
FORUM

Partitioning diversity1

Contemporary ecologists work with three measures of diversity: alpha, beta, and gamma diversity.
Alpha diversity is local diversity, and it is measured within a place, such as a single plot, an individual
forest stand, or a single stream. Gamma diversity is regional diversity, and it is the total diversity
measured for a group of places—all plots in the study, all streams in a watershed, all Costa Rican dry
forest stands. Beta diversity links alpha and gamma, or local and regional, diversities and is defined
as ‘‘the extent of differentiation of communities along habitat gradients’’ (Whittaker, R. H. 1972.
‘‘Evolution and measurement of species diversity.’’ Taxon 21:213–251; the quotation is from p. 214).
Alpha and gamma diversity can be measured directly, either as numbers of species (species richness)
or as numbers of species weighted by their relative abundance in the sample. There are many versions
of these latter species diversity measures; familiar ones include the Shannon-Weiner and Simpson’s
index, among others.
Beta diversity, on the other hand, is a derived quantity, but how to best derive this quantity from

measurements of alpha and gamma diversities, and how to interpret beta, has been a vexing and at
times contentious problem for ecologists since Robert H. Whittaker first presented the concept in
1960 (‘‘Vegetation of the Siskiyou Mountains, Oregon and California.’’ Ecological Monographs
30:279–338; see especially pp. 319–323). Whittaker himself asserted that gamma equals the product
of alpha and beta (and hence beta can be calculated by dividing gamma by alpha), but Russell Lande
asserted that an additive ‘‘partition’’ of diversity (alpha þ beta ¼ gamma) provides a more natural
measure of beta diversity (Lande, R. 1996. ‘‘Statistics and partitioning of species diversity, and
similarity among multiple communities.’’ Oikos 76:5–13). The sparks have been flying ever since.
This Forum was prompted by the submission of the lead paper (by Veech and Crist) as a Comment

on a paper published two years ago by Lou Jost (2007. ‘‘Partitioning diversity into independent alpha
and beta components.’’ Ecology 88:2427–2439). Jost provided a unified mathematical framework for
computation and use of numbers equivalents of classical diversity measures (the latter are referred to
as entropies). The numbers equivalent of any diversity index is the number of equally likely elements
(individuals, species, etc.) needed to produce the observed value of the diversity index (the entropy).
The idea of a numbers equivalent originated in economics and was first introduced to ecologists by
Mark O. Hill (1973. ‘‘Diversity and evenness: a unifying notation and its consequences.’’ Ecology
54:427–432). All of the authors in this Forum agree that using numbers equivalents instead of the
classical diversity indices (entropies) such as H0 should be used in any diversity partitioning. One
could go further and suggest that, even if the interest is only in describing the diversity of a single
assemblage, the numbers equivalent, not the entropy, should be the diversity measure of choice. But
my goal in organizing this Forum was to move beyond this easy point of agreement and to look for
additional common ground. The resulting papers provide some of that and, I hope, illuminate some
ways forward.
In their opening contribution, Veech and Crist address the importance of the independence of

alpha and beta diversity and use simulations to show that if gamma is set a priori, and alpha drawn
as a random proportion of gamma, then there is some association between alpha and beta (because
of their common dependence on gamma) but not a lot of statistical dependence of alpha and beta,
regardless of whether an additive or multiplicative partition is used to derive beta from (fixed)
gamma and (random) alpha. In his contribution, Besalga shows that Veech and Crist’s simulation is
only one of several reasonable choices. First, the total number of samples N was not fixed by Veech
and Crist, but it should be if gamma is fixed (or the first to be determined) and alpha is sampled
second. Alternatively, alpha could be simulated first and gamma then determined from the simulated
alphas (and fixed N ). Besalga shows that the order of simulation matters; one could argue that the
primary value (and correctness) of Jost’s derivations is that they were analytical and based on first
principles, not on the order of simulation.
Jost, while focusing on the theory, indirectly highlights the empiricist’s dilemma. We can measure

alpha, we would like to measure beta, and gamma should be the derived quantity. If we are to do

1 Reprints of this 31-page Forum are available for $10.00 each, either as PDF files or as hard copy.
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this, then alpha and beta should be independent entities. But empirically, we measure alpha, estimate
gamma from alpha, and then derive beta from our measured alpha and estimated gamma.
Statistically, we treat gamma as a known, fixed quantity (as in Veech and Crist’s simulation), but in
reality, gamma, like alpha, is a random variable. Furthermore, Jost’s theory, and analyses by Besalga
and Ricotta in this Forum, insist on equal sample sizes (N ) when comparing among assemblages.
But rarely do ecologists actually have equal or fixed sample sizes (imagine, for example, comparing
beta diversity, however derived, of ants living in 30 bogs with beta diversity of ants living in 80 forest
stands). Even in Wilsey’s careful empirical comparison—the one touchstone of realism in this
Forum—in which the sample sizes were intended to be identical, one plot had to be dropped due to
an ‘‘accidental mowing event.’’ Rarefaction methods, used widely to compare species richness among
sites or samples of different sizes, has yet to achieve much penetrance in the beta diversity literature
(but see Olszewski, T. D. 2004. ‘‘A unified mathematical framework for the measurement of richness
and evenness within and among multiple communities.’’ Oikos 104:377–387).
Jost’s 2007 paper provided perhaps the most important theoretical advance in measuring diversity

since Whittaker introduced the concept of beta diversity into ecology. But as illustrated by the
contributions to this Forum, challenges remain. Reaching consensus on how to partition diversity
measures will be harder than agreeing on the measures themselves. Application of the theory places
difficult demands on the sampling done in the field. Assumptions about the world (e.g., gamma as a
fixed quantity, whether known or unknown) continue to shape our analysis and conclusions. And a
real breakthrough would require a method to measure beta diversity independently of either alpha or
gamma diversity. This Forum illustrates that there is much yet to be done to identify and
characterize patterns of biological diversity.

—AARON M. ELLISON

Associate Editor-in-Chief

Key words: alpha diversity; beta diversity; diversity partition; gamma diversity; numbers equivalents;
simulation modeling; species diversity.
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Abstract. Diversity partitioning has become a popular method for analyzing patterns of
alpha and beta diversity. A recent evaluation of the method emphasized a distinction between
additive and multiplicative partitioning and further advocated the use of multiplicative
partitioning based on a presumed independence between alpha and beta. Concurrently,
additive partitioning was criticized for producing dependent alpha and beta estimates. Until
now, the issue of statistical independence of alpha and beta (in either type of partitioning) has
not been thoroughly examined, partly due to confusion about the meaning of statistical
independence. Here, we adopted a probability-based definition of statistical independence that
is essentially identical to the definition found in any statistics textbook. We used a data
simulation approach to show that alpha and beta diversity are not statistically independent in
either additive or multiplicative partitioning. However, the extent of the dependence is not so
great that it cannot be overcome by using appropriate statistical techniques to control it. Both
additive and multiplicative partitioning are statistically valid and logically sound approaches
to analyzing diversity patterns.
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In a recent paper, Jost (2007) further develops the

mathematical foundation for multiplicative partitioning

of species diversity (also see Ricotta 2005, Jost 2006).

Jost suggests that ‘‘existing definitions of alpha and beta

must be replaced by a definition that partitions alpha

and beta into independent components’’ (Jost 2007:

2427). Jost further states that ‘‘. . . we must develop a

new general expression relating alpha, beta, and

gamma, and the new expression must ensure that beta

is free to vary independently of alpha’’ (Jost 2007:2428).

In this paper, we follow Jost (2006, 2007) and refer to

the Shannon and other abundance-based indices as

entropies to distinguish them from ‘‘true diversity’’

metrics. Jost (2007) showed that any abundance-based

entropy of any order, q (except q¼ 1), can be converted

into its true diversity or ‘‘numbers equivalent’’ (see Eqs.

1 and 2 in Jost 2007). According to Jost (2007),

‘‘Numbers equivalents permit the decomposition of

any diversity index H into two independent compo-

nents’’ (Jost 2007:2430). Throughout his paper, Jost

stresses the ‘‘independence’’ of alpha and beta but never

empirically demonstrates this property. The purpose of

this paper is to evaluate the statistical independence of

alpha and beta in multiplicative and additive partitions

of species diversity. To be clear, we recognize that Jost

(2007) never explicitly refers to ‘‘independence’’ as

‘‘statistical independence’’; nonetheless, the issue of

‘‘independence’’ in diversity partitioning deserves fur-

ther examination.

We simulated hypothetical data to quantitatively

examine Jost’s (2007) claim that the alpha and beta

estimates [D(HA) and D(HB)] obtained using true

diversities are independent. Jost (2007) defines indepen-

dence of alpha and beta (Property 1; Jost 2007:2428) as

freedom to vary independently: ‘‘Alpha and beta should

be free to vary independently; a high value of the alpha

component should not, by itself, force the beta

component to be high (or low), and vice versa...’’ and

‘‘alpha should not put mathematical constraints on the

possible values of beta, and vice versa.’’ We believe that

the definition of independence used by Jost (2007) needs

to be clarified, particularly with regard to independence

being a statistical property of alpha and beta. We show

that both the multiplicative decomposition of gamma

diversity into D(HA) and D(HB) and the additive

decomposition into the entropies HA and HB produce

estimates of alpha and beta diversity that are dependent

on one another. Thus, advocating the use of true

diversities over entropies cannot be justified solely on
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the grounds that the former gives statistically indepen-

dent estimates of alpha and beta and the latter does not.

Alpha, beta, and gamma diversity are related by

D(HG) ¼ D(HA)D(HB) (Jost 2007: Eq. 4) in the

multiplicative decomposition. Jost (2007) used this

general formula to show that the entropies, HA and

HB, can be related to one another in either an additive or

multiplicative way (Jost 2007: Eqs. 8a–g) depending on

the particular index being partitioned. Jost (2007) states:

‘‘Suppose HA has a numbers equivalent of x equally

likely outcomes, and orthogonal HB has a numbers

equivalent of y equally likely outcomes. Then if HA and

HB are independent and completely determine the total

diversity, the diversity index of the combined system

must have a numbers equivalent of exactly xy equally

likely outcomes.’’ (Jost 2007:2430). The general formula

relating D(HA) and D(HB) is multiplicative and thus

bears resemblance to the well-known product rule for

the probability of occurrence of two independent events,

P(W and Z ) ¼ P(W )P(Z ). However, Eq. 4 does not

ensure that D(HA) and D(HB) are statistically indepen-

dent and Eqs. 8a–g do not ensure that HA and HB are

statistically independent. Their independence must be

established empirically by thoroughly observing the

variables (and events that they represent) or by

fundamental knowledge of the variables (or events)

involved. For example, we have fundamental knowledge

that the event representing a coin flip with the outcome

of heads or tails is independent of the event representing

the flip of another coin. Fundamental knowledge does

not exist for claiming the independence of alpha and

beta [or D(HA) and D(HB)] a priori.

Statistical independence of two variables is defined as

complete or mutual independence of the events that the

two variables represent. The events are completely

independent if the occurrence of one has no influence

on the occurrence of the other. In additive and

multiplicative partitioning, alpha and beta diversity are

mathematically linked to one another through a third

variable, gamma diversity. The presence of this third

variable allows us to deduce a priori that alpha, beta,

and gamma [D(HA), D(HB), and D(HG)] are not

mutually independent because knowing the values of

two of them completely determines the value of the

third. Similarly, HA, HB, and HG are not mutually

independent. Indeed, in practice, beta can only be

determined by first calculating alpha and gamma. Thus,

alpha and beta are not mutually independent because

beta is calculated from alpha (and gamma).

To quantify the dependence between alpha and beta,

we conducted a series of simulations. Each simulation

involved generating 1000 ‘‘data sets’’ each representing a

decomposition of gamma into alpha and beta compo-

nents. For each data set, gamma was set equal to a

random number between 10 and 1000 (these limits had

no influence on the outcome described in this paper)

drawn from a uniform distribution. Alpha was then set

as a random proportion of gamma with a lower limit of

1 (in some instances alpha can be ,1 but this requires

data sets that have samples with zero species). This

simulation routine produces a random (or independent)

association of alpha and gamma. Alternatively we could

have first selected alpha as a random number (between

10 and 1000) and then selected gamma as a random

number between alpha and 1000. Another alternative

would have been to simultaneously select a pair of

random numbers with the smaller number being

assigned to alpha and the larger number being assigned

to gamma. All of these simulation routines produce a

random association of alpha and gamma.

After obtaining alpha and gamma, beta was deter-

mined as gamma/alpha to simulate D(HB) (the true

diversity of any order q) derived from a multiplicative

decomposition and as gamma – alpha to simulate beta

(measured as species richness or the entropy for q ¼ 0)

derived from an additive partition. Each simulation (or

group of 1000 data sets) thus gave distributions of alpha,

multiplicative beta, and additive beta. To be clear, this

method of simulating gamma and alpha does not specify

a value for N (the number of samples) and thus N is not

necessarily fixed. For 50% of the simulated data sets

(i.e., particular combination of gamma and alpha), the

minimum possible value for N was 2, 90% of the data

sets had a minimum N , 10. The minimum value of N

was obtained as gamma/alpha rounded up to the next

highest integer. There is no maximum value for N.

Therefore, each group of 1000 data sets generally could

have represented almost any N, including an N that was

fairly constant.

After producing each group of 1000 data sets, we then

expressed alpha, multiplicative beta, and additive beta as

random events instead of random variables. To do this,

we set i, j, and k to numbers representing random

percentiles (pi, pj, and pk) in the distributions of alpha

and beta respectively. Event A was defined as alpha , i,

event BM as multiplicative beta , j, and event BA as

additive beta , k. From probability theory, all events

have probabilities that can be derived either analytically

or through simulation. We derived the probability of

each event as the proportion of the 1000 data sets

obeying the event. For instance, P(A) was the propor-

tion of data sets in which alpha was less than i. This

probability can also be obtained directly as pi; similarly,

P(BM) ¼ pj and P(BA) ¼ pk. We then empirically

determined the joint probability of A and BM as the

proportion of the 1000 data sets in which both events (A

and BM) occurred and the joint probability of A and BA

in the same way. The dependence of alpha and

multiplicative beta was then assessed by comparing

P(A)P(BM) to P(A, BM); similarly P(A)P(BA) was

compared to P(A, BA). If the joint probability equals

the product of the two marginal probabilities then the

two variables (alpha and multiplicative beta or alpha

and additive beta) are mutually independent; if not then

the two variables are dependent to some degree. We

repeated the simulation process 100 times and then
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calculated the average and maximum absolute differ-

ences between P(A)P(B) and P(A, B) for each beta

metric. The difference between P(A)P(B) and P(A, B)

serves as an estimate of the dependence between

alpha and beta; a greater difference indicates greater

dependence.

We also conducted the same type of simulation for

two random variables (W and Z ) known a priori to be

completely and mutually independent. That is, W was

set equal to a random number between 10 and 1000

from a uniform distribution. Z was also set equal to a

random number between 10 and 1000 from a uniform

distribution and without any regard for the value of W.

That is, W and Z were not related by any mathematical

equation.

The results of these simulations were informative.

For multiplicative and additive beta, there was a

surprising amount of agreement between P(A)P(B)

and P(A, B) (Table 1). This indicates that multiplicative

beta and additive beta have similar and relatively low

levels of conditional dependence on alpha. Multiplica-

tive beta (or beta measured by any true diversity) may

actually be slightly more conditionally dependent on

alpha in that the average difference between P(A)P(BM)

and P(A, BM) is greater than the difference between

P(A)P(BA) and P(A, BA) (Table 1). For multiplicative

beta, there is also a bias toward P(A)P(BM) almost

always being greater than P(A, BM) as evidenced by the

average raw difference (0.310 – 0.255 ¼ 0.056) equaling

the average absolute difference (Table 1). On the other

hand, there is very little bias in P(A)P(B) for additive

beta, average P(A)P(BA) and P(A, BA) are very similar

(Table 1). It is important to note that in these sim-

ulations, gamma was a random variable and alpha was

a random proportion of gamma. When gamma is fixed,

rather than drawn at random, there is greater depen-

dence between alpha and beta. We conducted the same

simulations with gamma ¼ 300 and found greater

discrepancy between P(A)P(B) and P(A, B) (Table 1)

with P(A)P(B) always being greater than P(A, B). As

expected, there was very little difference between

P(W )P(Z ) and P(W, Z ) for the two unrelated random

variables, W and Z. On average the difference between

the product of the marginal probabilities and the joint

probability was only 0.004 with a maximum difference

of 0.014 for 100 sets of simulations.

When evaluating the statistical dependence of alpha

and beta diversity, it is important to remember that a

third variable, gamma diversity, is involved. Additive

and multiplicative partitioning, as applied to a set of

samples, both specify a decomposition of gamma into

alpha (within-sample diversity) and beta (among-sample

diversity). Whether using entropies or true diversities,

gamma is a known and constant quantity for a given

data set. This a priori knowledge of the value of gamma

suggests that alpha and beta are not conditionally

independent. Beta is completely determined from gamma

and alpha. Procedurally, gamma and alpha are calcu-

lated first and then beta is calculated as either gamma –

alpha or gamma/alpha. Alpha and beta would be

conditionally independent (as the random variables W

and Z are above) if the value of alpha did not determine

the value of beta (or vice versa) given a known gamma.

Each of the three variables, alpha, beta, and gamma, are

pairwise independent. This means that for each of the

pairs (alpha, beta), (alpha, gamma), and (beta, gamma),

neither variable would determine the other without

knowing the value of the third variable not in the pair.

Denny and Gaines (2000) and Tijms (2004) provide

further discussion of these forms of independence in the

context of probability theory.

The conditional dependence of alpha and beta can

also be assessed empirically by examining the extent to

which beta is free to vary for a given value of alpha

(and vice versa). This seems to be the concept of

independence described as Property 1 in Jost (2007)

and Property 4 in Jost (2006). When gamma is fixed

then the relationship between alpha and additive beta is

completely described by the linear function (beta ¼
�alpha þ gamma); the slope is negative and equal to

alpha and the y intercept equals gamma (Fig. 1A). The

relationship between alpha and multiplicative beta is

given by a power function (beta ¼ gamma 3 alpha�1)

(Fig. 1A). Thus, when gamma is constant, alpha

constrains beta to a single value determined by either

a linear or power function. A given value of alpha can

have only one value of beta. When gamma is not

constant (as in a situation where species are gained or

lost from a set of communities), then alpha does not

constrain beta as severely, particularly at lower values

of alpha (Fig. 1B, C). Additive beta is no more

constrained by alpha than is multiplicative beta (Fig.

1B, C). In fact, intermediate and high values of alpha

seem to constrain multiplicative beta to very low values

(Fig. 1B). In the practical application of additive and

multiplicative partitioning (gamma is known), alpha

puts mathematical constraints on the possible values of

beta, and vice versa. Therefore, neither type of

partitioning provides alpha and beta components that

obey Jost’s independence property (Property 1). None-

TABLE 1. Mean products of the marginal alpha and beta
probabilities [P(A)P(B)], joint probabilities [P(A, B)], and
differences between the two for additive and multiplicative
beta.

Measure Additive Multiplicative

Gamma ¼ random variable 10 to 1000

Mean P(A)P(B) 0.283 0.310
Mean P(A, B) 0.282 0.255
Mean absolute difference 0.013 0.056
Maximum difference 0.033 0.140

Gamma ¼ 300

Mean P(A)P(B) 0.283 0.253
Mean P(A, B) 0.205 0.167
Mean absolute difference 0.078 0.085
Maximum difference 0.240 0.249
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theless, the statistical dependence of alpha and beta is

not exceedingly great and does not prohibit the use of

additive or multiplicative partitioning for measuring

alpha and beta diversity.

However, we do agree with Jost that alpha and beta

(as derived from additive or multiplicative partitioning)

should measure different, although related, aspects of

gamma diversity. Beta is intended to measure differen-

tiation among samples (or communities) whereas alpha

should measure within-sample diversity. According to

Jost (2007), ‘‘If beta depended on alpha, it would be

impossible to compare beta diversities of regions whose

alpha diversities differed’’ (Jost 2007:2428). Later, he

states: ‘‘if beta depends on alpha, the beta values

between different hierarchical levels cannot be compared

with each other (since each level has a higher alpha than

the preceding level) nor with the beta values of other

ecosystems’’ (Jost 2007:2436). However, the dependence

between alpha and beta (measured as entropies or

diversities) is not so strong that this difficulty cannot be

overcome. The correlation between alpha and beta is

rather weak (particularly for additive beta) when alpha

does not vary substantially (Table 2).

In our simulations, alpha was allowed to vary. That is,

for a given group of 1000 data sets, alpha could be any

value between 1 and gamma. However, if we fix alpha

(at any value) then an important difference emerges

between additive beta and multiplicative beta. This

difference can be explained analytically (without simu-

lation). For any alpha and without knowing gamma,

additive beta can vary from 0 to (N � 1) 3 alpha;

multiplicative beta can vary from 1 to N. In terms of

probability, P(BM¼ x jA¼ y)¼P(BM¼x) when gamma

is unknown and x ¼ 1 to N. In the absence of gamma,

alpha provides no information as to the value of

multiplicative beta. However, alpha does provide

information as to the possible value of additive beta,

specifically that additive beta cannot be greater than (N

� 1) 3 alpha. Alpha and N constrain the range of

additive beta; this constraint gets weaker as N and alpha

increase (e.g., N¼ 5, alpha¼ 10, additive beta can range

from 0 to 40; N¼ 20, alpha¼ 40, additive beta can range

from 0 to 760). However, we emphasize that alpha is

FIG. 1. The relationship between alpha and beta for (A)
gamma fixed as a constant at 300 with alpha as a random
proportion of gamma and beta as gamma/alpha (curved line) or
beta as gamma � alpha (straight line). Gamma is a random
variable between 10 and 1000, and alpha is a random
proportion of gamma for (B) multiplicative beta and (C)
additive beta.

TABLE 2. The correlation of alpha with additive beta and
multiplicative beta for different intervals of alpha.

Interval
Additive
beta

Multiplicative
beta

Number of
data sets

1–25 0.044 �0.380 1106
26–50 0.084 �0.107 813
51–75 0.013 �0.106 725
76–100 0.035 �0.061 597
101–150 �0.006 �0.141 1053
151–200 0.006 �0.102 873
201–300 �0.019 �0.177 1374
301–400 �0.050 �0.161 1061
401–500 �0.062 �0.152 826
501–600 �0.101 �0.180 618
601–700 �0.090 �0.152 415
701–1000 �0.423 �0.474 539

Notes: Values are correlation coefficients. For each alpha
interval, correlation coefficients are based on a linear regression
of beta (additive or multiplicative) vs. alpha. A total of 10 000
data sets were randomly generated.
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only setting a maximum potential value for additive

beta. The minimum values for additive beta are not

mathematically constrained by alpha. Thus, alpha is not

forcing additive beta to be high as stated in Property 1 of

Jost (2007).

For N ¼ 5 and 20, multiplicative beta ranges from 1

to 5 and 1 to 20 respectively for any alpha value. The

range of multiplicative beta is constrained only by N

and thus is constant over all alpha values. So in this

sense, alpha and multiplicative beta are ‘‘free to vary

independently’’ (Property 1 of Jost 2007), when gamma

is unknown. But this does not mean that alpha and

multiplicative beta are statistically independent. In

practice, we always know gamma. Because gamma is

a known value for a data set and is used along with

alpha to calculate multiplicative and additive beta,

neither beta is statistically independent of alpha. We

agree with Jost (2007) that the absence of constraint by

alpha on multiplicative beta is a desirable property (and

one that additive beta lacks). It assures us that the

nonindependence of multiplicative beta and alpha is not

due to the potential for positive scaling between the two

variables, but rather due to the third variable gamma.

This potential positive scaling exists for additive beta

and presumably contributes to the nonindependence of

additive beta and alpha.

The independence of alpha and beta was also

recently examined by Ricotta (2008). He suggested that

‘‘the foremost requirement for a meaningful index of

beta diversity is that it has to be independent from

species richness,’’ where ‘‘species richness’’ refers to

alpha diversity. Ricotta (2008) defined independence of

alpha and beta in terms of what he called the

‘‘replication principle’’: alpha and beta are independent

if species replication does not change the value of beta.

Replication is simply adding an additional group of

species to the data set such that the additional group

has the same sequence of abundances and presence/ab-

sence (among the set of samples) as the first group. The

expanded data set has additional species (and thus an

increase in alpha) but differentiation among the

samples has not changed and thus beta should not

change either. The replication principle is an intuitively

appealing way of defining independence because

presumably any differences in beta estimates (among

data sets that also differ in alpha) are due to real

biological effects and not the artefactual effect of beta

increasing or decreasing just because it is mathemati-

cally linked to alpha. Wilson and Shmida (1984) also

defined independence of alpha and beta in this way,

without using the term ‘‘replication.’’

Using the replication principle to define indepen-

dence, Ricotta (2008) recognized that multiplicative

beta is independent of alpha but additive beta is not.

Nonetheless, Ricotta then demonstrated that additive

beta (measured as species richness) can be made to be

‘‘independent’’ of alpha (in the sense of satisfying the

replication principle) by dividing beta by gamma. In

essence, this is a monotonic transformation of multi-

plicative beta (Ricotta 2008), but it does not establish

the statistical independence between alpha and either

additive or multiplicative beta. That is, beta/gamma as

a variable is not statistically independent of alpha and

so the effect of alpha on the variable must be removed

(as described above) before comparing multiple beta/

gamma values. Even when a beta metric satisfies the

replication principle, it will still be conditionally

dependent on alpha and, therefore, correlated with

alpha if alpha appears in the formula for the beta

metric. One widely used and accepted method of

dealing with conditional dependence between two or

more variables is to use each as a response variable in a

multivariate analysis (e.g., MANOVA; Sokal and

Rohlf 1995, Quinn and Keough 2002). Essentially,

multivariate ANOVA treats the response variables as

one and tests for an effect on this combined variable.

For example, we might want to test for an effect of

habitat patch connectivity on alpha and beta. If we

have several sets of patches (varying in connectivity

within the set) then alpha and beta could be modeled

as a multivariate response to the main effect of

connectivity.

The analyses presented in this paper do not examine

the dependence between alpha and beta when beta is

measured by entropies (e.g., Shannon and Simpson

indices, others given in Table 1 of Jost 2007) other than

species richness. Entropies are more constrained in the

limits than species richness, with the Shannon index

typically ranging between 1 and 5 and the Simpson index

ranging from 0 to 1. Our method of simulating data sets

(i.e., randomly selecting alpha and gamma values),

without actually producing the hypothetical raw data

that the values represent, is not amenable to analyzing

other entropies because these are scaled differently than

species richness, and require species-abundance distri-

butions. However, we suspect that the beta estimates

derived from these other entropies are statistically

dependent on alpha.

Jost (2006, 2007) has brought attention to some

important issues in the application of diversity parti-

tioning, including making researchers aware of the value

of using true diversities (numbers equivalent) to measure

species diversity. We see value in these ‘‘new’’ metrics

and the general partitioning approach advocated by Jost

(2006, 2007). No metric for beta diversity will be

statistically independent of alpha and gamma diversity

if the beta is calculated directly from alpha and gamma.

However, the statistical dependence is not overwhelming

and can be handled (e.g., through multivariate analyses)

to allow for statistically valid comparisons among

multiple beta estimates.
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Introduction

Though Veech and Crist’s paper (Veech and Crist

2010) deals primarily with species richness, ecologists
partitioning diversity generally use multiple diversity

measures and compare the beta values among them
(e.g., Gering et al. 2003, Summerville et al. 2003, 2006,

Couteron and Pelissier 2004, Stendera and Johnson
2005, Ribiero et al. 2008). This paper therefore takes a
more general perspective and treats all standard

measures, not just species richness.
Veech and Crist rightly note that I do not mention

‘‘statistical independence’’ in Jost (2007). Statistical
independence of alpha and beta is neither necessary

nor desirable.
Statistical independence between alpha and beta is

primarily an empirical question; it depends on nature
and on our sampling scheme. In some kinds of

ecosystems, it is conceivable that high differentiation is
associated with high within-group diversity. The reverse

is also conceivable. If nature has these regularities, we
would want our measures of alpha and beta to be able to

reflect them. We would not want a definition of beta that
predetermined the kind of regularities we could observe.

The meaning of ‘‘independence’’

Veech and Crist (2010) take the experimenter’s view;
they regard gamma and alpha as the fundamental

quantities, and beta as the derived quantity. Conceptu-

ally, however, gamma is the compound or derived

quantity, produced by the interplay of the two more

fundamental quantities, the mean within-group diversity

and the between-group diversity. This observation is at

the root of all attempts to partition gamma diversity into

alpha and beta components.

Many partitioning schemes have been proposed, and

all agree that the within-group or alpha component of

diversity depends only on the diversities of each group,

not on between-group relationships. Alpha is blind to

any sharing of species between the groups. If we measure

alpha diversity of a set of samples that all share the same

species, and then we rename the species so that none are

shared across samples, alpha does not change at all.

Alpha is logically and mathematically unrelated to the

way that species frequencies are connected across

groups. This is what I mean by ‘‘independence’’ in Jost

(2007).

A complete partitioning of gamma diversity would

divide gamma into one component that describes this

within-group or alpha diversity, and another logically

unrelated component that describes how the groups are

related to each other. Because these components

measure completely different things, they should be

defined so that each is free to vary independently of the

other. My partitioning theorem (Jost 2007) shows how

to find just the component due to the relations between

groups, and it identifies the conditions under which this

can be identified with beta diversity (or relative

differentiation between groups). Sometimes this parti-

tioning is additive (e.g., Shannon and Renyi entropies),

sometimes it is multiplicative (all true diversities sensu

Manuscript received 6 March 2009; revised 1 April 2009;
accepted 16 April 2009. Corresponding Editor: A. M. Ellison.
For reprints of this Forum, see footnote 1, p. 1962.
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Jost 2007), and sometimes it is neither (Gini-Simpson
index).

The resulting beta component is not mathematically

constrained by alpha. Fig. 1 compares this kind of
partitioning with additive partitioning of the three most

common indices. In the partitioning formulas produced

by my theorem, the value of alpha puts no mathematical
constraints on the possible values of beta. For a fixed

number of groups, any value in the domain of alpha is

compatible with any value in the domain of beta, and
vice versa. Alpha and beta form a Cartesian product

parameter space. The partitioning scheme does not pre-

determine the kind of relationship that will be observed
in nature between alpha and beta.

The mathematical independence of alpha and beta is

not the same thing as statistical independence, which
depends on the particular sampling scheme used and the

joint probability distributions of the species. An analogy

with vector decomposition may help illustrate the
difference. If we knew nothing about the universe except

the value of the x component of a vector, we would have

absolutely no clue about the value of its y or z com-
ponents. This shows that the components are logically

and mathematically independent (orthogonal). Yet if

geologists were using vectors to describe the topography
of a mountain, they would observe correlations between

the x, y, and z values. The correlations would accurately

reflect characteristics of the real topography, and this is

what makes vectors useful. Because there are no forced
mathematical relations between x, y, and z, we can easily

infer the actual topography from these numbers. The

same is true of the alpha and beta produced by my
partitioning scheme. It might well happen that in some

parts of the world, high values of alpha are correlated

with high (or low) values of beta. The goal is not to
eliminate the possibility of these empirical correlations,

but rather to ensure that beta is not confounded

mathematically with alpha. Then, if correlations between
alpha and beta are observed in the real world, we can

confidently attribute this to nature and not to artifacts

of our measures.

Practical importance of this kind of independence

The practical importance of mathematical indepen-
dence is best illustrated using the Gini-Simpson index. In

the additive scheme, for any given value of alpha, beta is

constrained to be less than (1� 1/N )(1� alpha), where
N is the number of groups or samples. Therefore, when

Gini-Simpson alpha is high (close to unity), the additive

Gini-Simpson beta is necessarily close to zero, even
when all samples are completely different from each

other. Additive Gini-Simpson beta values close to zero

may therefore mean either that the samples are nearly
identical or completely different. Since ecologists use

beta to quantify differentiation between sites or samples,

they can be misled by this ambiguity.

FIG. 1. Permitted values of alpha and beta for N equally large samples or communities. The top row shows additively defined
values. The bottom row shows multiplicative values for the same indices, converted to true diversities as in Jost (2007).
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Table 1 shows how additive Gini-Simpson beta

misranks hypothetical insect data sets with respect to

their differentiation. Beetles are completely differentiat-

ed between samples (no shared species), while butterflies

are less differentiated between samples. Yet the beta

produced by additive partitioning of the Gini-Simpson

index is lower for the highly differentiated beetles than

for the butterflies, because beetle beta is mathematically

constrained to low values by the high value of beetle

alpha. Gini-Simpson additive beta is not a direct

measure of compositional differentiation.

It is tempting to conclude that these problems are the

fault of the Gini-Simpson index itself, perhaps because
of its sensitivity to widespread dominant species. Yet the

problems just mentioned have nothing to do with

dominance; they arise also for completely even commu-

nities with no dominance. What these problems really

prove is that additive partitioning is not a generally valid

framework for producing measures of compositional

differentiation. When the Gini-Simpson index is prop-

erly partitioned into mathematically independent alpha
and beta components, the problems disappear. For the

case of N equally weighted communities, the beta com-

ponent of the Gini-Simpson index is then constrained

between 0 and (1 � 1/N). These constraints do not

contain alpha. Values close to (1� 1/N) unambiguously

indicate high relative compositional differentiation

among groups, regardless of the value of alpha.

As Veech and Crist (2010) noted in their paper,

mathematical independence of alpha and beta makes
beta ‘‘replication invariant.’’ Merging of distinct copies

of a population, each copy with different species but

with the same relative abundances and hence the same

amount of relative differentiation, increases alpha

without changing beta. This principle, and a stronger

version which holds when all samples are given equal

weights, is illustrated in Table 2. While Veech and Crist

(2010) mention it in the context of species richness,
replication invariance is a property of the pure between-

group component of any measure of diversity or

TABLE 1. Additive Gini-Simpson beta and alpha/gamma
misranks data sets.

Species
Site 1

(number of individuals)
Site 2

(number of individuals)

Beetles

A 66 0
B 78 0
C 65 0
D 90 0
E 123 0
F 76 0
G 0 89
H 0 45
I 0 121
J 0 78
K 0 98
L 0 67

Butterflies

M 41 6
N 20 7
O 2 50

Notes: For beetles, additive Gini-Simpson beta¼ 0.09, Gini-
Simpson similarity alpha/gamma ¼ 90%. For butterflies,
additive Gini-Simpson beta ¼ 0.23, Gini-Simpson similarity
alpha/gamma ¼ 64%. Beetles are more differentiated between
sites than butterflies, but additive beta is higher for the
butterflies. Beetle communities are less similar to each other
than the butterfly communities, yet the additive similarity
measure alpha/gamma is higher for beetles than for butterflies.
The correct partition of the Gini-Simpson index (Jost 2007)
gives beta of 0.5 for beetles and 0.39 for the butterflies; the ratio
alpha/gamma using true diversities is 0.50 for beetles and 0.60
for butterflies.

TABLE 2. Replication invariance of Jost’s beta.

Species Site 1 Site 2 Site 3 Species Site 1 Site 2 Site 3

Group 1: Gini-Simpson beta ¼ 0.184 Group 3: Gini-Simpson beta ¼ 0.454

A 34 6 34 G 45 10 20
B 46 25 13 H 12 90 0
C 8 12 45 I 43 0 80

Group 2: Gini-Simpson beta ¼ 0.184 Group 4: Gini-Simpson beta ¼ 0.454

D 34 6 34 J 70 250 667
E 46 25 13 K 850 20 139
F 8 12 45 L 80 730 194

Groups 1 and 2 combined: Gini-Simpson beta ¼ 0.184 Groups 3 and 4 combined: Gini-Simpson beta ¼ 0.454

A 34 6 34 G 45 10 20
B 46 25 13 H 12 90 0
C 8 12 45 I 43 0 80
D 34 6 34 J 70 250 667
E 46 25 13 K 850 20 139
F 8 12 45 L 80 730 194

Notes: Values are number of individuals of four taxonomic groups sampled from three sites. On the left, species group 2 is a
duplicate of species group 1, but with different species. When Gini-Simpson beta is calculated as in Eq. 15d of Jost (2007), using
unweighted species relative abundances in the calculation of alpha and gamma, the beta of the combined set is the same as the beta
of the subsets. This is replication invariance. This beta also obeys the stronger property demonstrated at right. When any two
subsets of species with the same beta are pooled, the beta of the pooled set is the same as the beta of the subsets. As long as equal
sample weights are used in the calculation of alpha and gamma, it is not necessary for the sample sizes to be equal, and the mixing
proportions of the two subsets can also be arbitrary.
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compositional complexity derived from my partitioning

theorem. For example, the between-group component of

the correctly-partitioned Gini-Simpson index is replica-

tion-invariant, as shown in Table 2.

For these measures, lumping two nonoverlapping sets

of species (e.g., Set 1 is made up of Morpho butterfly

species and Set 2 is made up of Caligo butterfly species)

with the same degree of differentiation among sites

results in a new group with the same value of dif-

ferentiation among sites. Pooling per se does not change

the value of beta. This property is essential if ecologists

want to compare the beta diversity of a subset of species

to the beta diversity of the whole, or to the complement

of the subset. Otherwise such comparisons make no

sense. The beta of Jost (2007) has this property when all

samples are given equal weights, but additive Gini-

Simpson beta lacks it.

Discussion of partitioning schemes usually revolves

around the definition of beta. However, we must also

consider whether a scheme’s alpha, beta, and gamma

work together coherently. This is important, since

partitioning studies often combine alpha, beta, and

gamma into the ratios beta/gamma and alpha/gamma,

to facilitate interpretation (Nei 1973, Lande 1996, Veech

et al. 2002). Even in studies which do not use these ratios

explicitly, results are often expressed as bar graphs

displaying alpha and beta as proportions of gamma

(Gering et al. 2003, Summerville et al. 2003, 2006,

Stendera and Johnson 2005). Unfortunately, for Shan-

non entropy and the Gini-Simpson index the ratio

alpha/gamma (which is supposed to reflect community

similarity) is constrained by the value of alpha. It

necessarily approaches unity when alpha diversity is

high, even if samples or communities share no species

(Jost 2006, 2007). Likewise, for these measures the ratio

beta/gamma necessarily approaches zero when alpha

diversity is high (Jost 2008).

Table 1 illustrates this for the Gini-Simpson index; the

completely distinct beetle communities have a ‘‘similar-

ity’’ (alpha/gamma) of 90%, suggesting high similarity

even though the beetle communities share no species.

The butterfly communities, which are more similar to

each other than the beetle communities, have a lower

similarity, 64%. Alpha, beta, and gamma based on

Shannon entropy and the Gini-Simpson index lack the

mathematical properties needed for these ratios to be

informative about the similarity or differentiation

among communities.

The misleading behavior of these ratios is more

extreme for the Gini-Simpson index than in Shannon

entropy. This is why the bar graphs in additive

partitioning studies of high-diversity ecosystems gener-

ally show much smaller beta contributions for the Gini-

Simpson index than for Shannon entropy (e.g., Gering

et al. 2003, Summerville et al. 2003). This is also why bar

graphs of Shannon entropy or the Gini-Simpson index

for high-diversity systems will generally show smaller

beta contributions than the corresponding bar graphs of

low-diversity systems, even if differentiation is greater

for the high-diversity system. This occurs for example in

Fig. 3 of Summerville et al. (2003) for the Gini-Simpson

index. The similarity measure alpha/gamma for early-

season moths (92%) is lower than for late-season moths

(98%), seemingly indicating more differentiation be-

tween sites in the early season. This is just a mathe-

matical artifact due to the greater alpha diversity of late-

season moths. For the observed late-season alpha

diversity of 0.972, the ‘‘similarity’’ measure alpha/gam-

ma is mathematically constrained to be between 97.2%

and 100%, no matter how differentiated the samples.

Biological conclusions should not be drawn from such

bar graphs.

If the ratio alpha/gamma is to be interpretable as a

similarity measure, for a given set of N communities or

samples, it must vary over a fixed range that does not

depend on the species frequencies of the samples. Only

then will it be a useful stand-alone descriptive statistic

for the samples. The ratio alpha/gamma will have fixed

upper and lower limits, independent of species frequen-

cies, if alpha is defined as in Jost (2007) and the diversity

measure possesses the ‘‘doubling’’ property first dis-

cussed by Hill (1973). The slightly stronger version of

this property used by Jost (2007) states that if we pool N

equally diverse, equally large, completely distinct

samples, each with diversity X, then the diversity of

the pooled samples must be N 3 X. The ratio

alpha/gamma for these samples would be X/(N 3 X ) ¼
1/N, independent of alpha. This sets the minimum

possible value of the ratio for N equally large com-

munities. The maximum value of unity occurs when all

communities are identical. Thus if the diversity measure

has the special property just mentioned, the ratio

alpha/gamma varies over a fixed range that depends

only on the number and sizes of the samples, not on the

species frequencies of the samples. For any given set of

samples, we can easily judge whether its ratio alpha/

gamma is near to one or the other of these limits, and

from this we can judge the relative similarity of the

samples.

This same ‘‘doubling’’ property also makes diversity

measures behave intuitively in other contexts. Measures

without this property lead to logical contradictions

when used in conservation biology (Appendix, Jost

2009). Shannon entropy and the Gini-Simpson index

lack this property, so conclusions based on these mea-

sures are often invalid. This is why I call measures that

possess this property ‘‘true diversities.’’ Shannon entro-

py and the Gini-Simpson index should be called

something else. I suggest the umbrella term ‘‘measures

of compositional complexity’’ (Jost 2009) to encompass

true diversities (as just defined), entropies, and other

such measures.

The use of true diversities brings order to the chaotic

partitioning results always reported in studies that

additively partition species richness, Shannon entropy

or the Gini-Simpson index. The early-season and late-
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season moth data in Summerville et al. (2003) gives

additive ‘‘beta’’ values of [316, 0.62, 0.07] for species

richness, Shannon entropy, and the Gini-Simpson index

respectively, for early-season moths, and [356, 0.89,

0.016] for late-season moths in the same landscape.

These values are all in different units (species, bits, and

probabilities) and cannot be compared. When these

indices are converted to true diversities, the beta values

(all in units of effective number of distinct communities)

are [3.41, 1.85, 1.53] for early-season moths and [4.04,

2.44, 2.33] for late-season moths. Since these are now in

the same units, they can be compared with each other,

and valid conclusions can be drawn about the differen-

tiation of rare vs. common moth species, or between

early and late moth differentiation. (My correction to

the published data is only approximate, since it assumes

all sites have equal statistical weights.) Note the close

agreement between Shannon and Simpson beta in the

corrected versions. The species richness differentiation is

greater than the other two because there were many

singleton species in the data. This correction can alter

conclusions; the uncorrected Gini-Simpson beta drops

from early to late season, while in the corrected Gini-

Simpson beta increases from early to late season. This

latter behavior agrees with the behavior of the beta

values of the other indices from early to late season. By

inventing numerical examples where the right answer is

obvious, the reader can easily convince himself that

when conclusions differ based on additive and multipli-

cative Shannon or Simpson beta values, the multiplica-

tive scheme always gives the biologically sensible and

mathematically consistent conclusion about relative

differentiation.

Veech and Crist’s notions of statistical independence

As discussed above, the kind of independence that

underlies my partitioning scheme is not the same thing

as statistical independence. Therefore Veech and Crist’s

(2010) discussion of statistical independence, and their

simulations, are not closely related to the real issues

underlying partitioning. Nevertheless it is necessary to

comment briefly on some of their statements about

statistical independence.

First, Veech and Crist point out that for any

particular data set and any particular partitioning

scheme, the values of alpha, beta, and gamma are all

completely determined if we know the true values of any

two of them. Veech and Crist use this to claim that beta

is necessarily mathematically constrained by alpha even

under my partitioning scheme. This statement confuses

functional relationships with a particular set of function

values. Many aspects of nature are the result of the

combined effects of multiple independent variables. The

existence of a formula for the combined effect has no

bearing on the independence of the underlying variables.

Using their example of flipping two fair coins, we could

find the total number of heads for each experiment (an

experiment being a flip of the two coins). For any

instance of the experiment, if someone told us the

outcome of one of the flipped coins and also told us the

total number of heads, we could determine if the other

coin gave a head or a tail. This does not change the fact

that the outcomes of flipping the two coins were

statistically and logically independent of each other.

The authors also claim that alpha, beta, and gamma

are pairwise independent. Gamma is not independent of

alpha or beta. If one knows nothing else about the

world, except that alpha ¼ 50, this lets us infer that

gamma is greater than or equal to 50. Likewise, in

additive partitioning of species richness, if one knows

that beta is 10, then gamma is necessarily greater than

10. Note how different this is from the relation between

alpha and beta using either additive partitioning of

Shannon entropy, or multiplicative partitioning of any

true diversity. If someone tells us the value of alpha, and

nothing else, this knowledge by itself tells us absolutely

nothing additional about the value of beta.

Most of the authors’ article is devoted to a simulation

intended to test the independence of alpha and beta.

However, Veech and Crist use a simulation procedure

that does not fix the number of communities N. In

multiplicative partitioning, the value of N explicitly

determines the range of beta. The authors’ simulation

therefore confounds two effects: the known effect of N

on beta, and the influence of alpha on beta. Had they

used a fixed N (which is the normal situation in a real

ecological investigation), they would have found that

multiplicative beta was independent of alpha. This is

explained in detail by Baselga (2010) in this Forum. In

any case, statistical relations between alpha and beta are

empirical issues, which depend on the nature of the

ecosystems under study and the sampling scheme. They

are irrelevant to investigating the mathematical rela-

tionships between alpha and beta. The mathematical

independence of within- and between-group diversity is

shown by proofs and algebra (e.g., Jost 2007), not

simulations.

Conclusion

When the additive partitioning framework is applied

to Shannon entropy and the Gini-Simpson index,

mathematical artifacts often masquerade as ecologically

meaningful results. The complete partitioning of true

diversities into mathematically independent alpha and

beta components lets us study within- and between-

group diversity without distortion, in a mathematically

rigorous and self-consistent framework. This same

mathematics resolves problems created by additive

partitioning of diversity in other sciences, such as

population genetic (Jost 2008).

Practical applications of this approach need to

account for biases caused by small samples. Chao et

al. (2008) recently generalized some of the similarity

measures in Jost (2007) and developed nearly unbiased

small-sample estimators for some of them. Anne Chao
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and her collaborators continue to develop new estima-

tors for true alpha, beta, and gamma diversity; these and

the unbiased similarity estimators are implemented in

the freely-downloadable program, SPADE (Chao and

Shen 2009).
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15782 Santiago de Compostela, Spain

The need for a measure of beta diversity independent

of alpha diversity was stressed long time ago (Wilson

and Shmida 1984), in order to ensure a ‘‘useful ap-

plication of a measure [of beta diversity] to systems with

different alpha diversities.’’ It should be noted that this

requirement refers to the independence of beta diversity

of mean alpha diversity, and not to the independence of

beta diversity with regard to differences in alpha

diversity between sites. The latter issue was addressed

by several authors (Harrison et al. 1992, Lennon et al.

2001, Koleff et al. 2003, Baselga 2007) because beta

diversity measures that are dependent on the variation in

alpha diversity consider spatial turnover and nestedness

patterns as being equivalent (Baselga et al. 2007).

However, the dependence of beta diversity on the mean

value of alpha diversity is even more critical because

it compromises the comparability of beta diversity
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Ellison. For reprints of this Forum, see footnote 1, p. 1962.
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measures among systems with different mean alpha

diversity.

Focusing on the latter issue, Jost (2007) showed that

different formulations (multiplicative, additive, and

others) are required to partition the different diversity

indices (i.e., species richness, Shannon, Gini-Simpson)

into independent alpha and beta components. Jost

writes that ‘‘when these new alpha and beta components

are transformed into their numbers equivalents (effective

numbers of elements), Whittaker’s multiplicative law

(alpha 3 beta ¼ gamma) is necessarily true for all

indices.’’ I follow Jost (2007) in using the term ‘‘true

diversity’’ for diversity measured in terms of species

counts, since species richness is its own numbers

equivalent. Thus, when referring to true diversity, the

only way to obtain independent alpha and beta

components involves using the multiplicative partition.

Although the rationale behind this assertion is not

explicit in Jost’s paper, it runs as follows. By using this

multiplicative law for groups of communities sharing the

same proportion of species, we will obtain the same

value of beta diversity regardless of the number of

species in these groups. In other words, beta diversity

will be computed to be equal for (1) a set of two

communities with alpha ¼ 10 and 5 species in common

and for (2) a set of two communities with alpha ¼ 100

and 50 species in common. This is because multiplicative

beta diversity depends on the proportion of shared

species. Thus, if we replicate the species composition of

the analyzed communities, the beta value should not

change if it is independent of richness. Ricotta (2008)

termed this requirement the ‘‘replication principle,’’

proposing it as a test for the independence of a beta

diversity measure with regard to richness. Ricotta

showed that additive beta diversity based on species

counts suffers the major drawback of being dependent

on species richness, in contrast to multiplicative beta.

The dependence of additive beta on species richness was

also recently noted by Zeleny (2009) and Manthey and

Fridley (2009) in a different context.

Veech and Crist (2010; referred as VC throughout the

text) proposed an evaluation of the assumed indepen-

dence of multiplicative beta diversity on alpha diversity,

going beyond theoretical discussion and aiming to

provide empirical evidence for the dependence or

independence of beta diversity measures. In a simulation

procedure, they compared the performance of the

additive and multiplicative partition of true diversity.

Veech and Crist concluded that neither additive nor

multiplicative beta diversity is independent of alpha

diversity, and that the dependence of multiplicative beta

is even greater than that of additive beta. Here, I

evaluate their simulation procedure and provide new

approaches. All computations were performed in R (R

Development Core Team 2006). I will show that (1) the

patterns of dependence between multiplicative beta and

alpha are the outcome of the particular conditions of

VC’s simulation procedure, which imposed severe

restrictions on the possible values of alpha and gamma,

and therefore beta; (2) when these restrictions are

eliminated, multiplicative beta is completely indepen-

dent of alpha but additive beta is not.

The number of communities does matter

The first drawback of the VC simulation is its failure

to specify the number of communities (N ). As they

acknowledge in their paper, N is not consistent across

the simulated cases (pairs of alpha and gamma). For

example, a possible pair of values in VC simulation is

gamma ¼ 1000, alpha ¼ 10. This combination is only

possible for N . 100 (i.e., you cannot obtain a gamma¼
1000 with a lower number of communities when mean

alpha ¼ 10). Another possible pair of values yielded by

the VC simulation routine could be gamma¼ 100, alpha

¼ 10, and this is only possible for N . 10. However, N

should be a fixed parameter because for a given value of

gamma (which is the first variable sampled by the VC

procedure) the distribution of possible alpha values is

determined by N. For example, for gamma ¼ 1000 the

maximum value of alpha is always 1000 (all the

communities have identical composition) but the mini-

mum value of alpha is 1000/N (i.e., 200, 20, 2 for N¼ 5,

50, 500, respectively). Therefore, to ensure that the

simulation procedure randomly takes into account all

the possible combinations of alpha and gamma, it is

strictly necessary to set a defined N.

Fig. 1 shows the pair-wise relationships between

alpha, beta and gamma derived from three simulations

for N ¼ 5, 50, and 500. This simulation procedure

(Procedure 1; see R script in Supplement) follows VC in

that gamma was set equal to a random number between

10 and 1000 drawn from a uniform distribution, but

differs in that alpha was set equal to a random number

between gamma/N and gamma drawn from a uniform

distribution. Thus, the only difference is the fixed N. The

number of replications (pairs of gamma and alpha) was

set to 10 000. As reported by VC, multiplicative beta

showed a pattern of dependence on alpha diversity,

although the pattern was quite different depending on

N. The most conspicuous result was, however, that

multiplicative beta showed no pattern when plotted

against gamma, whereas additive beta showed clear

patterns of dependence on both alpha and gamma.

The order of simulation routines does matter

A second and more critical drawback of the VC

simulation is the assumption that different routines are

equivalent, in that the order in which alpha and gam-

ma distributions are generated has no influence in the

outcome. I have tested this assumption by performing

a new simulation procedure that began by setting the

value of alpha randomly (Procedure 2; see R script in

Supplement). Fig. 2 shows the pair-wise relationships

between alpha, beta, and gamma derived from three

simulations for N ¼ 5, 50, and 500. In these new

simulations, alpha was set equal to a random number
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FIG. 1. Pair-wise relationships between alpha, gamma, and multiplicative or additive beta diversity as simulated by Procedure
1. See The number of communities does matter for details.
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FIG. 2. Pair-wise relationships between alpha, gamma, and multiplicative or additive beta diversity as simulated by Procedure
2. See The order of simulation routines does matter for details.
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between 1 and 100 drawn from a uniform distribution,

and gamma was set equal to a random number be-

tween alpha and alpha 3 N drawn from a uniform

distribution. The number of samples (pairs of alpha

and gamma) was set to 10 000. The most striking result

of these new simulations was that, in contrast with

Procedure 1, no pattern of dependence appeared be-

tween multiplicative beta and alpha. Instead, a pattern

of dependence between multiplicative beta and gamma

was found. Dependence of additive beta diversity on

both alpha and gamma was found again, but using

Procedure 2 the pattern is extremely marked in the case

of gamma. Therefore, it seems clear that dependence

patterns of multiplicative beta diversity are related to

the simulation procedure selected. Multiplicative beta

seemed to be dependent on the variable (alpha or

gamma) determined second during each simulation.

When random values of gamma are set first, and

thereafter random values of alpha (consistent with the

selected gamma and N values) are set, then multipli-

cative beta shows dependence on alpha. However,

when random values of alpha are set first, and

thereafter random values of gamma (consistent with

the selected alpha and N values) are set, then mul-

tiplicative beta shows dependence on gamma.

Reasons for the dependence patterns

At this point, elements are available to interpret the

results reported here as well as those published by VC.

Firstly, the influence of the order of simulations on the

dependence patterns results from the arbitrary limits of

the distribution of the variable set in first place in the

simulation (gamma or alpha). Secondly, the higher the

number of communities, the higher the influence of the

former arbitrary limits.

The limits of the first distribution are arbitrarily

selected. In the first set of simulations, Procedure 1

bounds gamma between 10 and 1000. Each value of

gamma is then randomly associated with any of all the

possible values of alpha consistent with the specified N.

For this reason, not all possible values of gamma con-

sistent with the specified N are available for certain

values of alpha, since we have arbitrarily limited gamma

to be between 10 and 1000. For example, for N¼ 5 and

gamma ¼ 1000, one possible value is alpha ¼ 1000 (as

any other value between 200 and 1000). However, for

alpha ¼ 1000, the only possible value of gamma in this

simulation is 1000, hence the dependence pattern

between multiplicative beta and alpha in Procedure 1.

However the limit of gamma and the forced low value of

multiplicative beta are arbitrary and not caused by a real

association between alpha and multiplicative beta. There

is no reason to exclude the possibility of a value of alpha

¼ 1000 associated with any value of gamma . 1000. In

fact, it is much more unlikely to observe five different

communities with exactly the same set of 1000 species.

The shape of the pattern depends on N because below

the limit of alpha ¼maximum gamma/N, for any given

alpha all the possible values of gamma are permitted by

the simulation procedure. Thus, no dependence pattern

appears below 200, 20, and 2 for N ¼ 5, 50, and 500,

respectively (Fig. 1). However, for values of alpha .

maximum gamma/N, the possible values of gamma are

increasingly restricted with increasing alpha. Thus the

distribution of multiplicative beta is artificially bounded

to decreasing low values.

In Procedure 2, alpha is bounded between 1 and 100.

Thereafter each value of alpha is randomly associated to

any of all the possible values of gamma consistent with

the specified N. Using this method, not all the possible

values of alpha consistent with the specified N are

available for some values of gamma, since we have

arbitrarily limited alpha to be between 1 and 100. For

example, for N¼5 and alpha¼100, one possible value is

gamma ¼ 500 (among many others between 100 and

500). However, for gamma¼500, the only possible value

of alpha in this simulation is 100, hence the dependence

pattern between multiplicative beta and gamma in

Procedure 2. However, this is again an arbitrary

constraint of the simulation. As found in Procedure 1,

the pattern depends on N because below the limit of

gamma¼maximum alpha, for any given gamma all the

possible values of alpha are permitted by the simulation

procedure (no pattern appears below gamma ¼ 100).

Since gamma ¼ 100 is a different proportion of

maximum gamma for N ¼ 5, 50, and 500, respectively,

the dependence patterns exhibit different shapes (Fig. 2).

For values of gamma . maximum alpha, the possible

values of alpha are increasingly restricted to high values

with increasing gamma. Thus the distribution of

multiplicative beta is artificially bounded to increasing

high values.

An appropriate test for each question

The problem generated by the arbitrary limits of

distributions cannot be solved if one aims to test the

independence of beta simultaneously on alpha and

gamma. Once the range of the first variable is fixed

and all the possible values of the second variable are

included, then, unavoidably, all the possible values of

the first variable are not available for some values of the

second one. But this difficulty is only an apparent one. If

one wants to test the independence between beta and

alpha, the correct procedure is to consider a range of

possible values of alpha, and then include in the

simulation all the possible values of gamma consistent

with the distribution of alpha. This is Procedure 2. On

the other hand, if one wants to test the independence

between beta and gamma, the correct procedure is to

consider a range of possible values of gamma, and then

include in the simulation all the possible values of alpha

consistent with the distribution of gamma. This is

Procedure 1. In sum, each simulation is appropriate to

test for the dependence of beta on only gamma
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FIG. 3. Relationship between joint probabilities (P) and the products of marginal probabilities for multiplicative (solid circles)
and additive beta diversity (open circles). Marginal and joint probabilities were computed for random events involving pairs of beta
and gamma values in Procedure 1 and pairs of alpha and beta values in Procedure 2. The diagonal lines mark the 1:1 relationship
(perfect fit between joint P and the product of marginal P). Histograms show the distribution of differences between joint P and the
product of marginal P for multiplicative beta diversity (black) and additive beta diversity (gray).
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(Procedure 1) or alpha (Procedure 2), but not on both.

In both cases, multiplicative beta passes the test, as no

pattern of dependence was detected between beta and

alpha (Fig. 2) or gamma (Fig. 1). In contrast, additive

beta is shown to be dependent on alpha and gamma, as

previously known (Ricotta 2008).

In my opinion, the plots shown in Figs. 1 and 2 are

conclusive. However, for comparability with VC re-

sults, I computed the marginal and joint probabilities

of random events involving pairs of multiplicative beta

or additive beta and gamma or alpha to assess their

dependence. Thus, for Procedure 1, I selected two

random probability, P, values between 0.1 and 0.9 (i.e.,

P(G) and P(B)) and computed the quantile of gamma

corresponding to P(G) (G), as well as the quantiles of

multiplicative beta and additive beta corresponding to

P(B) (BM and BA, respectively). The joint probabilities

of gamma , G and multiplicative beta , BM (P(G,

BM)), as well as gamma , G and additive beta , BA

(P(G, BA)), were computed empirically as the propor-

tion of pairs in which gamma was lower than the

selected quantile of gamma, and beta was lower than

the selected quantile of beta. If the measure of beta is

independent of gamma, the joint probability of a pair

of random events (P(G, BM) or P(G, BA)) should be

equal to the product of the marginal probabilities

(P(G)P(B)). For Procedure 2, the same was done but

using a random probability P(A) corresponding to a

quantile of alpha, instead of P(G). As can be observed

in Fig. 3, when assessing the independence of beta with

regard to alpha or gamma using the appropriate

procedure, joint probabilities are almost equal to the

products of marginal probabilities for multiplicative

beta (mean absolute difference , 0.0017, maximum

absolute difference , 0.0047 in all simulations).

Moreover, differences have an unbiased distribution

centered at zero (see histograms in Fig. 3). On the

contrary, for additive beta, joint probabilities are

markedly different from the products of marginal

probabilities (mean absolute difference between 0.062

and 0.069, maximum absolute difference between 0.12

and 0.13 in all simulations). Differences have a

positively biased distribution (see histograms in Fig.

3). In sum, multiplicative beta diversity is methodolog-

ically independent of gamma and alpha diversity,

whereas additive beta diversity is intrinsically depen-

dent on both gamma and alpha diversity (Figs. 1 and

2, respectively).

Conclusion

The empirical tests demonstrated that multiplicative

partition of true diversity yields independent alpha and

beta components, but additive partitioning does not. As

stressed by Jost (2010), this conclusion is not particular

for species richness but can be generalized to any di-

versity measure. The appropriate partitioning for dif-

ferent diversity measures (Shannon, Gini-Simpson) is

that which is equivalent to the multiplicative partition-

ing of its number equivalents (Jost 2007). Therefore, the

point raised here is independent of the inclusion of

incidence or abundance measures in the diversity index,

and should be taken into account prior to other

considerations, such as the effect of sample size and

undetected species (Chao et al. 2005, 2006) or discrim-

ination between turnover and nestedness patterns

(Baselga et al. 2007, Baselga 2010). As a conclusion,

using the additive partition of true diversity, one would

always find a correlation between alpha and beta

diversity patterns derived from the intrinsic dependence

between both measures. In contrast, using multiplicative

partitioning, one can assess if there is any relationship

between alpha and beta diversity patterns. If found, this

relationship could be analyzed as a meaningful biolog-

ical pattern (Jost 2010). As reported previously by

Wilson and Shmida (1984), alpha and beta diversity

patterns are the result of different ecological and

biogeographical processes. Thus, if we are to under-

stand the mechanisms underlying biodiversity we need

to assess alpha and beta patterns using truly indepen-

dent measures. These measures are provided by the

multiplicative partitioning of true diversities, or the

equivalent formulations for other diversity measures

(Jost 2007).
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R scripts for conducting the simulations described in the main text (Ecological Archives E091-135-S1).
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On beta diversity decomposition:
Trouble shared is not trouble halved
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The concept of beta diversity was first introduced by

Whittaker (1960, 1972) as the proportion by which the

pooled species richness in a set of plots of some arbitrary

size exceeds the average richness of species in individual

plots. According to Whittaker’s multiplicative approach,

for species presence and absence data, beta diversity is

computed as b ¼ c/ā, where ā is the average alpha

diversity of single plots. In an alternative approach

originally proposed by McArthur et al. (1966) and

recently ‘‘rediscovered’’ by Lande (1996), beta diversity is

computed additively as b¼ c� ā. In both cases, as beta

diversity increases, individual plots differ more markedly

from one another and sample a smaller proportion of the

species occurring in the region (Koleff et al. 2003).

Though initially developed for dealing with species

richness, both diversity decomposition methods can be

usually extended to traditional diversity indices, like the

Shannon entropy or the Simpson diversity, that are based

on species relative abundances. Unfortunately, unlike the

alpha and gamma components of diversity, beta diversity

is not a genuine measure of ‘‘compositional diversity’’

(Ricotta 2007). Rather, as shown by Vellend (2001), it is

conceptually closer to a measure of multivariate plot-to-

plot dissimilarity. This ambiguity in the very meaning of

beta diversity has ensured that its measurement remains

‘‘capricious’’ (sensu Sarkar and Margules 2002).

Accordingly, a number of alternative methods for

measuring beta diversity have been proposed by several

authors. For instance, the classical reviews by Wilson

and Shmida (1984) and Koleff et al. (2003) list 8 and 24

different measures of beta diversity, respectively. Izsak

and Price (2001) suggested that the mean of the dis-

similarities among plots may be used as a genuine

measure of beta differentiation (see also Whittaker 1972,

Legendre et al. 2005). Legendre et al. (2005) also showed

that the variance of the species3 plots matrix is another

meaningful measure of beta diversity. More recently,

Anderson et al. (2006) proposed measuring beta di-

versity as the average dissimilarity from individual plots

to their group centroid in multivariate space, while

Ricotta and Burrascano (2009) used instead the mean

asymmetric dissimilarity between the individual plots

and the pooled set of plots.

All these measures have the merit of summarizing the

variability in species composition among sampling units

based on distinct objectives and motivations; from a

statistical viewpoint, by reducing a multivariate data set

of high dimension like plot-to-plot species heterogeneity

into a single index, information is necessarily lost, and

there is no ideal function capable of uniquely charac-

terizing all aspects of beta diversity.

In this framework, Jost (2007) went a step further in

developing the mathematical foundation for multiplica-

tive partitioning of species diversity. Jost (2006, 2007)

noted that if the ratio c/ā is computed directly from

traditional diversity indices, it necessarily approaches

unity when diversity is high, apparently indicating

complete similarity, even if the plots sampled are

completely differentiated (no species in common). Jost

also showed that for the Simpson index 1 � RS
i¼1p2

i

(where pi is the relative abundance of species i and S is

Manuscript received 22 January 2009; revised 11 May 2009;
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total species richness), the beta produced by additive

partitioning necessarily approaches zero when diversity

is high, apparently indicating no differentiation, even if

the plots do not share any species. This is because the

existing definitions of multiplicative and additive beta

diversity produce a beta with a hidden dependence on

alpha.

Jost (2006) suggested that a solution consists in

converting alpha and gamma diversities to their

‘‘equivalent number of species’’ or ‘‘numbers equivalent’’

D before taking the ratio between gamma diversity and

average alpha diversity such that Db¼ Dc/Da.

As shown by Jost (2006), for all diversity indices that

are functions of RS
i¼1 pq

i (0 � q � ‘) their numbers

equivalents are given by the formula

qD ¼
XS

i¼1

pq
i

 !1=ð1�qÞ

ð1Þ

while Db embodies the effective number of distinct

communities or plots in the region, thus reconciling the

notion of beta with compositional diversity. Jost (2007)

further demonstrated that numbers equivalents allow

the multiplicative decomposition of any diversity index

D into two independent components, Da and Db that are

free to vary independently and that completely deter-

mine Dc.

Based on simulated data, Veech and Crist (2010)

contest this result and argue that: ‘‘When evaluating the

statistical dependence of alpha and beta diversity, it is

important to remember that a third variable, gamma

diversity, is involved [. . .]. This a priori knowledge of the

value of gamma suggests that alpha and beta are not

conditionally independent. Beta is completely determined

from gamma and alpha. Procedurally, gamma and alpha

are calculated first and then beta is calculated as either

gamma – alpha or gamma/alpha. Alpha and beta would

be conditionally independent [. . .] if the value of alpha

did not determine the value of beta (or vice versa) given

a known gamma. Each of the three variables, alpha,

beta, and gamma are pairwise independent. This means

that for each of the pairs [(alpha, beta), (alpha, gamma),

and (beta, gamma)] neither variable would determine the

other without knowing the value of the third variable

not in the pair.’’

Though Veech and Crist correctly note that, given the

data, all the metrics are determined, exactly because they

are calculated from the data, I cannot fully agree with

their approach. The problem here is in recognizing what

these metrics really are conditional upon. For instance,

the ‘‘design’’ of a study (as opposed to its results) only

constrains the total number of plots we sample, not the

total number of species sampled or their occurrences.

Consequently, before we get the data, alpha, beta, and

gamma could potentially assume any values (within the

constraints of their definitions; e.g., alpha must be less

than or equal to gamma, and so forth). In the present

debate, what seems to be of interest is the values that

beta can take, conditional on the value of alpha in the

data. Given this objective, the only information we

should use is the number of plots sampled (N), which is

set before we have the data in hand, and the quantity we

are conditioning on (alpha).

In this view, for species presences and absences,

multiplicative beta can be expressed as

b ¼ N=N̄i ð2Þ

where N̄i is the mean number of species presences in the

N plots. This latter way of expressing beta also

immediately tells us that in multiplicative diversity

partition maximum beta is necessarily constrained by

N such that b � N. Accordingly, a null model that first

chooses the number of plots, then alpha at random, then

beta at random within the possible values defined by Eq.

2, and then determines what gamma should be, would

not have the correlations obtained by Veech and Crist

(because they constrain beta based on alpha and

gamma).

Also, gamma is in no way independent on alpha, as

for a given N, gamma is constrained within the values ā
� c � N 3 ā. This dependence of gamma on alpha is a
basic component of the doubling property of Jost (2006,

2007) and of the replication principle of Ricotta (2008).

For instance, both conditions require that, under some

circumstances, there is a linear dependence of gamma on

alpha. According to the doubling property, given two

equally large and completely distinct species assemblag-

es, each with diversity D, if these assemblages are

combined, the diversity of the combined assemblages

should be 2D.

This semi-additive property is at the core of the

independence between alpha and beta demonstrated by

Jost (2007). Most diversity indices violate this property,

but their numbers equivalents do not. Therefore, apart

from species richness that represents its own numbers

equivalent, we can confidently conclude that the mul-

tiplicative partitioning of numbers equivalents is the

best possible choice for getting independent alpha and

beta components; the next step will now consist in

extending this partitioning scheme to diversity mea-

sures that incorporate information about the degree of

ecological dissimilarity between species, such as, e.g.,

the Rao (1982) quadratic entropy. For a short review

on such measures see Schmera et al. (2009) and refer-

ences therein.

Yet, this is not the end of the history; as noted by one

anonymous referee, independence of beta on alpha is

not a good reason for ‘‘letting the tail of statistical

convenience wag the dog of ecological inquiry.’’ In

particular, different beta metrics are measuring different

quantities (i.e. average number of species not observed

for additive beta, or ‘‘effective number of communities’’

for multiplicative beta). Therefore, the key question we

should ask of a beta metric is: does it measure the thing

we are biologically interested in? If the metric has

statistical properties that make patterns in beta easy to
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analyze and interpret, so much the better. But if not, this

is not necessarily a good reason to abandon it in favor of

something statistically well behaved that is not actually

the quantity we are most interested in. Rather, as co-

variances between statistics calculated from the same

data ought to be something that can be handled by

generating the appropriate statistical expectations (ei-

ther via analytical probability theory or possibly by

bootstrapping or Monte Carlo methods), we simply

need to do the hard work of coming up with valid tests

for patterns in that beta metric.

Finally, in spite of the many advantages offered by

the multiplicative diversity decomposition of numbers

equivalents, we should ask what is lost in transforming

raw diversity measures to their numbers equivalents.

Many authors have proposed a set of basic criteria that

an index of diversity should meet to reasonably be-

have in ecological research (e.g., Patil and Taillie 1982,

Routledge 1983, Wilson and Shmida 1984, Lande,

1996, Jost 2007). However, the usual outcome is that

no single index can satisfy even the most basic of these

criteria. This is because as diversity theory mirrors the

intrinsically complex and nonlinear essence of ecolog-

ical processes, it is also a fundamentally complex and

nonlinear discipline. In this view, a desirable property

of an ecologically meaningful (beta) diversity index is

the so-called sum property. In simple terms, the di-

versity index needs to be decomposable into species-

level patterns such that, given a diversity measure H

that conforms to the sum property, the measure is

decomposable into species-level patterns and the sum

of single species diversities gives the pooled diversity of

the species collection. That is, H ¼ RS
i¼1Hi, where Hi is

the contribution of species i to H.

In this way, the sum of single species diversities gives

the pooled diversity of the species assemblage (seeRicotta

et al. 2004). In a similar context, Patil and Taillie (1982)

termed this property ‘‘dichotomy’’ because the diversity

of species i would be unchanged if the other species were

grouped into a single complementary category.

When dealing with beta diversity, a usual question to

ask is which species contribute more to plot-to-plot

heterogeneity? From Eq. 2, it is easily shown that for

species presence and absence data, the contribution of

species i to beta is proportional to the inverse of its

number of presences in the N plots. Unfortunately, this

simple result cannot be generalized to numbers equiv-

alents. Due to the non-linearity of the transformation of

raw diversities to numbers equivalents (see Eq. 1), these

latter ones cannot be decomposed into single-species

contributions. In this case, to capture the importance of

single species or species groups in shaping the compo-

sitional heterogeneity of a given set of plots, different

measures of beta diversity need to be used.

To conclude, though the Jost definition of beta be-

haves better than previous measures as concerns its

independence on within-plot diversity, a perfect measure

of beta diversity does not exist and none of the measures

proposed to date is entirely satisfactory. Therefore, as
we do not leave in a perfect world, we are forced to use

the type of beta diversity measure that is less inadequate
to solve a specific problem.
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Whittaker (1960, 1972) first proposed the idea that

species diversity has spatial components, with alpha

diversity estimating diversity within individual stands (or

communities) and beta diversity estimating the number

of community types in an area (or in Whittaker’s ter-

minology, ‘‘differentiation of communities along gradi-

ents’’). These two values combined make up gamma

diversity. Beta diversity is important because it provides

the conceptual link between local and regional diversity,

more directly measures how soil types, disturbance, and

dispersal affect diversity, and is helpful in understanding

why species loss is sometimes smaller than predicted by

theory (Wilsey et al. 2005). Many interesting and long-

standing questions are applied across scales, such as how

much diversity is found within islands vs. across islands?

Is the number of habitat types (i.e., beta) within islands

key to explaining diversity at larger scales or is it the

greater population sizes found on large islands? Fur-

thermore, a consideration of both alpha and beta is

necessary for understanding how diversity arises and is

maintained in diverse systems. For example, in the

northern Great Plains, we have found that remnant

prairies can contain over 120 plant species within a small

area (Wilsey et al. 2005); this occurs because of high

diversity at the neighborhood scale where 20–25 species

are found per square meter (Martin et al. 2005), and from

species accumulation across neighborhoods (i.e., beta).

Many different approaches to estimating beta have

been forwarded since Whittaker introduced the concept,

and many sampling and statistical issues have been

discussed. To an empirical ecologist, the key question

when deciding which approach to use is ‘‘Will we get

different answers to a question depending on the beta

measure that we use?’’ Here, I address this question by

testing whether commonly used indices (multiplicative

and additive measures) differ in their response to a

common set of ecological treatments.

Whittaker proposed a multiplicative form for beta

(mb) as b¼ c/a. A simple way to describe this equation

is that alpha is species diversity within communities, and

beta is the number of community types in the region

(Jost 2007). A major issue with the among- vs. within-

community approach is that the scale at which a is

sampled varies so that alpha is used to estimate point

diversity in some studies (e.g., at the scale of a sampling

station or quadrat) and is used to estimate something

larger (e.g., an island in an island biogeography study) in

other studies. This makes sense in that beta describes a

general concept of species accumulation across lower

levels of organization, but it creates a problem in that

one person’s alpha (e.g., an island) is another person’s

gamma (e.g., an island, if alpha is at the scale of

neighborhoods within the island). The additive form of

beta (ab), b ¼ c � (mean a), has become popular in

recent years (Lande 1996, Veech et al. 2002, Crist et al.

2003) because it can easily be applied at different spatial

scales to address these issues in an effective manner. The

additive form has the following advantages over the

multiplicative form: (1) alpha and beta are in the same

units, and (2) it enables estimates of beta even when the

boundaries between communities are hard to discern,

and thus, (3) it more easily allows multiple levels of beta.

With additive beta, one can ask questions about how

beta changes with the scale of measurement, and it fits in

well with other topics in the popular field of landscape

ecology.

However, Jost (2007) and Riccota (2007) correctly

point out that ab is not mathematically independent of

additive a. They recommend using multiplicative forms

of beta, alternative forms of additive beta based on

numbers equivalents (Jost 2007), or proportions of ad-

ditive alpha and beta to gamma (a/c and b/c [or

propB]; Riccota 2007). To provide a simple ecological

example that illustrates their point about a lack of

independence: imagine a relatively homogenous field of

herbaceous plants surrounded by a very large regional

species pool with a consistent amount of species turn-

over throughout. Three studies are conducted in this

same field, each group uses a different sized quadrat to

sample, and all have the same sample size. Let us

assume that they all sample the field without error. The

first uses the smallest-sized quadrat and finds a mean

alpha of 20 and gamma of 30. The second uses a

medium-sized quadrat and finds a mean alpha of 40 and

gamma of 60. The third uses a large-sized quadrat and

Manuscript received 2 March 2009; revised 5 May 2009;
accepted 8 May 2009. Corresponding Editor: A. M. Ellison.
For reprints of this Forum, see footnote 1, p. 1962.

1 E-mail: bwilsey@iastate.edu

FORUM1984 Ecology, Vol. 91, No. 7

F
O
R
U
M



finds alpha of 60 and gamma of 90. Since the field is the

same and it has a consistent amount of turnover

throughout, the three groups should come up with the

same estimates of beta diversity. This is true of

multiplicative beta and proportion of beta using the

additive partitioning, but not with the absolute

measures of additive beta. That is, the first group finds

a mb of 30/20 ¼ 1.5, and a propB of (30 � 20)/30 ¼
0.333, the second a mb of 60/40 ¼ 1.5 and a propB of

(60� 40)/60 ¼ 0.333, and the third a mb of 90/60¼ 1.5

and a propB of (90 � 60)/90 ¼ 0.333. This can be

interpreted to mean that there are 1.5 community types

in this field (Jost 2007). So far so good. However, ab is

not the same across studies, and alpha is not

independent of beta and gamma, even though the field

is homogenous and should give the same beta values.

Making the calculations, the first group finds ab of 30�
20¼ 10, the second 60� 40¼ 20, and the third 90� 60

¼ 30. Now, let’s say that people later compare the

results from these studies, perhaps in a meta-analysis.

Comparing these ab estimates would give the meta-

analyst the false impression that beta ranges from 10 �
30 when it does not (they all accurately sampled the

same field). However, the mb and propB would give an

accurate description of the difference among the three

studies. What about comparing multiple sites (giving

multiple cs) with the same sized quadrat or sampling

scheme? If alpha varies across sites, then ab is going to

rise and fall with alpha in the same manner with the

same problems previously described.

This dependence of beta on alpha is different from

the dependence within sites that was discussed by Veech

and Crist (2010). Within sites, the relationship between

alpha and additive beta can be negative when raw

values and not means are used, because the closer alpha

is to gamma, the lower beta will be (Veech and Crist

2010). However, the partitioning approach advocated

by Lande (1996) and reviewed by Veech et al. (2002)

uses mean alpha, which should be positively related to

beta when alpha varies across sites.

Data from a thought experiment are one thing, but

what about a real-life example? We have been conduct-

ing a long-term restoration experiment in Iowa that

consists of seed additions of 30 native prairie species to

bare-ground plots in former brome (Bromus inermis)

fields. Seed mixes were added independently to 120 plots

within each of two sites in a manner that would provide

multiple independent values of alpha, beta, and gamma.

The experiment involved establishing treatments that

vary species arrival order and disturbance history, over-

seeding all plots with a common seed mix, and then

sampling the resulting communities to test how treat-

ments affected plant community assembly. An abbrevi-

ated set of results will be presented here to test whether

conclusions vary depending on which beta measures

are used. Beta was calculated using the most com-

monly recommended measures of diversity, species

richness (R p0
i ) Shannon’s (eH

0 ¼ exp[�R ln(pi) 3 pi]),

and Gini-Simpson’s (1 � R p2
i ), where pi is the relative

abundance of each (ith) species in the sample or com-

bined samples.

Experimental Design

The experiment was established between April 2005

and April 2006 using a split-plot design at two sites that

differed in their net primary productivity with five early-

emerging species treatments applied to main plots, and

four history treatments applied to subplots. In 5 3 5 m

main plots, seeds of early-emerging species were

established as six single-species treatments at a rate of

11.5 kg/ha: (1) the perennial C3 grass Elymus canadensis,

(2) the perennial C4 grass Bouteloua curtipendula, (3) the

annual C3 legume Chaemacrista fasciculata, (4) the

biennial C3 forb Rudbeckia hirta, (5) a mix of all four

species, and (6) controls with no early-emerging species

added. Species were selected because they emerge early

in the establishment period compared to other members

of their functional groups. The key prediction is that

species will admit members of other functional groups

more readily than members of their own functional

groups, and that this will lead to enhanced beta diversity

among plots. In 23 2 m subplots within each main plot,

the following history treatments were applied using a

seed mix of 30 native prairie species: (1) early-spring

seeding of both the early-emerging species and the seed

mix, (2) early-spring seeding of the early-emerging

species with the seed mix added the following year in

the spring, (3) late-summer seeding of both the early-

emerging species and the seed mix, and (4) late-summer

seeding of the early-emerging species with the seed mix

added the following year in the spring. These history

treatments were predicted to lead to enhanced beta

diversity due to priority effects (seed mix added at the

beginning vs. the growing season after early-emerging

species had established) and timing of disturbance

(spring vs. fall for seedling emergence). Timing was

predicted to affect the establishment of functional

groups differently due to either increasing soil temper-

atures and day lengths (early spring seeding favoring C4

plant species) or decreasing soil temperatures and day

lengths (late summer seeding favoring C3 species). The

original design had 30 main plots at each of the two

sites, and 4 subplots per main plot for 2 sites3 6 species

treatments 3 5 replicates 3 4 subplot treatments ¼ 240

total. Thus, each of the 240 plots received a separate

seed mix, and a total of 60 independent gamma and

mean alpha values could be calculated at the subplot to

main-plot level. One plot at one site had to be dropped

due to an accidental mowing event, for 236 subplots

total, and 59 gamma values.

Abundances of each plant species were estimated in

the center of each subplot with point intercept sampling

in mid-July of the second growing season (July 2007).

All hits were counted per pin so that data would be more

strongly correlated with biomass. Relative abundance

was calculated as abundance of each species by the total
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number of hits. Pins were dropped 20 times per plot

from a 50 3 100 cm frame in a systematic manner.

Occasionally, there were species in the plot that did not

receive any hits. These were given a value of one hit and

were included in the estimates of species richness.

RESULTS AND DISCUSSION

Relationships between alpha and beta depended

greatly on which measure was considered (Fig. 1, Table

1). As in our thought experiment, and in accordance

with a mathematical dependence between alpha and

beta, the alpha and additive beta measures were strongly

positively correlated for all measures considered except

for the Gini-Simpson’s index. Additive richness was

strongly related to alpha values (slope¼ 1.3, r2¼ 0.65, P

, 0.001). However, multiplicative richness and the

proportion of additive beta were statistically indepen-

dent of alpha (all P values . 0.05). Additive eH
0

(slope¼
1.2, r2 ¼ 0.67, P , 0.001) was much more strongly

related to alpha eH
0

than were multiplicative eH
0

(slope¼
0.17, r2 ¼ 0.38, P , 0.001) and proportion of additive

beta (slope ¼ 0.08, r2 ¼ 0.40, P , 0.001). Interestingly,

and as predicted by Jost (2007), the Gini-Simpson’s

index was not independent of alpha, and the slope

depended on how close alpha was to 1. In the more

mesic site, the relationship between alpha and the Gini

index was negative (slope¼�0.29, P , 0.001, r2¼ 0.34).

This site had higher alpha values. At the more xeric site,

the relationship was weakly positive (slope ¼ 0.16, P ¼
0.018, r2¼ 0.18). Thus, values from both sites converged

as alpha neared 1, and the ratio alpha/gamma ap-

proaches unity (Jost 2007). These results suggest that the

Gini-Simpson’s index should be avoided in beta di-

versity studies, contrary to what was recommended by

Lande (1996) and Veech et al. (2002).

A very large amount of beta diversity was found when

subplots were combined across history treatments

regardless of the early-emerging species treatments

(Table 1). Greater than half of the species richness

and 17–49% of Shannon’s diversity at this level was

from beta, and there were on average about two

different community types within each main plot as a

result of history treatments. This is ecologically very

interesting because it was associated with the propor-

tions of native/exotic species and C3/C4 species across

history treatments; this will be developed further for a

future publication.

At the across-site level, there was less beta than at

the across-history-treatment level (mb and propB),

even though the sites were orders of magnitude further

apart and on different soil types with different pre-

cipitation levels. However, notice that ab for richness

was much higher at the across-site level (20) vs. the

FIG. 1. Relationships between alpha diversity and additive (top panels), multiplicative (middle panels), and proportion of
additive (prop, lower panels) beta using diversity measures of species richness (S, left-hand panels), Gini-Simpson’s 1 � D (GS,
middle panels), and Shannon’s eH

0

(right-hand panels) at two sites (open and solid circles).
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across-history-treatment level (4.4 � 11.0) again due to

the dependence of additive beta and alpha.

These empirical results suggest that it does matter

which index is used in beta diversity studies. This

statistical dependence of the absolute measure of

additive beta on alpha creates problems with interpre-

tation and I suggest that the raw additive beta measure

should be avoided when there are differences in alpha

(and gamma) between sites or samples. However, there

are many studies in the literature that have analyzed the

absolute measure of beta since the additive partitioning

method was advocated (e.g., Polley et al. 2005,

Hendrickx et al. 2007, Brudvig 2009). Ecologists may

be reluctant to see these types of comparisons of ab
across sites as a problem because alpha and gamma are

important variables. They may intuitively sense that the

sites that they are studying do indeed have different

alphas and gammas. In fact, the first and most

important step in any study is to compare alpha and/or

gamma diversities. However, beta should provide a

value that is not mathematically related to alpha or

gamma (Jost 2007, Ricotta 2007). With beta values that

are mathematically independent of alpha, we can

compare sites with different levels of alpha diversities

across scales, and we can more effectively compare and

contrast different studies. The absolute measure of

additive beta is only useful in comparing plots/sites

when the alpha values do not vary across the units that

are being compared (Jost 2007, Ricotta 2007). Sites/

samples can be compared more effectively by not

analyzing the absolute measure of beta, but instead by

using the propB, the mb, or by using ANCOVA or other

statistical techniques that take into account this

codependence (Veech and Crist 2010).

The Gini-Simpson’s index should be avoided in

diverse sites when its values approach 1. As Jost

(2007) pointed out, this will be most problematic in

the most diverse sites. For example, we commonly

record a values of the Gini-Simpson index of 0.9 in

diverse tallgrass prairie plots (Martin et al. 2005). In this

situation, b can not exceed 0.1 regardless of how much

species turnover there is. This problem can be remedied

by using diversity measures (e.g., Shannon’s or Simp-

son’s 1/D) that do not have an upper limit of one.

Finally, some flexibility is needed in deciding among

the recommended indices used to estimate beta diversity.

We will need to continue to interpret across study

systems and to compare results to earlier time periods.

The approaches in comparing beta diversity discussed

here (proportion of additive beta or multiplicative beta

indices), or using approaches not discussed (similarity-

index-based ordination [Legendre et al. 2005] and

rarefaction-curve-based approaches [Olszewski 2004])

are all valid ways to proceed. The general approach to

use will depend on the objectives of the investigation.

For example, if an experiment on diversity maintenance

is designed to compare alpha and gamma diversity

indices, then using the approaches discussed in this

paper are logical ways to proceed. Converting ‘‘entropy’’

values to their numbers equivalents before interpreting

them is helpful for the reasons pointed out by Hill (1973)

and Jost (2007). If analyses of species composition

differences or species-area curves are being conducted,

then the logical choice is to use one of the latter choices

that were not discussed here. We can then move beyond

these discussions on how to calculate beta diversity to

the important task of discerning what processes underlie

observed patterns of beta.

TABLE 1. Alpha, beta, and gamma species richness and diversity in experimental plots in two sites in Iowa, USA (a less-productive
site, WRF, in Monona County, and a more-productive mesic site, Hort, in Story County).

Source

Species richness Gini-Simpson’s diversity (1 � D) Shannon’s diversity (eH
0

)

a ab mb propb c a ab mb propb c a ab mb propb c

WRF subplot 11.5 0.59 4.5

Control 5.9 6.5 2.1 0.51 0.53 0.07 1.13 0.11 3.2 1.3 1.3 0.22
Elymus 5.5 6.1 2.1 0.51 0.49 0.06 1.09 0.07 3.1 1.3 1.4 0.25
Chaemacrista 6.1 7.1 2.1 0.51 0.54 0.10 1.22 0.17 3.6 1.9 1.4 0.29
Bouteloua 5.4 5.5 2.0 0.50 0.61 0.07 1.11 0.10 3.6 1.4 1.3 0.24
Rudbeckia 4.8 4.4 1.9 0.46 0.43 0.06 1.12 0.11 2.6 0.6 1.2 0.17
Mix 5.7 6.3 2.1 0.52 0.53 0.07 1.12 0.10 3.4 1.1 1.3 0.20

Hort subplot 16.5 0.77 7.5

Control 8.4 9.8 2.2 0.53 0.66 0.16 1.24 0.19 4.7 3.9 1.8 0.44
Elymus 8.5 11.0 2.3 0.56 0.74 0.12 1.17 0.14 5.4 5.1 2.0 0.49
Chaemacrista 7.8 8.7 2.1 0.52 0.65 0.16 1.26 0.20 4.6 3.7 1.8 0.43
Bouteloua 6.6 8.4 2.3 0.55 0.51 0.19 1.38 0.27 3.5 2.2 1.6 0.37
Rudbeckia 7.5 8.9 2.2 0.54 0.61 0.16 1.27 0.20 4.0 2.7 1.7 0.40
Mix 5.4 8.1 2.6 0.61 0.48 0.19 1.38 0.30 3.2 2.2 1.7 0.38

Sites mean 49 20 1.4 0.29 0.76 0.06 1.08 0.07 9.20 2.25 1.2 0.20
Across-site c 69 0.82 11.5

Notes: Subplot means are alpha (a diversity in subplots), additive and multiplicative beta (ab and mb) and proportion of beta
diversity (propb) across four history treatments that varied timing of seeding and priority effects. Beta was calculated using the
most commonly recommended measures of diversity: species richness (R p0

i ), Shannon’s (eH
0 ¼ exp[�R ln(pi) 3 pi]), and Gini-

Simpson’s (1� R p2
i ), where pi is the relative abundance of each (ith) species in the sample or combined samples.
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The debate on the properties and use of additive and

multiplicative partitioning of species diversity exempli-

fied in this forum reflects the broader challenge of

quantifying and interpreting alpha, beta, and gamma

diversity at multiple scales of sampling. As noted by

Wilsey and Ricotta in their contributions, ecologists use

a wide range of measures of beta diversity, partly

because of differences in study questions of the

investigators and partly because of the differences in

their statistical properties. The lack of agreement on the

numerous dimensionless measures of community turn-

over and dissimilarity is a longstanding problem in

community ecology (Vellend 2001, Koleff et al. 2003,

Magurran 2004, Ricotta 2007). So, too, there has been

some disagreement on the statistical properties and

applicability of the alpha and beta components of

diversity partitioning.

The popularity of Whittaker’s (1960) multiplicative

partition of diversity, and subsequent additive partitions

by MacArthur et al. (1966), Allan (1975), and Lande

(1996), is that they provide a single set of values of alpha

and beta diversity for a given sampling scale and

therefore give a simple, intuitive measure of species

diversity and composition. For this reason, we believe

that partitioning methods are a powerful tool for

quantifying spatial and temporal variation in biodiver-

sity in a manner that is accessible to ecologists,

managers, and non-scientists. The cost of simplicity is

that partitioning methods discard information on site-

specific composition retained in pairwise dissimilarity

and ordination that may be important to the underlying

biophysical or land-use gradients that produce beta

diversity (but see Hofer et al. 2008). Thus, as an

Manuscript received 26 June 2009; accepted 29 June 2009.
Corresponding Editor: A. M. Ellison. For reprints of this
Forum, see footnote 1, p. 1962.
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aggregate decomposition of diversity, both additive and

multiplicative diversity partitions share the same

strengths and limitations. As is clear from the foregoing

contributions, however, additive and multiplicative

partitions differ in their properties, expression, and

interpretation of beta diversity. Here, we address several

key points raised in the forum papers including the

independence of alpha, beta, and gamma components of

diversity, the randomization procedures used to evaluate

independence, the use of entropies vs. true diversities,

and the relationships between diversity partitioning and

other community analyses. We conclude with a set of

recommendations on the use of diversity partitioning.

In the past 5–10 years, diversity partitioning has

become an increasingly common way of analyzing

patterns of alpha and beta diversity. In addition to the

contributions of this Forum, there have been other

critiques of additive diversity partitioning. A common

feature of some of these critiques (and some of the

forum contributions) is to criticize additive partitioning

because the beta component derived from additive par-

titioning (for some indices, notably species richness) is

not independent of alpha. At the same time, the critics

emphasize the ‘‘independence’’ of beta and alpha as

derived from multiplicative partitioning (e.g., Baselga

2010, Jost 2010, Ricotta 2010). Jost (2006, 2007) referred

to ‘‘independence’’ of multiplicative beta and alpha

several times, without explicitly using the term ‘‘statis-

tical independence.’’ In our opening paper of this forum,

we explicitly evaluated the statistical independence of

beta (multiplicative and additive) and alpha. We don’t

agree with Jost that ‘‘Statistical independence of alpha

and beta is neither necessary nor desirable,’’ and

‘‘Therefore, Veech and Crist’s discussion of statistical

independence, and their simulations, are not closely

related to the real issues underlying partitioning.’’ Statis-

tical independence (or the lack thereof) of alpha and

beta is the main issue with respect to evaluating the

potential benefits of additive and multiplicative parti-

tioning. A researcher’s ability to recognize and account

for the non-independence of two or more variables is

crucial for proper statistical practice.

In his contribution to this forum series, Jost now refers

to multiplicative beta and alpha as being ‘‘mathemati-

cally independent.’’ However, ‘‘mathematical indepen-

dence’’ does not exist as a property of two empirical

variables. We conducted a keyword abstract search in ISI

Web of Science on ‘‘mathematical independence’’ and

‘‘mathematically independent’’ and obtained 3 and 32

citations respectively, as of 1 June 2009. Virtually all of

these papers were using ‘‘mathematically independent’’

as a synonym for ‘‘statistically independent.’’ By

comparison, ‘‘statistical independence’’ and ‘‘statistically

independent’’ returned 470 and 1243 citations, respec-

tively. Contrary to Jost, mathematical independence is

not a synonym for orthogonality. Two variables (X and

Y, portrayed as matrices) are orthogonal if and only if

X0Y¼ 0 (Rodgers et al. 1984). Moreover, orthogonality

of two variables is a separate condition from whether the

variables are statistically independent (uncorrelated);

that is, two variables can be orthogonal and either cor-

related or not correlated (Rodgers et al. 1984). If two

variables are each represented as elements in a one-

dimensional matrix or vector then the vectors must be

perpendicular in order to be orthogonal; alpha and beta

are not orthogonal.

The remainder of the paper is mostly focused on

further evaluating the statistical independence of alpha

and beta, particularly in the light of Baselga’s contribu-

tion. Baselga (2010) presents a thorough and insightful

examination of statistical independence of beta and

alpha. Baselga simulated pairs of alpha and gamma

values and then derived additive and multiplicative beta

from these paired values. This general approach follows

our approach but the simulations differ (Table 1).

Procedure 1 of Baselga and our simulation procedure do

not demonstrate statistical independence of multiplica-

tive beta and alpha; however, Procedure 2 of Baselga

does (Table 1). In Procedure 2, the constraints on

gamma are set directly by alpha and N (the number of

samples in the data set). In Procedure 1 and our

procedure, gamma is constrained to be between 10 and

1000 (or some other predefined limits); alpha does not

constrain gamma. Rather gamma constrains alpha in

Procedure 1 and in our procedure. In Procedure 2,

gamma does not constrain alpha (except that alpha

cannot be greater than gamma); alpha is constrained

between 1 and 100 (or some other predefined limits)

(Table 1). In Procedure 2, gamma is selected from all

possible values for a given alpha (and N ) whereas in

Procedure 1 (and our procedure) alpha is selected from

all possible values for a given gamma. Most applications

of diversity partitioning (additive and multiplicative)

assume that gamma is set (a given value for a data set)

TABLE 1. Comparison of the simulation procedures used by Baselga (2010) and Veech and Crist (2010).

Procedure Simulation of alpha Simulation of gamma

Additive beta
independent of

Multiplicative beta
independent of

Alpha Gamma Alpha Gamma

Baselga 1 RND (gamma/N to gamma) RND (10 to 1000) no no no yes
Baselga 2 RND (1 to 100) RND (alpha to alpha 3 N) no no yes no
Veech and Crist RND (1 to gamma) RND (10 to 1000) no no no yes

Note: RND represents a random variable selected from a uniform distribution with the given limits; N¼ number of samples in
the data set (5, 50, or 500).
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with alpha being a variable confined to the limit set by

gamma (i.e., Procedure 1). Gamma is not assumed to be

a variable whose upper limit must always increase with

alpha and N (i.e., Procedure 2).

Previous studies by Jost (2006, 2007) and the con-

tributions to this forum by Baselga and Jost suggest that

multiplicative beta is measuring some aspect of gamma

diversity that is completely separate from the aspect

measured by alpha diversity. This may be correct, but

this view needs clarification. One assumption of this

view is that completely different ecological and evolu-

tionary processes produce alpha and beta-diversity.

Baselga (2010) states: ‘‘As previously reported by Wilson

and Shmida (1984), alpha and beta diversity patterns are

the result of different ecological and biogeographical

processes.’’ Our own perspective on alpha and beta

diversity is that some of the same ecological and evolu-

tionary processes affect both alpha and beta, and that

alpha and beta together determine gamma-diversity,

whether the partitioning is additive or multiplicative.

The lack of complete statistical independence is not

problematic as there are ways to account for the de-

pendence between alpha and beta (as we explain in the

lead forum paper; also see Wilsey 2010).

In his forum paper, Jost (2010) disputes or misunder-

stands our explanation of statistical independence. He

states: ‘‘Many aspects of nature are the result of the

combined effects of multiple independent variables. The

existence of a formula for the combined effect has no

bearing on the independence of the underlying vari-

ables.’’ Although this statement is true for many vari-

ables that scientists measure, it is not true for gamma

diversity. Gamma diversity is completely determined by

the combined effect of just two variables. Moreover, the

two variables (alpha and beta) combine in a known and

constant way (either alpha þ beta or alpha 3 beta) in

determining gamma. A third variable is not in the

equation for gamma. Because alpha, beta, and gamma

are random variables with a non-zero covariance, they

are not conditionally independent. Knowing the values

of any two of them allows for the exact determination of

the third. This is true for additive and multiplicative

beta. Jost states: ‘‘If someone tells us the value of alpha,

and nothing else, this knowledge by itself tells us

absolutely nothing additional about the value of beta.’’

This is indeed true, for both additive and multiplicative

beta. In fact, if we only know alpha and nothing else, we

cannot even calculate beta. Our main point here is that

in the additive and multiplicative partitioning schemes,

beta can only be determined by first determining alpha

and gamma (which are directly measured). Moreover, as

with most species responses measured at multiple

sampling scales, these three quantities will generally

have a non-zero covariance, which indicates that the

variables are linearly correlated (Rodgers et al. 1984).

Contrary to Jost (2010), we have not confused the

functional relationships among alpha, beta, and gamma.

Continuing with the coin toss analogy, Jost correctly

states that the outcomes of flipping two coins are

statistically independent of each other. This is their

functional relationship (actually the absence of a

relationship): the outcome of one toss in no way affects

the outcome of the other toss. If we flip two coins (or flip

one coin two times) then we could determine the

frequency of heads (or tails) solely based on knowing

the frequency of tails (or heads). The complete set of

possible values are [(0, 2), (1, 1), and (2, 0)]; these are

relationships between empirical values. However, alpha

and beta do not have this type of functional or empirical

relationship. The frequency of heads (or tails) could be

directly determined by counting the number of times

that the event occurs; that is, the value of each variable

can be determined with direct observation and without

knowledge of the value of the other variable. In diversity

partitioning, beta is not and cannot be determined by

direct observation or measurement; it can only be

determined by knowing alpha and gamma. Many other

(but not all) metrics for measuring beta also require that

alpha be calculated (Wilson and Shmida 1984, Vellend

2001, Koleff et al. 2003). Thus, alpha and beta may not

have an underlying functional relationship: beta as a

property or characteristic of a set of samples (data set)

may only exist with reference to an observed and

measured alpha.

There are several limitations of diversity partitioning.

As Wilsey demonstrates with empirical data, additive

beta richness must be corrected when comparing beta

values that derive from two different partitions (data

sets) that differ in either alpha or gamma (Ricotta 2008).

An outright misuse of diversity partitioning is the use of

entropies to calculate beta as alpha/gamma; there are

serious mathematical problems in doing this and these

problems can lead to erroneous inferences (Jost 2006,

2007, 2010, Ricotta 2010). The alpha/gamma ratio has

much better mathematical properties when alpha and

gamma are expressed as true diversities or numbers

equivalent (Jost 2007). For any set of species abundance

data, alpha, beta, and gamma can be calculated as true

diversities of any order q (Jost 2006, 2007, Ricotta 2008).

However, the units for alpha and beta are not the same

when using true diversities. Alpha is measured or

interpreted as the number of equally common species

whereas beta is interpreted as the effective number of

distinct communities (Jost 2007, 2010). We agree with

Ricotta (2010) that a ‘‘statistically well behaved’’ metric

for beta diversity is desirable but not at the expense that

it measures (or interprets) a quantity in a way that is not

useful or is nonsensical. For instance, a multiplicative

partition of species richness (q ¼ 0) from data of the

North American Breeding Bird Survey revealed that in

one ecoregion of 700 000 km2 there were only 2.85

distinct bird communities, even though the data set

consisted of 263 spatially distinct survey routes scattered

throughout the ecoregion. Lastly, the beta derived from

diversity partitioning does not directly measure differ-

ences in species composition among individual samples
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or communities, but instead is an overall average of the

diversity not found in any one sample (Veech et al. 2002,

Crist and Veech 2006).

We believe that both additive and multiplicative

partitioning can be very useful for studies of species

diversity, despite their limitations. Perhaps their greatest

value is that, as an overall decomposition of beta

diversity, additive and multiplicative partitioning can be

applied to multiple scales of sampling (Wagner et al.

2000, Crist et al. 2003, Crist and Veech 2006). Similarly,

studies on the local–regional relationships of species

have benefited from multi-scale perspectives of diversity

partitioning (Loreau 2000, Gering and Crist 2003,

Cornell et al. 2007). Diversity partitioning can also

decompose the alpha and beta components of the

species-area relationship, additively or multiplicatively,

and determine the fraction of the total beta component

of richness that is due to changes in habitat area (Crist

and Veech 2006). Lastly, diversity partitioning has been

used to determine the contributions of different habitats

to overall landscape diversity (Wagner and Edwards

2001, Lu et al. 2007).

To some extent, additive vs. multiplicative partition-

ing is a false dichotomy. Ricotta (2005) showed that

there is substantial similarity between the two approach-

es and Jost (2007) further demonstrated that when some

entropies are converted into true diversities the resulting

mathematical relationship between alpha, beta, and

gamma is additive. The greatest value of diversity

partitioning is in simultaneously analyzing alpha and

beta, and not in solely measuring beta diversity. As

Ricotta (2010) notes there is no perfect and completely

satisfactory metric for measuring beta. The measure-

ment of beta has received much attention in the past five

years. Ecologists have and continue to develop methods

that also measure differences in species composition,

take into account differences in sampling effort, and

differences in species detectability.

We suggest the following recommendations for

researchers using diversity partitioning. Use either

additive or multiplicative species richness (q ¼ 0) to

measure beta (alpha at q¼ 0 is the same in the additive

and multiplicative framework). If there is a benefit or

desire to weigh the alpha and beta values by species

abundances, favoring either common or rare species,

then also calculate q-diversity metrics. The latest release

of our software (PARTITION 3.0) partitions additive

and multiplicative species richness as well as any q

metric (program available online).4 Do not use entropies

in diversity partitioning; true diversities are superior

alternatives for many reasons. Avoid the labels ‘‘addi-

tive’’ and ‘‘multiplicative’’ when referring to diversity

partitioning. Be aware of the de facto but relatively

minor statistical dependence between alpha and beta

that exists simply because beta must be calculated from

alpha and gamma. Use appropriate statistical adjust-

ments to remove the dependence (as demonstrated in

Veech and Crist 2010, Wilsey 2010). As Wilsey notes, the

general approach and metric used in analyzing a

diversity pattern will depend on the goals of the

investigation. Diversity partitioning is particularly well

suited for analyzing multi-scale patterns of species

diversity; it will continue to play an important role in

this active area of research in the future.
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