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         Abstract .      Visualizing and quantifying spatial patterns of co- occurrence (i.e., of two 
or more species, or of species and underlying environmental variables) can suggest hy-
potheses about processes that structure species assemblages and their relevant spatial scales. 
Statistical models of spatial co- occurrence generally assume that underlying spatial processes 
are isotropic and stationary, but many ecologically realistic spatial processes are anisotropic 
and non- stationary. Here, we introduce codispersion analysis to ecologists and use it to 
detect and quantify anisotropic and nonstationary patterns and their relevant spatial scales 
in bivariate co- occurrence data. Simulated data illustrated that codispersion analysis can 
accurately characterize complex spatial patterns. Analysis of co- occurrence of common tree 
species growing in a 35- ha plot revealed both positive and negative codispersion between 
different species; positive codispersion values refl ected positive correlation in species abun-
dance (aggregation), whereas negative codispersion values refl ected negative correlation in 
species abundance (segregation). Comparisons of observed patterns with those simulated 
using two different null models showed that the codispersion of most species pairs differed 
signifi cantly from random expectation. We conclude that codispersion analysis can be a 
useful exploratory tool to guide ecologists interested in modeling spatial processes.   

   Key words:    anisotropy ;    codispersion ;    co-occurrence ;    forest dynamics plot ;    Harvard Forest ;    spatial anal-
ysis ;    stationarity ;    variogram.    

    INTRODUCTION 

 A central inferential challenge for ecologists is the 
identifi cation of mechanisms and operational scales of 
processes determining observed spatial patterns. We 
normally begin to address this challenge using spatial 
pattern analysis (e.g., Dale  1999 , Cressie and Wikle 
 2011 , Wiegand and Moloney  2014 ). In particular, 
analysis and interpretation of patterns of co- occurrence 
of two or more species, or of individual species and 
environmental variables, are used routinely to identify 
relevant spatial scales and generate testable hypotheses 
about processes determining observed co- occurrence 
patterns (e.g., Wiegand and Moloney  2014 ). 

 Spatial patterns of co- occurring species often refl ect 
the temporal integration of pairwise species associations, 
varying environmental conditions, and intra-  and in-
terspecifi c interactions (Dale  1999 ). For example, spatial 
patterns of locations and sizes of trees in a forest 
refl ect the life history differences of the component 
species as well as the cumulative history of the stand: 
stochastic dispersal, small- scale environmental condi-
tions for successful germination and establishment, 

self- thinning of once- dense groups of saplings and small 
trees, interspecifi c competition, loss of individuals to 
insects and disease, and ongoing environmental change. 
In many cases, environmental gradients dominate spatial 
patterns in forest stands, but the most widely used 
spatial pattern analyses assume that underlying spatial 
processes of the analyzed spatial patterns are stationary 
(spatial processes are invariant under translation) and 
isotropic (invariant under rotation) (Dale  1999 , Cressie 
and Wikle  2011 ). Although these assumptions are math-
ematically convenient, they are rarely true. Alternatives, 
such as wavelets and other spectral methods can be 
used to identify scales of variation in isotropic or an-
isotropic spatial data, but some of these methods can 
analyze only limited types of ecological data (e.g., data 
collected on lattices; Deblauwe et al.  2012 ). 

 Codispersion analysis (Cuevas et al.  2013 ) is a new 
method for describing and visualizing complex spatial 
patterns of multiple co- occurring variables. In brief, 
codispersion quantifi es covariation of two or more 
spatial patterns as a function of both spatial lag and 
direction (Cuevas et al.  2013 ). The analyzed spatial 
patterns may be any combination of point patterns, 
marked point patterns (where we are interested in the 
spatial pattern of the marks, such as tree diameter), 
irregularly spaced plots, or rasters (contiguous grids); 
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in the latter two cases, each plot or cell is assigned 
a single value, such as tree density or basal area. To 
date, codispersion analysis has been applied to only 
a limited number of data sets: photographic image 
analysis (Ojeda et al.  2012 ), the relationship between 
tree size and an underlying environmental gradient 
(Cuevas et al.  2013 ), bivariate temporal data (Vallejos 
 2012 ), and multivariate spectral data (Vallejos et al. 
 2015 ). 

 Cuevas et al. ( 2013 ) suggested that codispersion 
analysis may be useful to describe the pattern of co-
variation found in many different kinds of spatial 
ecological data, but it has not yet been used to analyze 
known (i.e., pre- determined) spatial patterns, nor have 
the results from observed patterns been evaluated 
against reasonable null expectations. Here, we describe 
how to apply codispersion analysis to species co- 
occurrence data. Using both simulated and real species 
co- occurrence data, we illustrate how the results can 
identify and quantify complex spatial patterns and 
spatial scales at which ecological processes may be 
operating. Results of codispersion analysis applied to 
simulated data illustrate the range of detectable pat-
terns. We also show how to test for departure of 
observed codispersion from null models that (1) assume 
complete spatial randomness (CSR) in species co- 
occurrence or (2) fi x the distances between points, but 
break the association between the two species by shifting 
one of the entire patterns randomly, treating the plot 
as a torus (toroidal shift null model).  

  METHODS 

 Examining codispersion between two or more spa-
tial data sets depends on the precise locations at 
which measurements were made and the sampling 
grain of the measurements (i.e., the “support”; sensu 
Dungan et al.  2002 ). If we are interested in point- 
wise codispersion between two marked point patterns, 
the variables to be compared must be measured at 
exactly the same locations (e.g., beetles feeding on 
trees or the diameter and height of individual trees). 
In contrast, if the variables to be compared are 
measured at different spatial locations, the data need 
to be rescaled in one of two ways prior to 
analysis. 

 One way to rescale the data is convert the point 
patterns to small, identically sized plots prior to 
analysis. If variables are measured at irregularly spaced 
locations, they can be up- scaled to a common plot 
size; each “plot” is then considered to be a point 
with  x ,  y  coordinates equal to the center of the plot 
and with marks equal to some aggregate measure of 
the individuals within the “plot” (e.g., Cuevas et al. 
 2013 ). For example, if soil pH is measured at 100 
random points and tree diameters are measured in 
a 20- m diameter circular plot around each of these 
points, then the average tree size in each plot can 

be used as the estimate of tree size at the point 
where soil pH was measured. Codispersion calculations 
then proceed as if the point patterns were measured 
at identical locations, but the “grain of inference” is 
the 20-m diameter plot. Alternatively, to compare 
the co- occurrence of two tree species in a large plot 
where, by defi nition, different individual trees cannot 
occupy identical point locations, we could fi rst cal-
culate the abundance of each species in individual 
contiguous subplots, i.e., one abundance raster for 
each species. Codispersion calculations then proceed 
as if the point patterns were measured at the centers 
of each of the subplots and the “grain of inference” 
is the size of each subplot (grid cell) in the rasters. 
In our worked examples, we use this latter, raster- 
based method. 

  A recipe for codispersion analysis of ecological data 

 Codispersion coeffi cients across a range of spatial 
scales (which we illustrate for rasterized data) are 
generated as follows:

   (1) .   Generate three vectors of spatial lags (Fig.  1 A). 
Two of these vectors of lags should be parallel 
to the  x  axis, one positive and one negative around 
zero (− h  

1  to + h  1 ), up to one-fourth of the smallest 
plot dimension. The third vector of lags is parallel 
to the  y  axis, again increasing from the size of a 
raster up to one-fourth of the smallest plot di-
mension ( h  2 ). For example, for a 500 × 700 m 
plot, the smaller dimension is 500 m, so the max-
imum of | h  1 | or | h  2 | is 500/4 = 125 m. This ensures 
an adequate sample size for calculating codispersion 
at the largest lag. The smallest lag size should be 
the grain size of the raster.  

  (2) .   Apply a kernel function across all possible cell-wise 
distances for each lag to compute a variation sur-
face for all lag distances and directions   h   (the two 
dimensions are defi ned by the { h  1 ,  h  2 } coordinate 
pairs) for each data set individually and the inter-
section of the two data sets. The way the kernel 
surfaces characterize spatial variation within and 
between data sets A and B is controlled by spec-
ifying appropriate kernel bandwidth parameters 
  k   = {  k    X  ,   k    Y  ,   k    XY  } (Cuevas et al.  2013 ). If data have 
been rasterized, we recommend setting each element 
of   k   equal to the grid cell size of the raster. 

  (3) .   Compute semi-variograms for each variable (  𝛾X, 𝛾Y)   , 
and the semi-cross-variogram ( γ   XY  ) across all ker-
nel-smoothed lag vectors   h   using a Nadaraya-
Watson type estimator as follows:   

 

  (1)       
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where   s   is the set of spatial locations, and  K (·) is a 
symmetric and strictly positive kernel function with 
bandwidth  k   XY   (García- Soidán  2007 , Cuevas et al.  2013 ).

   (4) .   Compute the empirical codispersion coeffi cient 
(Matheron  1965 ) for each lag (  h  ) as the 
semi-cross-variogram of the two variables ( γ̂    XY  (  h  )) 
normalized by the square root of the product of 
the semi-variograms of each of the two variables: 

  (2)       

    where the formula for the empirical semi- variogram is: 
 

  (3)       

  In Eqs  2  and  3 ,   h   is the lag distance,  N (  h  ) denotes 
the sets of pairs of observations,   s   is the set of spatial 
locations, and  Z  is the value of interest at a given 
location.

   (5) .   Plot the codispersion values for each spatial lag 
  h   (Fig.  1 B). Positive codispersion values indicate 
positive covariation (aggregation) and negative 
codispersion values indicate negative covariation 
(segregation) for lag   h   with a given distance (in 
 x ,  y  space) and direction. Positive and negative 
lags on the  x -axis refer to “looking right” (e.g., 

east) and “looking left” (e.g., west) within the plot, 
respectively. Positive lags on the  y -axis refer to 
“looking up” (e.g., north) within the plot. 

  (6) .   An appropriate set of null models should be se-
lected to compare against the observed codispersion 
values. The choice of null model depends on the 
ecological question asked and the processes hy-
pothesized to generate the observed spatial patterns. 
For instance, a CSR null model allows us to ask 
whether or not the observed pattern is spatially 
nonrandom, i.e., the species are distributed inde-
pendently. Application of a toroidal shift null model 
asks whether the association between the species 
is nonrandom, given their univariate spatial patterns; 
thus, we are assessing their co-variation in space 
while excluding any effect of individual species’ 
autocorrelation structures. Other, process-based null 
models (Wiegand and Moloney  2014 ) may be ap-
propriate in certain circumstances, if sensible ideas 
about the processes generating spatial patterns can 
be formulated (e.g., Wiegand et al.  2009 ).    

  Illustrating codispersion analysis using 
simulations and real data 

 We fi rst generated and analyzed a range of bivariate 
spatial patterns (Fig.  2 ; a complete set of simulated 
patterns is in Appendix S1; pseudocode in Appendix 
S4; and accompanying R code is in the Supplement). 
Because we were interested in comparing simulated results 
with observed data from a large, gridded, forest inventory 
plot (see next paragraph), we simulated species abundance 
patterns as a raster of 225 contiguous 20 × 20 m grid 
cells arrayed in a 300 × 300 m “plot.” Abundance values 
in grid cells were distributed either completely spatially 
randomly (CSR) among grid cells, increasing or decreasing 
to the left side, right side, left or right top corners, or 
in one large clump in the center of the plot. We ana-
lyzed a wide range of the possible pairs of these sim-
ulated distributions (Appendix S1).  

 Second, we analyzed all observed pairwise bivariate 
spatial patterns of the four most abundant tree species 
in the Harvard Forest long- term forest dynamics plot 
(Fig.  3 A; information  available online ). 4  This fully 
censused 35- ha plot is part of the Smithsonian Tropical 
Research Institute ’ s Center for Tropical Forest Science 
– Forest Global Earth Observatory (CTFS- ForestGEO) 
network of plots (information  available online ). 5  In this 
plot, a total of 116 227 woody stems >1 cm diameter 
were mapped, tagged, and measured between June 2010 
and March 2014. The four most common species,  Acer 
rubrum  L. (red maple, Sapindaceae),  Pinus strobus  L. 
(white pine, Pinaceae),  Quercus rubra  L. (red oak, 
Fagaceae), and  Tsuga canadensis  (L.) Carrière (eastern 

𝜌̂XY(h)=
𝛾̂XY(h)√
𝛾̂X(h)𝛾̂y(h)

𝛾̂(h)=
1|N(h)|

∑
(i,j)∈N(h)

(Z(si)−Z(sj))
2.

 FIG. 1 .              (A) Illustration of the generation of spatial lags in the 
positive and negative  X  directions (+lags( h  1 ) and −lags( h  1 )), and the 
positive  Y  direction (+lags( h  2 )), for two rasterized surfaces (data 
sets A and B) used as input to codispersion analysis. The colored 
boxes illustrate increasingly large, two- dimensional, kernel- 
smoothed spatial lags over which codispersion coeffi cients are 
calculated. X and Y are actual distances for each plot data set (A 
and B). (B) A codispersion plot. The color of each cell is the value 
of the codispersion coeffi cient of two variables for all analyzed 
spatial lags and directions in X, Y space. Positive codispersion 
values indicate positive covariation (aggregation) and negative 
codispersion values indicate negative covariation (segregation). 

  4        http://harvardforest.fas.harvard.edu:8080/exist/apps/
datasets/showData.html?id=hf253  

    5        http://www.forestgeo.si.edu   
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hemlock, Pinaceae), together comprise >90% of the 
total basal area in the plot. Data are available from 
the Harvard Forest data archive (Orwig et al. 2015)  .  

 We calculated the number of individuals of each 
of these four species within 20 × 20-m contiguous 
grid cells covering the 500 × 700-m plot (a total of 
875 grid cells) and used these cell- level abundance data 
for all spatial analyses. We aggregated these data into 
20 × 20-m cells for the following reasons: This is the 
approximate canopy diameter of the dominant tree 
species in the Harvard Forest plot; 20 × 20 m (0.04 ha) 
is a common plot size used by foresters and ecologists 
to collect and analyze forest stand data (Kangas  2006 ); 
and a 20 × 20-m grid is the standard of collection 
and aggregation for ForestGeo data (Condit  1998 ). 

 We computed the codispersion of each pair of species 
at spatial lags ranging from 20 to 120 m. The maximum 
spatial lag equaled just under one- fourth of the length 
of the shortest side of the plot and was used to ensure 
adequate sample sizes for the largest spatial lag. To 
assess the signifi cance of the observed codispersion pat-
terns, we compared the observed codispersion values 

for each species pair calculated for each spatial lag 
and direction to values generated using two null models. 
The fi rst was a CSR model, where one species distri-
bution was fi xed and the point locations of the other 
species were distributed completely spatially randomly 
across the plot. The second was a toroidal shift model, 
where the positions of trees were fi xed, thus maintaining 
their autocorrelation structure, but the entire plot was 
shifted in a random direction and distance around a 
torus (Wiegand and Moloney  2014 ). 

 For each comparison, the null models were used to 
generate 199 new data sets for one of the species of 
each pair; 199 null simulations was a large enough num-
ber to confi dently determine signifi cant differences between 
observed and expected, and small enough to generate 
expected values on a desktop computer within a few 
days. Only one of the species pair needed to be rand-
omized because this was enough to break their spatial 
association, allowing us to test the signifi cance of their 
co- variation. The observed codispersion values at each 
spatial lag were then compared to the vector of codis-
persion values at the same spatial lags and directions 

 FIG. 2 .              Simulated species co- occurrence patterns on 20 × 20-m grids in 300 × 300-m plots and their resultant codispersion graphs. 
In each case, the colors on the codispersion graphs on the left are scaled to the range of values for that plot and those on the right 
are scaled from −1 to +1. The mean (± SD ) codispersion values for each analysis were (A) 0.02 (0.02), (B) −0.77 (0.21), (C) −0.87 
(0.09), (D) 0.38 (0.48), (E) −0.28 (0.56) and (F) −0.28 (0.56). 
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under each null model to estimate tail probabilities; if 
the observed value was ≥195th value or ≤5th value, we 
deemed it to be signifi cantly different from expected (i.e., 
a two- tailed test;  P  <   0.05). Finally, we calculated the 
Type I error rate of the CSR and toroidal shift null 
models by comparing the observed codispersion between 
two CSR simulated patterns (Appendix S2) to values 
generated under the CSR and toroidal shift models.   

  RESULTS 

  Simulations 

 Codispersion analysis accurately detected both pos-
itive and negative covariation in abundance in simulated 
bivariate spatial patterns (Fig.  2 ). For cases in which 
we simulated no strong covariation between two species 
(i.e., at least one “species” was CSR), codispersion 
values at all lags were around zero (Fig.  2 A; Appendix 
S1). When the two species were strongly segregated 

or aggregated (i.e., negative or positive covariance, 
respectively, between them; Fig.  2 B,C), the codispersion 
values were similarly highly negative or positive. When 
the patterns of abundance of the two species were 
strongly anisotropic in the east–west direction (the  x  
[horizontal] dimension of the plot), such that in some 
areas of the plot the species were aggregated and in 
other areas they were segregated (Fig.  2 D–F), the 
analysis illustrated the anisotropy by having different 
patterns for positive and negative lags on the  x - axis 
of the codispersion graph. Positive codispersion values 
refl ected lags and directions over which species were 
both either increasing or decreasing in abundance 
(Fig.  2 D–F). In contrast, negative values of codisper-
sion represented lags and directions for which the 
abundances of the two species were negatively corre-
lated, e.g., one species was high in abundance when 
the other was low. Rotating the species’ patterns 
 illustrated that the method was sensitive to the orien-
tation of the plot (compare Fig.  2 B,C). Analysis of 
the mirrored refl ection of the patterns illustrated that 
identical results were obtained for positive and negative 
lags in the  y  direction (compare Fig.  2 E,F). For both 
the CSR and toroidal shift null models, none of the 
observed codispersion values from the two CSR pat-
terns were signifi cantly different from that expected 
under either model at the 5% level, indicating a Type 
I error rate ≤5% for both null models (Appendix S2).  

  Real data 

 Empirical semi- variograms illustrated that spatial 
autocorrelation of  P. strobus  in the 35- ha forest dy-
namics plot was apparent up to lags of ~180 m, but 
that abundances of the other three species were 
 autocorrelated at scales of at least 300 m (variograms 
showed a linear trend, with no sill; Fig.  3 B).  Tsuga 
canadensis , the dominant species, negatively co- varied 
with (i.e., was spatially segregated from) the three other 
species (Fig.  4 ). This species showed weak anisotropy 
in its covariation with  Q. rubra  and  A. rubrum , as 
indicated by different values of the codispersion coef-
fi cient on the right-  and left- hand sides of the codis-
persion graph, but not with  P. strobus . In contrast, 
the three sub- dominant species all positively co- varied 
(were aggregated) at most spatial lags; the positive 
codispersion was strongest between  Q. rubra  and  A. ru-
brum  (Fig.  4 ). The observed codispersion patterns largely 
were signifi cantly different from those expected under 
the two null models, except for  P. strobus  and  Q. rubra , 
which showed only weak positive covariation (Fig.  4 ). 
Because the toroidal shift null model maintained the 
autocorrelation structure of the individual species’ pat-
terns while breaking their bivariate spatial association, 
observed codispersion values were signifi cantly different 
from null expectation at a smaller number of lags than 
we observed with the CSR model (Fig.  4 ).    

 FIG. 3 .              Observed (A) point patterns and (B) semi- variograms 
for the four most abundant species in the Harvard Forest 35- ha 
forest dynamics plot, calculated using species’ abundances in 
20 × 20 m rasters. In (A), the sizes of the symbols are scaled to 
each tree ’ s dbh: diameter measured at breast height (1.3 m 
above ground). 
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  DISCUSSION 

 Codispersion analysis is an effective method for 
quantifying and visualizing the pairwise covariation of 
two or more variables in space (Vallejos et al.  2015 ). 
One of the key benefi ts of this method is that it gives 
a two- dimensional graph illustrating the sign (positive 
or negative), magnitude, scale, and direction of covar-
iation between two species. This information is especially 
useful for choosing appropriate models for subsequent 
inference about underlying spatial processes. 

 Most methods used to model spatial data assume 
that the data are stationary (but see Wiegand et al. 
 2007 , Getzin et al.  2008 ). The “strong” form of spatial 
stationarity is the situation in which the joint prob-
ability distribution of the data is invariant when the 
pattern is moved (translated) through space. For eco-
logical data, this assumption is rarely, if ever, true. 
A weaker form of spatial stationarity, “second- order 
stationarity,” assumes that only the mean, variance, 
and covariance must be stationary (Vieira et al.  2010 ). 
Even this  assumption is rarely satisfi ed. However, most 
spatial statistical methods can be used if the data meet 
the assumption of the “intrinsic hypothesis”: That the 
mean and the semi- variance of the distribution are 
dependent only on distance between points, not on 
their location; i.e., there is no underlying large- scale 
spatial “trend” in the data (Vieira et al.  2010 ). 

 A common way to determine if there is spatial trend 
in the data is to compare the semi- variograms between 
raw and adequately detrended data: Raw data with 
a spatial trend will have a semi- variogram that lacks 
a sill, whereas the semi- variogram of data without a 
spatial trend will have an obvious and stable sill (Vieira 
et al.  2010 ). However, simply detrending data and 
comparing semi- variograms does not identify direc-
tionality in the data. In contrast, codispersion plots 
illustrate distances and directions at which signifi cant 
spatial covariance occur. 

 In our examples, codispersion plots correctly detected 
isotropic and anisotropic positive and negative spatial 
covariation in simulated abundances of two species on 
a grid for a variety of ecologically interpretable patterns 
(Fig.  1 ; Appendix S1). Analysis of pairwise co- occurrences 
of the abundances of forest tree species in a 35- ha plot 
(Fig.  3 ) also showed that codispersion analysis could 
detect subtle variation in spatial co- occurrences among 
species. Comparisons of observed values with those 
obtained from repeated realizations of null models also 
could be used to evaluate the statistical signifi cance of 
observed patterns of anisotropic spatial covariance. 

 We emphasize that codispersion analysis can only 
detect and illustrate covariation in species distribution 
patterns; like a semi- variogram, a codispersion graph 
it is not explicitly designed to reveal the processes 
that gave rise to the observed patterns. For instance, 
there are at least two possible reasons that species’ 
distributions can co- vary in space: (1) interactions that 

lead to aggregation or segregation; or (2) similarity 
or differences in species’ habitat preferences or other 
underlying (and unmeasured) variables, such as soil 
nutrients. As shown by the simulations (e.g., Fig.  1 D), 
patterns that are caused by different spatial processes 
will show high codispersion if they co- vary spatially. 
However, comparison of observed codispersion to that 
expected under different null models can help determine 
the nature of the observed spatial pattern and how 
to develop predictive process models. For example, 
 P. strobus  and  Q. rubra  showed no signifi cant codis-
persion at all but the largest spatial scales under either 
the CSR or toroidal shift null model. This result sug-
gests that these data meet the assumption of second- 
order stationarity and that process models to describe 
their covariance could proceed without detrending the 
data. In contrast, all other pairs of species showed 
some signifi cant codispersion relative to the toroidal 
shift model, suggesting that at best, process models 
of their covariance could lend support to the intrinsic 
hypothesis, not second- order stationarity. 

 The choice of null models also is critical in any de-
scription of spatial pattern. The CSR null model, as we 
applied it, did not account for tree size in randomly 
rearranging their positions, so it is possible that trees in 
the null patterns were closer than is realistic, given their 
size. Further, the toroidal shift model can lead to artifi cial 
signifi cance if large- scale clustering occurs at the plot 
edges, creating edge effects in the null realizations (Wiegand 
and Moloney  2014 : 365). In the case of the data from 
the Harvard Forest ’ s 35- ha forest dynamics plot, variable 
land- use history within the plot area precluded using a 
model based on a simple spatial process, such as a Thomas 
cluster process, which would assume spatial homogeneity 
in the plot. Future research should pursue more alternative 
null models; recent research suggests that spectral rand-
omization methods (e.g., Deblauwe et al.  2012 , Wagner 
and Dray  2015 ) and pattern reconstruction (Wiegand and 
Moloney  2014 : 368) may be useful approaches to this 
problem. The key consideration when applying a null 
model to a spatial pattern is that we understand the 
process being tested by the model; this may not be trivial 
for more complex null models. 

 When using codispersion analysis with any null model, 
there are three technical issues that are important to 
keep in mind. First, a maximum lag distance should 
be selected that is not more than one- quarter of the 
smallest dimension of the plot. This ensures that an 
adequate number of pairs at all combinations of lags 
(especially the maximum lag) and directions for cal-
culating the codispersion coeffi cient are available. 

 Second, the choice of bandwidth for the kernel 
function is critical. By default, our code (based on 
Cuevas et al.  2013 ) uses the same kernel for both 
variables and their intersection (the cross- variogram). 
However, if the spatial variation in the two variables 
differs substantially, it may be appropriate to select 
different bandwidths for the different variables. A 



38 HANNAH L. BUCKLEY ET AL. Ecology, Vol. 96, No. 1

R
ep

or
ts

sensible value for the kernel bandwidth should be 
selected that is no smaller than the grain size (support) 
of the data and not so large that it smooths across 
lags (which results in no differentiation across the 
codispersion graph). Cuevas et al. ( 2013 ) recommend 
using an optimization method to select appropriate 
bandwidth parameters for the kernel function. More 
easily, the range of the univariate variograms and 
bivariate cross- variogram (if they exist) might be used 
to select an appropriate bandwidth for each variable 
and their covariance. We note, however, that detrending 
the data to obtain stable variograms with sills (as 
suggested by Vieira et al.  2010 ) prior to running codis-
persion analysis can be expected to eliminate the pattern 
that codispersion aims to detect (Appendix S3). 

 Clearly, the kernel bandwidth will differ if raw point- 
pattern data are used or if the data are rasterized. If 
the observations are of individual locations in space 
(i.e., a point pattern), the initial selection of the scale 

at which the data could be rasterized (or not) should 
be determined based on biological considerations. If 
all variables are measured at identical points, no ras-
terization is necessary. However, in many ecological 
data sets, individuals of two or more different species 
do not co- occur at identical locations (due to physical 
constraints or the scale of sampling), so rasterizing 
species co- occurrences makes sense. Note, however, 
that rasterizing a point pattern so that grid cells in-
clude ≥1 observation is equivalent to applying a uniform 
bivariate kernel with bandwidth equal to the width 
of a grid cell. Thus, when calculating codispersion 
values as illustrated in Fig.  3 , we set the bandwidth 
parameter to 20 m so as to not re- smooth the data 
any further than they had already been rasterized. 

 Finally, codispersion analysis is particularly useful 
for examining anisotropic patterns and processes. As 
a result, the orientation of the data matters. The  x  
and  y  dimensions of the values in the codispersion 

 FIG. 4 .              Observed codispersion values and their signifi cance (red) or not (blue) when compared to null expectation for bivariate 
co- occurrence data from all species pairs of the four most common tree species in the Harvard Forest 35- ha forest dynamics plot, 
calculated using species’ abundances in 20 × 20 m grid cells. Scaled (−1 to +1) codispersion graphs are shown with 0.1- unit contours. 
On the left, the mean codispersion values for each codispersion graph (standard deviation) are given for each species pair. Signifi cance 
of codispersion values in each grid cell were calculated by comparing the observed value with 199 codispersion values from a 
complete spatial randomness ( CSR ) null model and a toroidal shift null model; if the observed value was ≥195th value or ≤5th value, 
the cell was labeled signifi cant. 

Observed Observed - Experimental Observed - Experimental

CSR

Significance Significance

Toroidal shift

Tsuga canadensis vs. Pinus strobus Mean = -0.28 (0.08)

Tsuga canadensis vs. Quercus rubra Mean = -0.13 (0.04)

Tsuga canadensis vs. Acer rubrum Mean = -0.18 (0.09)

Pinus strobus vs. Quercus rubra Mean = 0.07 (0.03)

Pinus strobus vs. Acer rubrum Mean = 0.18 (0.04)

Quercusrubra vs. Acer rubrum Mean = 0.28 (0.11)
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     SUPPORTING INFORMATION 

 Additional supporting information may be found in the online version of this article at http://onlinelibrary.wiley.com/
doi//10.1890/15-0578.1/suppinfo   

graphs (Figs  1  and  3 ) describe lags in the “left,” 
“right,” and “up” directions, and anisotropy is illus-
trated in most detail across the  x  dimension (see also 
Appendix S1). Therefore, we recommend that the data 
be oriented in a manner that refl ects the directionality 
of patterns of particular interest, or, that the pattern 
is rotated and analyzed in both directions. In this 
way, interesting patterns are more likely to be iden-
tifi ed and used to suggest new and testable ecological 
hypotheses. Future research also should directly com-
pare the ability of this method to detect complex 
multivariate spatial patterns with that of other methods, 
including spectral analysis (Deblauwe et al.  2012 ), 
geographically weighted  regression (Fotheringham 
et al.  2002 ), and Moran  eigenvector maps (Wagner 
and Dray  2015 ).  
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