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Everyone is familiar with that 
age-old adage “A picture is 
worth a thousand words.” 

Among ecologists, the word “pic-
ture” easily could be replaced with 
the word “pattern,” although the 
significance remains the same: The 
pattern we observe in a single snap-
shot more than sums up what could 
be expressed if we tried to describe 
all the original events that led to 
the pattern. 

One particular class of pat-
terns—spatial patterns—is the 
backbone of much contemporary 
ecological research. We often see 
recognizable and measurable struc-
ture in spatial patterns that tell a 
story about organisms and their  
histories: how interactions among 
individuals of the same or other  
species and between organisms and 
their environments have played out 
over time. An ongoing and challeng-
ing goal in ecology is determining 
how to adequately describe, visualize,  
and model such spatial patterns of 
organisms, their environments, and 
their inter-relationships (or covari-
ances) so we can make inferences  
about the types of processes that 
generated those patterns. 

One of the main difficulties in 
pursuing this goal is dealing with 
the reality that the processes struc-
turing spatial patterns in nature 
are complex. For example, trees in  
an unmanaged forest rarely are 

distributed at random (Figure 1a). 
Such spatial point patterns of 
individual trees and their attributes 
(such as height or diameter) may 
often be either “over-dispersed” 
(Figure 1b) or clustered (Figure 1c) 
to varying degrees and in different 
ways, depending on the spatial scale 
at which we measure them. Over- 
dispersion, or regularity, in tree 
spacing can occur due to processes 
such as competition for soil nutri-
ents or shading effects. 

Alternately, we often observe 
clustered patterns where juvenile 
trees are displaced from mature trees 
because the former are shaded out 
by the latter. As a result, seedlings 
and saplings often grow together 
in clusters within light gaps, created 
when at least one mature tree dies. 
In the forest stand illustrated in 
Figure 1c, the sizes of trees in each 
cluster are very similar: They display 
positive spatial autocorrelation. 

One common way to describe 
spatial autocorrelation is with a  
variogram. A variogram illus-
trates the amount of variation in a  
measured attribute, such as size or 
age, as a function of the distance 
(or lag) between all possible pairs 
of individuals in an area. The end 
result is a graph from which we  
can read the distance at which 
the spatial autocorrelation levels  
off (Figure 2). The variogram in 
Figure 2 illustrates that the spatial 

autocorrelation in tree density lev-
els off at a distance of about 160 
meters; thus, tree densities are cor-
related at distances less than 160 
m from each other, but become 
spatially independent from one 
another at larger lags.

A central assumption of a var-
iogram is that the spatial pattern 
is isotropic: The estimated vari-
ance depends only on the distance 
between two measured objects, not 
the direction from one to another. 
However, in many situations, the 
processes that generate spatial 
patterns change in strength or  
character across an area. Such direc-
tional, or anisotropic, processes 
complicate the analysis of spatial 
patterns using variograms and 
other common methods (Bivand,  
et al. 2008). 

A familiar example is a treeline: 
the transition from trees to alpine 
plants that we observe when walking 
up a mountain (Figure 3a). Below 
the treeline, trees are over-dispersed 
because they compete with one 
another for light and nutrients in 
the soil, but toward the treeline, the 
environment becomes much more 
stressful, so stunted trees, shrubs, 
and smaller plants tend to be clus-
tered because there are fewer places 
that plants can grow successfully 
(Figure 3b). 

Codispersion analysis (Rukhin 
and Vallejos 2008; Buckley, et 
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al. 2016) is a useful method for  
measuring and visualizing the 
covariation in spatial patterns 
between two variables, such as 
the position or sizes of adult and 
juvenile trees growing across an 
environmental gradient. Codis-
persion, which ranges from  
–1 to +1, not only describes the 

correlation between two variables at  
different lags, but also accounts for 
the directions between them. 

As a result, codispersion can be 
used to evaluate anisotropy in the 
bivariate pattern, which is especially 
useful for analyzing ecological gra-
dients where we expect that species 
interactions or species-environment 

Figure 1. Forests with different structures in their spatial point patterns: (a) random; (b) over-dispersed; (c) clustered.

relationships may change in their 
strength or other characteristics. For 
instance, the spatial pattern of adult 
trees and smaller seedlings and 
saplings may shift with elevation 
from a segregated, clustered pattern 
below the treeline to an aggregated, 
clustered pattern near or above the 
treeline (Figure 3c).

Figure 2. The variation in the spatial pattern of white pine trees in a large forest plot (500–700 m) can be visually 
represented as (a) a spatial point pattern showing tree locations and their diameters at breast height (DBH) or (b) 
the number of trees (No. trees) within 2x2 m sub-plots. The variogram (c) indicates the change in variance with 
distance of the number of trees within the sub-plots. The variogram shows that variance in the abundance of white 
pines between pairs of sub-plots increases with increasing inter-plot distances (also known as lags) up to 160 
m, where it begins to level off (horizontal dotted line). We conclude from the variogram that, once sub-plots are 
separated by more than 160 m, there is no meaningful increase in the correlation in the abundance of white pines 
between the sub-plots.
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Figure 3. (a) The alpine treeline ecotone on the West Coast of New Zealand’s South Island. As we move uphill, we 
witness a typical transition from tall, dense forest to increasingly sparse, shorter trees and shrubs, and eventually 
to grassland. Toward the treeline (b), growing conditions become increasingly stressful and the few remaining 
trees are shorter and clustered in more favorable microhabitats. Because environmental conditions change with 
increasing elevation, spatial relationships between multiple variables are likely to be anisotropic. For example, 
competition in the more favorable growing conditions at lower elevations results in spatial separation between 
adult trees (dark green) and juvenile trees (light green), while all the trees in the more stressful growing conditions 
at higher elevations, regardless of their size, are clustered in “safe sites” where seedlings survive only where they 
are protected by mature trees (c).

Figure 4. Simulations of bivariate spatial patterns and their resultant codispersion graphs: (a) two completely 
spatially random (CSR) patterns; (b) a CSR pattern and a directional pattern; (c) two directional patterns changing 
in the same direction; (d) two patterns changing in different directions.
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To illustrate how codispersion 
analysis can be used to detect and 
visualize anisotropic covariation 
between two ecological variables, we 
first simulated four distinct bivari-
ate spatial patterns that ecologists 
commonly encounter in the field, 
such as the abundances or sizes of 
two species along a gradient (Figure 
4). The codispersion of each pair of 
two patterns at different spatial lags 
and directions is plotted as codis-
persion graphs (far right panels in 
Figure 4). 

As in a variogram, codispersion 
values are plotted for a range of 
spatial lags, but now these values 
are plotted in multiple directions. 
When we observe a change in the 
strength of the codispersion (illus-
trated with different colors) from 
one side of the graph to another, we 
interpret it as evidence of the pres-
ence of an anisotropic relationship 
between the two patterns.   

In the first two simulation exam-
ples (Figures 4a and 4b), at least one 
of the spatial patterns is random. 
Thus, there is little-to-no covaria-
tion between the two patterns and 
the codispersion between them is 
very low. In contrast, if both of the 
simulated patterns are distributed 
as gradients in the same direc-
tion, there is positive and strong 
covariation at all lags and directions  
(Figure 4c). However, the align-
ment of the two patterns in the 
same direction means that the 
covariation between the variables 
is not anisotropic; therefore, we see 
no substantial directional change in 
codispersion across the graph. 

Finally, if the two patterns vary 
in different directions, the codisper-
sion graph captures the expected 
anisotropy (Figure 4d). There is a 
clear change from strong negative 
codispersion (blue) at all lags in the 
positive horizontal (X) and vertical 

(Y) directions to a strong positive 
codispersion (red) in the negative 
horizontal and positive vertical 
directions. We interpret this latter 
result as a positive relationship at 
lags from about 0 to 50 m between 
the two patterns, looking “north-
west” from the bottom center of 
the plot. 

Simulations can tell us how 
we expect codispersion to change 
for contrived—albeit familiar— 
patterns, and so can help guide our 
interpretation of codispersion plots 
of real data. To illustrate this, we 
examined codispersion at treeline 
of diameters of mature and juve-
nile mountain pine trees (Pinus  
uncinata) in a 3,000 m2 plot in the 
Spanish Pyrenees (Figure 5a, b), and 
of tree age and height of larch trees 
(Larix potaninii var. macrocarpa) in 
an 8,100 m2 plot in the southeastern 
Tibetan Plateau (Figure 5c, d). 

Figure 5. Photographs and maps showing tree spatial patterns of (a, b) mountain pine trees (Pinus uncinata) in a 30 × 100 
m treeline plot in the Spanish Pyrenees and (c, d) larch trees (Larix potaninii var. macrocarpa) in a 30 × 270 m treeline plot 
in the southeastern Tibetan Plateau. The symbols in the map of the pine trees denote growth stages (adult versus juvenile) and 
tree diameters (sizes of symbol), whereas the map of the larch trees shows tree ages (colors) and heights (sizes of symbols). 
Note that both the photographs and the maps are oriented with the slope gradient along the x-axis, with the downhill forest on 
the right of the map and the uphill treeline at the left. In both cases, treeline is at the edge of the graph (at 0 m on the x-axis).
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Figure 6. Codispersion graphs showing covariation between: (a) mean tree basal diameters of adult and juvenile 
mountain pine trees in the Spanish Pyrenees and (b) heights and ages of larch trees on the Tibetan Plateau. Graphs 
(c) and (d) show whether the codisperson coefficient at each lag and direction is statistically significant (red; P < 
0.05) or not (blue; P  0.05) in the Pyrenees and Tibetan plots, respectively. Significance is determined by compar-
ing each observed codispersion value to that from 199 realizations of a random labeling null model, in which the 
attributes of one of the patterns in each plot were randomly assigned to trees for each iteration of the simulation.

An interesting feature of both of 
these treeline plots is that there has 
been an increase in establishment of 
young trees at the treeline as a result 
of recent increases in temperature 
associated with climatic change 
(Camarero and Gutiérrez 2004; 
Liang, et al. 2011). We therefore 
expect to detect anisotropic patterns 
of trees and their attributes, and the 
relationships between them, as we 
move from lower elevations to the 
edge of the treeline. 

When we look at the codis-
persion plots, we can observe an 
anisotropic relationship between 
the sizes of adult and juvenile 
trees in the Pyrenees plot (Fig-
ure 6a). There, codispersion values 
are low-to-negative at all spatial 
lags and directions in the right 
half of the graph (blue to white), 
but become increasingly positive 
(red) toward the top-left side of 
the graph (toward the treeline) at 
lag distances of about 20 meters. 
The negative codispersion in adult 
versus juvenile mean tree size at 

many lags, and particularly in the 
downhill direction (toward the for-
est on the right), probably reflects 
competitive processes, where the 
sizes of young trees are reduced 
when they are close to mature 
trees. As we move left toward the 
treeline, however, the younger trees 
are recruiting into gaps away from 
adults and are experiencing good 
growth conditions. This leads to 
a positive codispersion in sizes of 
adult and juvenile trees. 

The relationship between the 
heights and ages of larch trees on 
the Tibetan Plateau also is aniso-
tropic. In its codispersion graph 
(Figure 6b), the covariance between 
tree age and height is positive and 
strong across the entire plot (the 
codispersion coefficient ranges 
from  0.8 to 0.93); as for pines in 
the Pyrenees, it strengthens toward 
treeline. We interpret this result as 
reflecting better, open-growth con-
ditions near the treeline that result 
in trees whose growth in height has 
not been stunted by competition. 

Codispersion graphs illustrate 
relationships between two observed 
patterns, so we need a way to 
assess how expected or unexpected 
these observed relationships are. 
One way we can do this is to use 
null models (Gotelli, this issue). 
For example, one null modeling 
procedure keeps one of the two 
observed patterns constant while 
randomizing either the locations 
or attributes of the other pattern. 
Following each randomization, 
we recalculate the codispersion. 
If we repeat this randomization 
and recalculation procedure many 
times, we obtain a distribution of 
codispersion values for each lag 
and direction. We then compare 
each observed codispersion value 
to the distribution of null model-
derived codispersion values to 
assess its significance. 

Figures 6c and 6d show 
the results of this null-model  
significance test for the codisper-
sion graphs of the Pyrenees and 
Himalayan plots, respectively. 
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In both cases, we used a random 
labeling null model, in which the 
attributes of one of the patterns in 
each plot were randomly assigned 
to trees. By reassigning attributes, 
this null model breaks any existing 
relationship between tree attributes, 
such as basal diameters, heights, or 
ages, while maintaining the underly-
ing spatial pattern of tree locations. 

The results show that codisper-
sion between diameters of adult and 
juvenile pine trees in the Pyrenees 
is statistically significant only at 
a few lags and directions, includ-
ing at the treeline. For the major-
ity of lags and directions, however,  
codispersion between adult and 
juvenile tree sizes is not different 
from what would be expected if 
the diameters of juvenile trees were 
assigned randomly to the given 
set of juvenile tree positions. This 
result might be explained by the 
fact that juvenile trees at this plot 
are quite similarly sized and, thus, 
randomizing their sizes relative to 
adult trees does not generate much 
significant variation in the adult-
juvenile codispersion relationship. 

In contrast, for larch trees in 
the Tibetan Plateau, the codis-
persion of heights and ages is  
significantly different from ran-
dom expectation in all lags and  
directions, reflecting the strong, 
intrinsic relationship between tree 
age and height. 

In this example, the random 
labeling null model has the effect 
of assigning a range of height values 
to both old and young trees, thus 
truly randomizing the relationship 
between height and age, causing 
highly significant departures from 
the strong observed codispersion 
between these two variables. 

These examples highlight how 
the choice of null model determines 

the types of interpretations that 
can be made using the codisper-
sion analysis, and that multiple null 
models often need to be explored.

In conclusion, codispersion 
analysis allows us to detect and 
describe relatively subtle changes in 
bivariate relationships across envi-
ronmental gradients, which is 
something that has traditionally 
been hard to tackle with spatial pat-
tern analysis. When combined with 
null models, we can test how unex-
pected these observed patterns are. 
Our ongoing research is exploring 
how codispersion applies to a wide 
range of spatial patterns and null 
models, and how to use this infor-
mation to improve models for  
spatial analysis and forecasting.  
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