and direction in
X, Y space. In this example, the graph shows negative covariation between
the two variables when looking in the east direction, but positive
covariation when looking in the northwest direction, indicating anisotropy
in the way in which the two variables covary. The color pattern on the
graph also indicates that the two variables are most negatively correlated
at spatial lags > 20m in the positive X direction, and most positively
correlated at scales of c. 20–30m in the negative X direction and at c. 50–
80m in the Y direction. Figures taken from Buckley et al. (2016).
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In-depth statistical details of the mechanics of codispersion are
given in Ruhkin & Vallejos (2008), Cuevas et al. (2013) and
Buckley et al. (2016); in the latter, we consider species co-
occurrences. Annotated R code (R v.3.1.2; R Core Team, 2014)
for the performance of codispersion analysis, including its appli-
cation to examples from this study, is provided in Supporting
Information Notes S1.

In brief, codispersion analysis for two spatial datasets involves
five steps.

The first involves the determination of the set of spatial lags
h = {h1, h2} : h ≤ 0.259maximum distance of the shortest side
of the sample plot. The two components of h are vectors repre-
senting the range of spatial lags to be analyzed for each input
dataset A (e.g. tree basal area) and B (e.g. elevation above sea
level). h1 is oriented parallel to the x-axis, and ranges from �hmax

to + hmax (Fig. 1a). h2 is oriented parallel to the y-axis and ranges
from 0 to hmax (Fig. 1a). We note that two opposite directions
are incorporated into the analysis along the x-axis (positive and
negative), and so any anisotropy in the data will be more appar-
ent along this axis. We therefore recommend that the dataset be
oriented in such a way that the directionality of patterns of partic-
ular interest is along the x-axis direction, or that the data be
rotated and analyzed in both directions.

Second, an Epanechnikov kernel function (Cuevas et al.,
2013) is applied across all possible raster cell-to-cell distances for
each h, resulting in a smooth spatial variation surface for each
individual dataset and their intersection. The ‘smoothness’ of the
kernel surfaces is controlled by a set of kernel bandwidth parame-
ters k = {kA, kB, kAB} (Cuevas et al., 2013). As rasterization of a
spatial point process implies a uniform smoothing at the scale of
the raster cell (Buckley et al., 2016), when analyzing rasterized
data, we recommend setting each element of k equal to the
dimension of the raster cell to avoid unintentional repeated
smoothing of the data.

Third, semivariograms for A and B and the semi-cross-
variogram of the intersection of A and B are computed for the
kernel-smoothed surfaces (Cuevas et al., 2013).

Fourth, the empirical codispersion coefficient is computed for
each lag h as the semi-cross-variogram divided by the square root
of the product of the semivariograms for each of the two vari-
ables. The value of the codispersion coefficient ranges from �1.0
(strong negative codispersion) to + 1.0 (strong positive codisper-
sion).

Finally, the codispersion values are plotted for each lag h
(Fig. 1b). The magnitude of the codispersion values on the graph,
and the way in which codispersion values change across the
graph, provide information on the strength and direction of
covariation between the two datasets at different spatial grains
(Fig. 1b).

Here, we first apply codispersion analysis to simulated data
and use three null models to assess the significance of the
observed patterns in both simulated and field data. We then
apply codispersion analysis to explore the spatial relationships
between tree basal areas and underlying environmental variables
measured within multihectare forest plots. The results provide
new insights into the potential processes underlying the observed

patterns, and can provide guidance for the development of flexi-
ble, mechanistic process-based models for the data.

Simulations

To illustrate how to apply and interpret codispersion analysis for
species–environment relationships, we first generated and ana-
lyzed a range of species patterns on environmental gradients (ex-
amples in Fig. 2; the complete set of simulated patterns is given
in Notes S2; R code to generate them is given in Notes S1, see
later). We simulated marked point patterns in a 3009 300-m2

‘plot’ by generating 1500 point locations (representing individual
trees) that either were completely spatially random (CSR) or were
generated by a Thomas process (using the rThomas function in
the spatstat package of R; Baddeley & Turner, 2005). A Thomas
process generates a clumped spatial distribution of points using
parameters that describe the spatial intensity of the pattern (in
this case, kappa = 20 was used), the degree of variation within
clumps (scale = 0.05) and the average number of points per clus-
ter (mu = 10). A simulated diameter (i.e. a ‘mark’) was assigned
to each simulated ‘tree’. Diameters were generated using a trun-
cated lognormal distribution with minimum = 1, maxi-
mum = 80, mean = 40 and SD = loge(80/15) cm. These marks
were distributed across the 1500 trees either randomly, increasing
or decreasing to the left side, right side, left or right top corners,
or increasing as a large clump in the center of the plot (Fig. 2).
We calculated the basal area of the simulated trees within each of
225 contiguous 209 20-m2 cells within the simulated
3009 300-m2 plot; 209 20-m2 cells were used because this is
the size of typical forest inventory plots used to characterize stand
structure. We then generated values for environmental variables
within each raster cell. The values of the environmental variables
were generated at 3600 points within the plot (59 5 m2 cells)
and were distributed randomly among the cells or increasing or
decreasing to the left side, right side, left or right top corners, or
increasing towards a maximum in the center of the plot; these
examples include gradient patterns at a range of angles and rota-
tions. The environmental raster gridded into 59 5-m2 cells was
upscaled by taking the average value in 209 20-m2 cells, so that
the values were at the same locations and scale as the basal area
data. For the codispersion analyses of these simulated data, we set
the bandwidth k = {20 m, 20 m, 20 m}.

Forest plot data

We analyzed species–environment relationships between tree size
(basal area) and environmental characteristics at two sites. The
two datasets include environmental data that were collected in
different ways: direct measurements in each raster cell, and spatial
interpolation (downscaling) of sparser data to individual raster
cells using kriging (John et al., 2007).

The first dataset is from the third (2000–2002) complete
census of the 16-ha Luquillo Forest Dynamics Plot (LFDP) at
the Luquillo Long-Term Ecological Research Site, Puerto Rico
(Thompson et al., 2002). The four species selected were
Casearia arborea (L. C. Rich.) Urban (Salicaeae), Cecropia
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schreberiana Miq. (Urticaceae), Dacryodes excelsa Vahl. (Burser-
aceae) and Prestoea acuminata var montana (Willd.) H.E.
Moore (Arecaceae). These are four of the most common
species (out of 152 in total) in the third census of LFDP;
together, they account for 44% of the total basal area of the
plot (Table 2a). For each species, the basal area (m2) of the
main stem of each tree was calculated from its measured
diameter; basal areas of all trees of a given species in each
raster cell were summed to give the total basal area of the
species for that cell. Elevation (range 333–428 m above sea
level) was measured (1990–1992) and mean elevation was cal-
culated for each cell as the mean of the elevations at the four
corners of each 209 20-m2 cell (Thompson et al., 2002).
Slope (range �0.7 to 65%) was calculated from the corner
elevations of each 209 20-m2 cell (Thompson et al., 2002).

The basal area of Casearia and Prestoea decreases, but the basal
area of D. excelsa increases, with elevation in LFDP as a result of
the pattern of land-use history in the plot (Thompson et al.,
2002). The northern (lower elevation) two-thirds of the plot were
logged before 1934 and used for subsistence agriculture. Logging
and agriculture ceased when the area was purchased in 1934, and
the regenerating forest is dominated by Casearia, but Prestoea also
has its highest basal area there. Prestoea is often associated with
slopes and ravines and disturbed areas (Weaver, 2010; Harris
et al., 2012). At the highest elevations and the southern third of
the plot, human disturbance to the forest was limited to selective
logging; Dacryodes dominates these areas of the plot (Thompson
et al., 2002). The dominance of Cecropia in the northern portion
of the plot recorded in the third census is thought to have
resulted from interactions between land-use history and hurricane

Simulated grid pa erns
Environment Basal area

Semi-variograms Codispersion

(a)

(b)

(c)

(d)
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Fig. 2 Simulated species–environment patterns on 209 20-m2 grids in 3009 300-m2 plots, their variograms and cross-variograms, and codispersion
graphs. In the variograms, the blue line is the environment variogram, the green line is the species variogram and the pink line is the cross-variogram. The
colors of the codispersion graphs are scaled from �1 (purple) to +1 (orange). The underlying pattern (environment, basal area) and mean (standard
deviation) codispersion values for each analysis were: (a) CSR, CSR: 0.03 (0.04); (b) uniform, decreasing X and Y: �0.02 (0.03); (c) decreasing X,
decreasing X: 0.46 (0.19); (d) decreasing X, decreasing X (underlying Thomas distribution): 0.25 (0.15); (e) decreasing X and Y, increasing X: �0.16 (0.29);
and (f) bivariate normal, increasing X and Y: �0.23 (0.11).
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disturbance. Cecropia recruited in huge numbers following Hur-
ricane Hugo in September 1989 (Zimmerman et al., 2010), such
that > 95% of Cecropia individuals of this species recruited fol-
lowing this one disturbance event. Zimmerman et al. (1994)
noted that Casearia was especially susceptible to uprooting during
Hurricane Hugo, which opened the forest canopy. Walker
(2000) found that Cecropia frequently recruited in soil pits
caused by uprooted trees and survived longer in this area of the
plot because of the persistence of canopy light gaps. Thus, the
prevalence of Cecropia in the lowermost elevation and flatter
northern portion of the plot may be the result of hurricane dam-
age caused to Casearia and other species in this portion of the
plot.

The second dataset is from the Tyson Research Center Plot
(TRCP), a 25-ha forest dynamics plot located at Washington
University in the St Louis Tyson Research Center, MO, USA
(Spasojevic et al., 2014). We analyzed species–environment rela-
tionships for five woody species in the central 20-ha of the plot:
Frangula caroliniana (Walter) A. Gray (Rhamnaceae), Lindera
benzoin L. Blume (Lauraceae), Quercus alba L., Q. rubra L. and
Q. velutina Lam. (Fagaceae). The three Quercus species were
some of the most widespread species in the plot, whereas
Frangula and Lindera were selected because they were the two
most abundant species in the plot and had interesting, highly
clumped spatial patterns. Together, these five species comprised
78% of the total basal area of TRCP in the 2013 census
(Table 2b). Principal components (PC) analysis (see Notes S3)
was used to summarize, in two composite principal axes, the vari-
ation in 17 physicochemical soil properties that were measured at
points across TRCP in 2013 and kriged to 209 20-m2 raster
cells (Spasojevic et al., 2014). Maps of individual environmental
variables are available on the TRCP website (http://
www.ctfs.si.edu/site/Tyson+Research+Center%2C+Missouri) and
the data used in this paper are provided in Tables S1, S2.

Null model analyses

To assess the significance of the observed codispersion patterns,
we used three different null models to randomize aspects of the
spatial point processes and their marks (diameters) (Table 3). In
each, only the species location data, rather than both species and
environment data, were randomized, because this was sufficient
to break any spatial association of the species data with the envi-
ronmental variable and allowed us to test the significance of their
covariation. The three null models were a CSR model (CSRM),
a random labeling model (RLM) and a toroidal shift model
(TSM) (see Wiegand & Moloney (2014) for detailed descrip-
tions of these null models and other examples of their use).

The CSRM generated new spatial locations for trees; the
observed tree diameters were then assigned randomly (without
replacement) to each tree at its new location. Comparison of the
observed codispersion patterns with those generated by this null
model tested whether there was any nonrandom spatial pattern in
the covariation of the observed tree population (basal area within
209 20-m2 grid cells) and the environmental variable (Table 3).
One difficulty with CSRM is that where species distributions are
clumped, this may result in a Type I error rate that is higher than
0.05. Thus, a significant departure from the expectation of this
null model may reflect the presence of clumping in the distribu-
tion of species (Table 3) and the interpretation of a significant
result must be made with caution. For example, we can use a
CSRM to ask whether a species increases in basal area at lower
elevations in the plot, but, if the spatial distribution of the species
is clumped, we could obtain a ‘significant’ result even if there was
no relationship between basal area and elevation. Overall, how-
ever, this significance test can be used as an initial test for spatial
nonrandomness in the dataset.

The RLM permuted the observed diameters of the trees whilst
retaining the observed spatial position of each tree. This null

Table 2 Abundances, mean diameters (diameter at breast height, dbh) in centimeters (SD), and the means and ranges in codispersion for basal area–
environment relationships for the analyzed species in the (a) Luquillo Forest Dynamics Plot and (b) Tyson Research Center Forest Plot

(a) Luquillo Forest Dynamics Plot (2000–2002 census data)

Species
Number
of stems Mean dbh (SD)

Total basal
area (m2 h�1)

Mean (SD)
codispersion
with elevation

Range in codispersion
with elevation
(min, max)

Mean (SD)
codispersion
with slope

Range in codispersion
with slope (min, max)

Dacryodes excelsa 1544 21.18 (15.71) 84.28 0.00 (0.08) �0.17, 0.14 0.03 (0.02) �0.03, 0.10
Cecropia schreberiana 2902 10.02 (6.65) 32.95 0.14 (0.04) 0.06, 0.22 0.11 (0.06) �0.05, 0.25
Casearia arborea 3861 5.63 (5.38) 18.39 0.05 (0.09) �0.12, 0.21 �0.13 (0.06) �0.24, 0.02
Prestoea acuminata 7707 14.29 (2.96) 128.82 �0.10 (0.07) �0.24, 0.02 0.10 (0.03) 0.02, 0.17

(b) Tyson Research Center Plot (2013 census data)

Species
Number
of stems Mean dbh (SD)

Total basal
area (m2 h�1)

Mean (SD)
codispersion
with soil PC1

Range in codispersion
with soil PC1 (min, max)

Mean (SD)
codispersion
with soil PC2

Range in codispersion
with soil PC2 (min, max)

Frangula caroliniana 8715 2.04 (0.85) 3.34 0.41 (0.12) 0.17, 0.62 0.03 (0.10) �0.16, 0.21
Lindera benzoin 4922 1.84 (0.66) 1.48 0.28 (0.14) 0.06, 0.56 0.06 (0.13) �0.11, 0.36
Quercus alba 2066 29.57 (16.24) 184.66 �0.04 (0.04) �0.14, 0.07 0.13 (0.05) 0.03, 0.24
Quercus rubra 1551 30.03 (17.63) 147.73 �0.39 (0.12) �0.56, �0.15 0.03 (0.05) �0.06, 0.13
Quercus velutina 691 33.46 (13.92) 71.27 �0.09 (0.09) �0.28, 0.08 �0.09 (0.05) �0.19, 0.03

Codispersion was estimated in the 209 20-m2 raster cells in which environmental variables were measured.
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model tested whether, given the underlying spatial distribution of
trees (a particular autocorrelation structure), their sizes were
important in determining any covariation with the environmen-
tal variable (Table 3). For example, under this null model, we can
test whether covariation between basal area and soil fertility is a
result of differences in the growth rates of species along a soil

fertility gradient, rather than changes in stem density. Mechanis-
tically, in this example, the tree distributions may be driven by
clumped dispersal processes that are uniform across the plot area,
but the growth rates of species may vary with soil fertility.

The TSM retained the autocorrelation structure of the tree
populations by retaining their relative spatial positions and

Table 3 The three null models, an example realization of each, how they were applied in this paper and their associated null process models: for each
example (which was randomized by each null model), the hypothesized ecological process is that basal area (BA) is conditional on one or more of the
spatial point patterns of trees (ppp), their diameters (marks) and the spatial distribution of the environmental variable (env): BA | (ppp, marks, env)

Null model Example Null process Test

Completely spatially
random model (CSRM)

BA; (ppp, marks) | env
The spatial distribution and diameters of
individual trees, from which basal area is
computed, are random and therefore
independent of the environment

This model tests for nonrandom
spatial covariation between BA
and the environmental
variable

Random labeling model (RLM) BA; marks | (ppp, env)
Where individual trees grow is fixed (as a
result of another process, such as
competition), but how they grow (size) is
independent of the environment

This model tests whether the
environmental
variable is associated with growth
differences among individual trees,
whose diameters are aggregated to
compute BA in each raster cell

Toroidal shift model (TSM)
BA; env | (ppp, marks)
Where trees grow relative to one another
and the spatial distribution of their relative
sizes are driven by an unknown
(unmeasured) process, but where and how
they grow (e.g. size) is independent of the
environment

This model tests for nonrandom
spatial covariation between BA and
the environmental variable, given the
underlying marked spatial point
pattern of the species

Each null model breaks apart this conditional process in a different way, as is indicated by the conditional statement (in bold type) and its associated
explanation in the ‘Null process’ column.
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diameters, but breaking their spatial association with the environ-
mental variable by moving the entire species pattern in a random
distance and direction as though the plot was a torus. This model
tested whether the observed pattern in covariation between the
species and environmental variable was the same in all parts of
the plot, that is, whether the pattern in covariation is stationary
(Table 3). TSM is similar to CSRM in that it completely breaks
any association between the two variables, but it fixes the distri-
bution pattern of the species. Thus, it distinguishes the case in
which a nonrandom codispersion pattern may simply be driven
by relative tree positions from a process-based link between the
environment and the species. For example, under this null model,
we ask whether tree basal area varies with soil fertility and
whether the nature of that covariation is the same throughout the
plot. When combined with the results of CSRM, we can deter-
mine whether nonrandomness identified using CSRM is a result
of a species–environment relationship (significant TSM) or of
clumping in the species distribution (nonsignificant TSM)
(Table 3).

For each species, each of the three null models was used to gen-
erate 199 new datasets. For each species–environment combina-
tion, empirical tail probabilities were obtained by comparing the
observed codispersion values at each spatial lag with the vector of
codispersion values at the same spatial lags and directions deter-
mined from each null model. If the observed value was greater
than or equal to the 195th null value or less than or equal to the
fifth null value, we deemed it to be significantly different from
expected (i.e. a two-tailed test; P < 0.05). Thus, the significance
tests were made for each lag and direction for which we obtained
a codispersion value.

Finally, we determined the Type I error rate for each of the
three null models by comparing the observed codispersion
between two CSR simulated patterns (see Notes S4) with values
generated by CSRM, RLM and TSM. It should be noted that
the Type I error rate, our ability to identify nonsignificant codis-
persion values, is invariant to rotation, and the error rate tests of
the null models do not address the Type II error rate (statistical
power), which remains an issue of ongoing research. R code for
the null model analysis is provided in Notes S1.

Results

Species–environment associations of simulated forest plot
data

Codispersion plots clearly illustrated the relationships between
simulated species and their environment, and detected
anisotropic, positive and negative covariation between the two
variables (Fig. 2). When the simulated environmental pattern was
generated using a CSR process, the cross-variogram and the
codispersion were both approximately zero (little or no spatial
covariation), whether or not the spatial pattern in basal area was
also CSR (Fig. 2a; extended results in Notes S2). When the envi-
ronmental variable was generated using a uniform process across
the plot, but the basal area of the species decreased from the bot-
tom left to the top right of the plot (i.e. southwest to northeast),

the codispersion was weakly negative and weakly anisotropic.
This result reflected the changing pattern of covariation in the
two variables in the X- and Y-directions. By contrast, the cross-
variogram was approximately zero (Fig. 2b). Sequential pattern
rotations of 15° showed that codispersion analysis can also distin-
guish smaller changes in pattern orientation (Notes S2).

When basal area tightly covaried with the environmental vari-
able, the cross-variogram steeply increased and the codispersion
was very high, only weakening at smaller scales that approached
the spatial grain of the pattern (Fig. 2c). This pattern, and indeed
all pattern combinations, had lower codispersion values when the
underlying point pattern of the species was clumped (Thomas
process) rather than CSR (Fig. 2d; extended results in Notes S2).
A difference in pattern between the left- (west) and right-hand
(east) sides of the codispersion graph indicated anisotropy. For
example, where the environmental variable decreased from bot-
tom left (southwest) to top right (northeast), and the basal area
increased from west to east, codispersion measured negative
covariation in the west-to-east direction, but showed some posi-
tive covariation at larger scales when looking to the northeast and
negative covariation at larger scales when looking to the east
(Fig. 2e). This pattern was also reflected somewhat in the cross-
variogram, which was flat at small lags, but negative at larger lags
(Fig. 2e). Similarly, where there was some covariation in a given
direction (Fig. 2f), in this case from bottom left (southwest) to
top right (northeast), the codispersion map illustrated the
anisotropy (the right-hand side of the plot was more negative
than the left-hand side), showing a relationship that was more
negative at larger scales. In this case, the cross-variogram was
most negative at similar scales (100–150 m), but did not reflect
the anisotropy (Fig. 2f).

For all analysis combinations of the three null models and the
two underlying tree distributions (CSR and Thomas process),
none of the observed codispersion values from the two CSR pat-
terns was significantly different from that expected under either
model at the 5% level. In our simulations, the CSR model
resulted in only one significant cell (out of 200 cells) in the codis-
persion graph (see Notes S4). These results are indicative of a
Type I error rate of ≤5%.

Species–environment associations of observed forest plot
data

In LFDP, the basal area of Casearia, Cecropia and Prestoea gener-
ally decreased with increasing elevation, whereas the basal area of
Dacryodes increased with increasing elevation (Fig. 3; Table 2a),
reflecting the interaction of elevation and land-use history in the
plot (Thompson et al., 2002). For Casearia, this pattern was
reflected in a weak, anisotropic codispersion pattern, where west-
to-east codispersion was more positive than east-to-west codisper-
sion, which became more negative in the northeast direction
(Fig. 4a). The codispersion was weakly negative and anisotropic
for the basal area of Cecropia (Fig. 4b), and similar, but positive,
for that of Dacryodes (Fig. 4c). The basal area of Prestoea nega-
tively covaried with elevation at the larger scales, reflecting its
lower basal area at the highest elevations (Fig. 4d). The basal area
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of Casearia negatively covaried with slope, whereas the basal area
of Cecropia and Dacryodes positively covaried with slope. By con-
trast, the basal area of Prestoea was not strongly related to slope.

The comparison of the observed patterns with the codispersion
values from CSRM randomizations revealed that the observed
codispersion for all of the species with both elevation and slope
was different from random expectation at some, but not all, scales
and directions (Fig. 4, columns 2 and 3). The only exception was
for the relationship between Prestoea and slope, which was not
significant (Fig. 4d). For all four species, the comparisons with
RLM showed that the number of significant observed codisper-
sion values was lower than expected using CSRM for about one-
half of the relationships tested, was higher for some and stayed
the same for a few (Fig. 4, columns 4 and 5). The comparisons
with TSM showed that the observed codispersion values were

significant at a few scales and directions for most species–environ-
ment combinations (Fig. 4, columns 6 and 7).

In TRCP, the first two components from the PC analysis of
the soil chemistry data explained 65% of the variation in mea-
sured soil chemistry (plots and PC loadings are given in
Notes S2). Variables loading strongly on PC1 were associated
with soil fertility and cations (i.e. pH, base saturation, calcium,
magnesium, potassium, aluminum and iron), whereas variables
loading strongly on PC2 were associated with soil nitrogen avail-
ability (i.e. total nitrogen, NH4 and nitrogen mineralization
rate). These two PCs were used in the codispersion analysis of
species–environment relationships for the five focal species.

The basal area of the five focal species in the 209 20-m2 raster
cells at TRCP showed a range of strong, weak, positive and nega-
tive relationships with both soil pH and cations (PC1) and soil

Eleva�on Slope

Spa�al lag in X (m)X (m)

CASARB

CECSCH

DACEXC

PREMON

(a)

(b)

(c)

(d)

Fig. 3 Observed patterns on 209 20-m2

grids in the 16-ha Luquillo Forest Dynamics
Plot of elevation (top left), slope (top right)
and basal area (m2 ha�1) of (a) Casearia
arborea (CASARB), (b) Cecropia
schreberiana (CECSCH), (c) Dacryodes
excelsa (DACEXC) and (d) Prestoea
acuminata (PREMON). The variogram for
the environmental variable (blue line),
variogram for the species (green line) and
their cross-variogram (pink line) are shown
for each species–environment combination;
variables were centered and standardized
before analysis. In each bubble plot, the dots
are positioned at the center of each grid cell
point and the sizes of the symbols are scaled
to the variable displayed.
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nitrogen (PC2) (Table 2b; Fig. 5). Although abundant, Frangula
and Lindera were less widespread and their populations were con-
centrated largely in one or a few patches that corresponded to
high values on PC1, generating positive covariation (Fig. 5a,b).
The three Quercus species (Fig. 5c–e) were more widespread
within the plot; Q. alba was weakly and Q. rubra and Q. velutina
were more strongly negatively related to more fertile soils (high
values on PC1). Quercus alba positively covaried with nitrogen
(PC2), whereas Q. rubra and Q. velutina had little or negative
covariation with nitrogen (Fig 5c–e).

Codispersion plots revealed both spatial gradients in covaria-
tion between basal area and environment and the spatial scales at
which covariation was the strongest (Fig. 6, column 1). For
example, anisotropic species–environment associations for
Frangula and Lindera were illustrated by positive codispersion
with PC2 to the east within the plot, but negative codispersion
when looking to the west (Fig. 6a,b). In addition, the spatial
scales of covariation differed among species. For instance, the
positive covariation between Q. alba and PC2 was highest at large
lags (> 50 m) in the east–west direction, whereas Q. velutina neg-
atively covaried with PC1 at larger lags (> 60 m) in the north
direction, but at smaller lags in the east–west direction (up to
50 m).

The observed patterns of species–environment associations at
TRCP often differed from null expectations, but the magnitude
of the effect sizes varied among the different null models. The

comparison of the observed codispersion patterns with those
from the null models revealed that the weaker observed codisper-
sion patterns with both soil fertility and cations (PC1) and soil
nitrogen variables (PC2) tended not to be significant when com-
pared with expectation when trees were distributed CSR within
the plot (Fig. 6, columns 2 and 3). By contrast, comparisons with
RLM (Fig. 6, columns 4 and 5) showed that the observed codis-
persion values were mostly higher than expected. The exceptions
to this were, for some scales and directions, for Frangula and
Q. velutina with PC2, and for Q. rubra with PC1, each of which
had significantly more negative codispersion at some scales when
looking to the west in the plot. The comparisons with the
expected values from TSM largely mirrored those of the CSR
comparisons, but with fewer significant values in most cases, such
as for Frangula and PC2, which was nonsignificant at all lags.

Discussion

Codispersion analysis is a useful method for exploring species–
environment relationships in a spatially explicit context. Simula-
tions showed that the method correctly detected anisotropy and
other spatial regularities in the covariation of the two variables,
and correctly measured the scale of these effects (Fig. 2). Codis-
persion values in these simulations were influenced by the under-
lying spatial pattern of both the species and the environmental
variable; more clumping in the tree distribution patterns reduced
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Fig. 4 Observed codispersion values, observed minus expected values and significance (red) or not (blue) at the P < 0.05 level relative to null expectation
from three null models for bivariate species–environment combinations for four species (abbreviations as in Fig. 3) in the 16-ha Luquillo Forest Dynamics
Plot. The colors on the codispersion and observed�expected graphs are scaled from �1 (purple) to +1 (orange); contour lines are at intervals of 0.1. The
means and ranges of the observed codispersion values are given in Table 2(a). CSR, completely spatially random.
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the magnitude of the codispersion values, even with the same
basal area and environmental gradients (Fig. 2; Notes S2). Simi-
larly, a uniform distribution of the environmental variable led to
a higher magnitude of codispersion values than resulted from a
CSR environmental variable (Fig. 2; Notes S2). When observed
patterns in field data were combined with null model analysis,
codispersion analysis detected the scales and directions of statisti-
cally significant codispersion in basal area–environment relation-
ships, and suggested the possible drivers of these relationships
(Table 2).

The selection of appropriate null models for the analysis of
spatial point patterns is especially important when the results
are used to generate testable hypotheses about processes
underlying the observed point patterns (Wiegand & Moloney,
2014). We suggest that comparisons of the results of the
three null models used here to explore the significance of
codispersion in species–environment relationship can help to
tease apart possible influences on observed codispersion pat-
terns (Table 4). In particular, whether observed patterns are

found to be significantly different from expectations for one,
two or all three of the null models leads to different hypothe-
ses about possible processes and ecological mechanisms deter-
mining the observed patterns (Table 4).

The first possibility is that the observed pattern is not signifi-
cantly different from expectation of all three null models. We
obtained this result when examining the codispersion of
P. acuminata and slope at LFDP (Fig. 4d). We interpret this
result as evidence that any observed spatial pattern of the basal
area distribution of this species must be caused by factors that we
did not measure. For example, Prestoea is dominant in the north-
ern two-thirds of LFDP, which was disturbed by the land-use his-
tory, greater damage from Hurricane Hugo and is flatter than the
southern third of the plot. The high abundance in the northern
part of the plot as a result of the land-use history reduces the rela-
tive strength of the association with slope in this analysis. A sec-
ond possibility is that the pattern is significantly different under
CSRM, but nonsignificantly different under TSM. This probably
reflects the situation in which clumping in the species
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Fig. 5 Observed patterns on 209 20-m2

grids in a 20-ha area of the Tyson Research
Center Plot of soil variables represented by
two principal components, PC1 (top left) and
PC2 (top right), and basal area (m2 ha�1) of
five species: (a) Frangula caroliniana
(FRACAR), (b) Lindera benzoin (LINBEN), (c)
Quercus alba (QUEALB), (d)Quercus rubra

(QUERUB) and (e)Quercus velutina

(QUEVEL). The variogram for the
environmental variable (blue line), variogram
for the species (green line) and their cross-
variogram (pink line) are shown for each
species–environment combination; variables
were centered and standardized before
analysis. In each bubble plot, the dots are
positioned at the center of each grid cell
point and the sizes of the symbols are scaled
to the variable displayed.
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distribution has resulted in a correlation with environment at
some lags and directions, but this is not consistent across the plot,
and therefore unlikely to reflect a causal dependence of species on
environment. Such a result can be used to identify and under-
stand spatial pattern in the species data.

Alternatively, the observed pattern could be significantly dif-
ferent from expectation for only two of the three null models.
For example, at TRCP, Q. rubra was strongly and negatively
associated with soil pH and cations at all spatial lags when
assessed with CSRM and TSM (Fig. 6d). However, spatial
covariation was nonsignificant for a number of lags under RLM
and, where it was significant, the observed codispersion was
higher than expected. This suggests that, although Q. rubra basal
area was negatively related to the soil environment, the pattern of
this relationship, at least at some spatial lags and directions, was
not dependent on tree size, but rather on their relative spatial
positions (autocorrelation structure). Thus, the observed codis-
persion pattern is likely to be caused by processes that drive
intraspecific clumping, such as unmeasured variation in other
environmental variables or land-use history (Thompson et al.,

2002), interspecific interactions or dispersal limitation (e.g.
Plotkin et al., 2002).

Further, significant difference from expectation under TSM
reveals nonstationarity in the data, which should be taken into
account in subsequently developed inferential statistical models.
For example, variograms for TRCP show nonstationarity in PC2
(a large-scale trend such that the variogram does not level off and
therefore has no sill). The observed codispersion of PC2 (soil
nitrogen variables) and Q. alba was significantly different from
expectation at large scales, suggesting that there was nonstationar-
ity in this pattern. If, in a subsequent model, we were interested
in regressing this covariation against other variables, such as slope
or elevation, we would need to account for the nonstationarity by
applying a method, such as generalized least squares, in which the
correlation in the errors is modeled and then specified in the
regression model (Beale et al., 2010).

These results, and others summarized in Table 4, demonstrate
how the application of different null models to codispersion anal-
ysis can reveal subtle differences in potential causes of observed
bivariate spatial relationships. Other null models that could be
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Fig. 6 Observed codispersion values, observed–expected values and significance (red) or not (blue) at the P < 0.05 level relative to null expectation from
three null models for bivariate species–environment combinations for five species (abbreviations as in Fig. 5) in the 22-ha area of the Tyson Research
Center Plot. The colors of the codispersion and observed�expected graphs are scaled from �1 (purple) to +1 (orange); contour lines are at intervals of 0.1.
The means and ranges of observed codispersion values are given in Table 2(b). CSR, completely spatially random.
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explored fruitfully in further research include pattern reconstruc-
tion methods (Wiegand & Moloney, 2014, p. 368) and spectral
methods using raster data (Deblauwe et al., 2015; Wagner &
Dray, 2015). However, we must first understand what biological
processes are being manipulated in each case to interpret observed
departures from null expectations. Further, simultaneous com-
parisons across multiple lag distances can suffer from higher than
desired Type I error rates (Loosmore & Ford, 2006; Baddeley
et al., 2014). Future research should address the development of
a global significance test for codispersion where understanding
scales of variation is important.

Finally, we note that there are three important considerations
to keep in mind when applying codispersion analysis to species–
environment data: the selection of values for the maximum spa-
tial lag distance, the kernel bandwidth and the orientation of the
pattern in the analysis. We recommend a maximum lag distance
of no more than one-quarter of the smallest plot dimension. If
the maximum lag is too large, edge effects will influence the
largest scales considered. Setting the maximum lag to 25% of the
smaller plot dimension ensures an adequate sample size to detect
the spatial pattern and minimizes edge effects.

The selection of an appropriate kernel bandwidth is compara-
tively straightforward if data on a regular grid (raster) are used, as
we have illustrated here. Because we rasterized the data to 20-m
grid cells, the scale at which the environmental data were
obtained, setting each of the three bandwidth values (k = {kA, kB,
kAB}) equal to 20 m makes sense, as 20 m is the smallest scale at
which any pattern could be detected. However, if codispersion is
used to analyze bivariate marked point patterns (e.g. two mea-
surements, such as diameter and height, which are recorded for a

single point location), the values used for the bandwidth parame-
ters will determine the scales at which the codispersion analysis
can detect patterns of spatial covariation. If the scales of the two
variables differ markedly, then their bandwidth parameters, and
that of their cross-variogram, should be different. One possibility
is to set the values of kA, kB and kAB to the values of the nuggets
of their respective variograms (for kA, kB) or cross-variogram (for
kAB). Alternatively, Cuevas et al. (2013) suggest an optimization
method for the identification of appropriate values for k.

The X, Y orientation of the observed biological spatial pattern
matters for the pattern of codispersion values displayed in the
codispersion graph (but not the significance tests) because we
have greater resolution of pattern in the x-axis than in the y-axis.
Thus, users should think about directionality in the processes
driving the spatial patterns being tested. If little is known, rotat-
ing the pattern around the midpoint and analyzing it in both
directions may aid in the identification of any directionality in
the spatial pattern. It should be noted that this consideration does
not affect the data collection unless the plot size or shape pre-
cludes the species–environment pattern under study from being
adequately sampled within the study extent; therefore, we
encourage researchers to consider their hypotheses of pattern dur-
ing sampling design.

Codispersion analysis is useful because it results in a graph that
clearly identifies the magnitude, scale and directionality of the
observed patterns. It can identify the presence and scale of
anisotropy in the spatial pattern. When combined with null
models, it can be used to suggest testable hypotheses of ecological
process. Moreover, it can identify nonstationarity in the spatial
pattern of covariation, which influences subsequent inferential

Table 4 Interpretation of the null model results with examples from the two forest plot datasets

Null model results

Interpretation Species–environment examplesCSRM RLM TSM

ns ns ns Basal area is independent of the environment Prestoea acuminata vs slope (Fig. 4d)
Sig. ns ns Basal area is independent of the environment but

aggregated in space; this pattern depends on tree spatial
distributions, not tree sizes, that is, the spatial pattern of
basal area is not different from expected if diameters are
randomly assigned to trees

Casearia arborea vs elevation (Fig. 4a)

ns Sig. ns Basal area is not strongly related to the environment
because tree positions are independent of the
environmental variable; however, the environment causes
nonrandom differences in tree growth

Quercus alba vs PC1 (Fig. 6c)

Sig. ns Sig. Basal area is nonrandomly related to the environment; this
pattern depends on the relative spatial positions of trees,
not their sizes

Quercus rubra vs PC1 (Fig. 6d)

Sig. Sig. ns Tree sizes, but not necessarily their positions, depend on the
environment (the environment causes differences in tree
growth; tree distributions are aggregated within the plot)

Cecropia schreberiana vs elevation (Fig. 4b)

Sig. Sig. Sig. Basal area is nonrandomly related to the environment and
this depends on both tree spatial distributions and their
sizes. The environment influences both where trees grow
and their sizes

Frangula caroliniana vs PC1 (Fig. 6a)

The completely spatially random model (CSRM) resulted in CSR tree spatial positions within the plot. The random labeling model (RLM) shuffled the marks
(here, diameters) associated with each tree. The toroidal shift model (TSM) fixed the relative tree positions and their observed diameters, but moved the
entire set of tree point locations in a random distance and direction as though the plot was a torus. ns, not significant; Sig., significant.

� 2016 The Authors

New Phytologist� 2016 New Phytologist Trust
New Phytologist (2016)

www.newphytologist.com

New
Phytologist Research 13



modeling choices. It can be used to address a wide range of eco-
logical questions when we are interested in the scale and nature
of spatial covariation in variables derived from point-based or
grid-based sampling schemes. Such variables may be associated
with any attribute of organisms or their locations. The fact that
fundamentally different processes can generate similar observed
patterns of clumping reinforces the need for spatial methods,
combined with appropriate null models, which allow ecologists
to discern the relative importance of different processes. Impor-
tantly, codispersion can be used for composite measures, such as
plant community richness or biomass, and extended to more
than two variables (Vallejos et al., 2015), which may be a fruitful
path for further ecological applications. Although this method is
computationally intensive, the code provided here (Notes S1) is
readily adapted for use in a parallel computing framework.
Future applications of this approach across a broad range of
organisms and biogeographic regions will provide new insights
into the ecological causes and consequences of species–environ-
ment associations.
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