
Experience in Using a Process Language to Define
Scientific Workflow and Generate Dataset Provenance

Leon J. Osterweil

Dept. Computer Science
Univ. of Massachusetts

Amherst, MA 01003 USA
ljo@cs.umass.edu

Lori A. Clarke
Dept. Computer Science
Univ. of Massachusetts

Amherst, MA 01003 USA
clarke@cs.umass.edu

Aaron M. Ellison
Harvard Forest

Harvard University
Petersham, MA 01366 USA

aellison@fas.harvard.edu

Rodion Podorozhny
Computer Sci. Dept.

Texas State University
San Marcos, TX 78666 USA

rp31@txstate.edu

Alexander Wise
Dept. Computer Science
Univ. of Massachusetts

Amherst, MA 01003 USA
wise@cs.umass.edu

Emery Boose
Harvard Forest

Harvard University
Petersham, MA 01366 USA
boose@fas.harvard.edu

Julian Hadley
Harvard Forest

Harvard University
Petersham, MA 01366 USA

jhadley@fas.harvard.edu

ABSTRACT
This paper describes our experiences in exploring the applicability
of software engineering approaches to scientific data management
problems. Specifically, this paper describes how process
definition languages can be used to expedite production of
scientific datasets as well as to generate documentation of their
provenance. Our approach uses a process definition language that
incorporates powerful semantics to encode scientific processes in
the form of a Process Definition Graph (PDG). The paper
describes how execution of the PDG-defined process can generate
Dataset Derivation Graphs (DDGs), metadata that document how
the scientific process developed each of its product datasets. The
paper uses an example to show that scientific processes may be
complex and to illustrate why some of the more powerful
semantic features of the process definition language are useful in
supporting clarity and conciseness in representing such processes.
This work is similar in goals to work generally referred to as
Scientific Workflow. The paper demonstrates the contribution that
software engineering can make to this domain.

Categories and Subject Descriptors
D.1.7 [Programming Techniques] Visual Programming, D.2.6 [Software
Engineering] Programming Environments, D.3.3 [Programming
Languages] Language Constructs and Features

General Terms
Documentation, Experimentation, Languages.

Keywords
Scientific Workflow, Continuous Process Improvement, Data
Provenance.
1. INTRODUCTION
Scientific researchers devote considerable effort to the creation
and management of data, producing collections of data, often
called “datasets,” that may be highly evolved. To support these
efforts, scientists are increasingly turning to Scientific Workflow
systems, which offer some support for invoking computational
tools and managing the resulting datasets. From the software
engineering perspective, it seems useful to view these scientific
datasets as products of a distributed enterprise: input datasets may
be stored and retrieved remotely, analytic services may be
obtained from external sources, and the results of extensive
computation are increasingly likely to be made directly accessible.
The totality of data and capabilities produced and consumed in
this way can thus be thought of as a scientific data processing
enterprise. In this work we refer to it as an analytic web [1-3].
There is a need for strong support of this enterprise by supporting
both the production of such datasets (a particular focus of current
Scientific Workflow systems) and their consumption by those
wanting to access them for their own subsequent scientific
investigations (a need that currently seems less well served).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Foundations of Software Engineering’08, November 11–13, 2008,
Atlanta, Georgia, USA.
Copyright 2008 ACM 1-58113-000-0/00/0008…$5.00.

Support for production should consist of facilities for generating
and storing new data items and datasets. Support for consumption
should include annotating the data sets, and when necessary
individual data items, with precise specifications of how the data
item or dataset was created (process provenance metadata). Such
metadata seems essential if other scientists are to use these results
responsibly and is also essential for reproducibility, the very
essence of scientific validation. An analytic web should thus
support both generating and accessing such metadata, as well as
the use of the process provenance metadata to support the
reproduction of datasets and the generation of additional datasets.

In this paper we demonstrate that the desired annotations can be
treated as attributes attached to nodes in a directed acyclic graph
(DAG) created during the execution of a definition of the
scientific process. We refer to this DAG as a Dataset Derivation
Graph (DDG). We specify the scientific process with a graph that
we refer to as a Process Derivation Graph (PDG). This paper
shows that the language used to specify the PDG of a complex
scientific process must incorporate a surprisingly challenging
collection of semantic features in order to provide a clear and
precise definition of the process. Finally, based on preliminary
experiences with this approach, this paper suggests the desiderata
for a system of tools to facilitate the production of the PDGs and
DDGs that comprise analytic webs and to support analyses that
should be used to guide their production and consumption.

Numerous Scientific Workflow projects address many of the
issues raised here. A key objective of this paper, however, is to
demonstrate that current Scientific Workflow technologies can be
improved upon by drawing upon experiences and technologies
developed to facilitate support for such key concepts as
abstraction, exception management and concurrency control. In
previous papers [1, 3] we presented to the ecological research
community an indication of the promise of our approach. This
paper discusses the challenges and research opportunities that this
problem domain presents for software engineering research.

2. MOTIVATING EXAMPLE: A REALTIME
HYDROLOGICAL SENSOR NETWORK

The Harvard Forest Long-Term Ecological Research (LTER) site
is building a sensor network to measure the flow of water through
small, forested watersheds. This real-time system will integrate
ongoing meteorological, hydrological, eddy covariance, and tree
physiological measurements. These measurements will enable
study of variations in water flux caused by differences in
topography, soils, vegetation, land use, and natural disturbance
history. Frequent sampling (5-10 Hz) will enable study of water
flux dynamics at a wide range of temporal scales, from minutes to
days to years. Over time, the number, nature, and variety of
sensors to be used in this research, and datasets resulting from it,
will grow. The system is described in detail in [3].

Such systems create interesting system development and data
management challenges. As the number and variety of sensor data
streams grow, systems for acquiring their data must be developed.
Some processing can be automated, but it must be integrated with
human processing activities, that must keep pace with growth in
data rates and varieties. Measurements may be delayed or
corrupted for many reasons, necessitating complex contingency
handling, and varied models to create substitutes for missing data.

To understand this better we describe briefly some essentials of
hydrological modeling. Analysis of water flux is based on the
mass balance equation:

dS = P – ET – Q
where P = precipitation, ET = evapotranspiration, Q = stream
discharge, and dS = change in ecosystem water storage. The terms
in this equation may represent rates that are instantaneous or
integrated over fixed time intervals. Essential measurements are
made at three sites, a meteorological station, an eddy flux tower,
and a stream gauge. Because accurate and complete data are
critically important, this system incorporates redundancy. Thus P
is measured at two separate rain gauges (P1 and P2). ET is both
measured directly and modeled using measured photosynthetically
active radiation (PAR), and Q is both measured with a stream
gauge and modeled using a simple linear reservoir model [4]. This
redundancy requires dealing with inconsistencies in the redundant
data. In addition some measurements might be missing or suspect
(in which case interpolation and gap filling models create
substitute values). While potentially fully automated, the system
must also enable overall human oversight in real-time and must
also support subsequent more leisurely human retrospective data
analysis. Specifically, the system must integrate:
(1) A real-time sub-process to collect, analyze, and document
data from the meteorological station, eddy flux tower, and stream
gauge: This subprocess has to retrieve measurements every 30
minutes, do range checking, calculate best values from redundant
sensors, create and apply models, choose between measured and
modeled values, and calculate water storage change (dS).
(2) A post-processing sub-process to automatically update
datasets after a fixed time period (e.g., one month): Experience
has shown that models created in realtime can be improved upon
by using both preceding and subsequent measurements, especially
during periods of rapid ecosystem change.
(3) An alternate measurement sub-process to support further
modifications to data items and datasets: For example, more
accurate adjustments may become known too late for scheduled
post-processing, original measurements may require correction for
sensor drift, and missing or questionable measurements may need
replacement by data from other sites. Because this activity will
change some values, other (modeled) values may consequently
have to be updated because of “ripple effects.”
(4) A new model sub-process to support modifying or replacing
the models used in the system. This may entail changing the
model functionality, the parameters used, or the temporal range of
data used to create modeled value(s). This sub-process helps
scientists to construct, evaluate, and then promulgate new
model(s), and the circumstances under which they should be used.

The first three of these subprocesses each produces datasets
containing sequences of data items that represent either direct
measurements or values that have been generated by the
application of one or more models. Dataset consumers have a
strong interest in being sure that datasets produced by these
subprocesses will include at least the following:
• All original and alternate measurements, with appropriate
metadata annotations (e.g., value missing, value out of range, or
value computed by model).
• All models used to compute substituted data items, with
documentation indicating which data items were processed by
which models at what times.
• Estimates of P, ET, Q, and dS for each time period of interest
(e.g., every 30 minutes), indicating what processing steps (e.g.,
model applications) were applied and in what sequence.

3. TECHNICAL APPROACH
Analytic Web: Analytic webs [2] are composite objects that
integrate PDGs and DDGs that differ from one another, for
example, because of different input datasets, different handling of
different contingencies that may have arisen, or different choices
of gap-filling models made by scientists.

Data Derivation Graph (DDG): A DDG documents the
provenance of data items and datasets generated in executing a
scientific process. We view a scientific process as an integrated
system in which tools and humans function as operators, and data
items and datasets are their operands. Intermediate and final
outputs result from execution of this process. Each trace that
produces a data item or dataset supports the creation of process
provenance metadata. This, in turn, can support the reproduction
and analysis of the data item or dataset, and provide evidence of
its suitability for use in further scientific processes.

The DDG in Figure 1 depicts how data items have been derived
from each other. Each box represents a data item, and each arrow
indicates that the data item at the head was used to develop the
data item at the tail. Thus, for example, the arrow from “Data to
Post-Process 1” to “Selection Criteria 2” indicates that the latter
was used to create the former. The arrow from “Data to Post-
Process 1” to “Revised Data 1” indicates, further, that the
derivation of “Data to Post-Process 1” required both “Selection
Criteria 2” and “Revised Data 1” as inputs. Figure 1 also indicates
that “Revised Data 1” was derived from three other data items,
and one of them, “Real Time Data 1”, was itself derived from
three additional data items. Figure 1 does not depict a
correspondingly precise specification of the exact tool or process
represented by each of the arrows, but this additional information
is needed to provide a complete specification of the derivation of
the data items. With these additional annotations the resulting
structure becomes a DDG. In particular the DAG rooted at each
box in Figure 1 provides the information needed to document the
provenance of the data item represented by that box. Note that a
DDG can incorporate different instances of a single type of a data
item. Thus, for example, the DDG in Figure 1 incorporates
“Revised Data 1” and “Revised Data 2”, and “Selection Criteria

1” as well as “Selection Criteria 2”1. Different instances of a
single data item type occur frequently, for example, as a result of
iteration of scientific processing loops. Accurate and unambiguous
documentation of data item and dataset provenance requires that
the data items generated by each iteration be clearly identified and
distinguished from one another. Analytic web DDGs do this by
indicating the way in which subsequent instances are derived from
prior instances and from other data items.

Process Derivation Graph (PDG): While the DDG is a powerful
device for recording the way in which data items and dataset
instances have been derived, it only captures history and does not
specify the general process and activity types by which data items
and datasets are created. To do this, an analytic web uses a PDG, a
definition of all possible executions of the scientific process. The
DDG and PDG complement each other. The DDG provides a
retrospective history of the development of all datasets and data
items. It is a structure of instances—data and dataset instances and
instances of the tools and processes used to create them. The PDG
is prospective, indicating all possible ways that a process can be
performed. Moreover, the PDG is a structure of types, the types of
tools that can be applied to types of data items and datasets in
order to create new instances of (possibly different) types.

Defining real scientific processes in a way that is both clear,
concise, and precise raised some challenges that seem to us to be
of interest and importance to software engineers. As noted above,
Scientific Workflow systems currently address the problem of
defining such processes. Most of these systems have suggested the
use of data-flow graphs (DFGs) as vehicles for doing this. Indeed
the Kepler project [5], in particular, has demonstrated that DFGs
can be used to specify how data items can be developed through
sequences of tool applications. The DFG representations are clear
and easy to grasp in some cases. In addition, Kepler provides an

1 The actual instance annotation generated by an automated
system such as we envisage would be system-generated and might
contain additional useful information such as a timestamp.

Figure 1. An excerpt of a dataset-derivation graph (DDG)
for a small part of the water flux system. The boxes represent
data items. Each arrow indicates that the data item at its head
was used in deriving the data item at its tail (from [1]).

Figure 2. A data-flow graph for the water flux system.

impressive set of tools that support the development of DFGs and
their viewing, editing, and evolution. On the other hand, our
experience has indicated that the relatively restricted DFG
semantics can make it a struggle to represent real scientific
processes with the clarity, conciseness, and completeness that are
often desired. Our experience has indicated that important process
control flow aspects such as step coordination, parallel processing,
multiple interrelated loops, exception handling, and loop iteration
and termination conditions can help support the desired clarity,
conciseness, and completeness. DFGs can represent these
semantic features, but these representations can be cumbersome,
thereby compromising clarity, and posing obstacles for process
developers and scientists. Software engineering experience
suggests that complete and precise definitions of complex systems
can be facilitated by appropriately powerful language semantics.
This suggests that software engineering concepts and technologies
might find an additional vehicle for evaluation through their
application in this domain. A specific example is provided by
Figure 2’s DFG depiction of the process described in Section 2.

The icons represent dataset types (boxes) or process types (ovals)
and arrows indicate the flow of datasets into and out of processes
(from [3]).

The four subprocesses described in section 2 can all be identified
as loops in the DFG shown in Figure 2, but the nature of their
interactions with each other is hard to determine precisely. Thus,
for example, the DFG suggests that many different instances of
“Revised Data” can be generated by executing this process, but
the diagram makes it hard to determine whether or not the
scientist may wish to restrict which selection criteria are to be
applied to which “Revised Data” under which circumstances. In
general, the DFG does not specify how the various processes are
initiated, controlled, or coordinated. For example: how is model-
building coordinated with realtime data processing? When
alternate measurements are substituted for original measurements,
how is the required updating of neighboring modeled values
initiated and controlled? What happens if a process (e.g., retrieval
of a realtime measurement) cannot complete successfully? Do the
four major subsystems operate independently of one another?
Such critical questions cannot be answered easily, if at all, from
the information provided by this DFG. While it is certainly
possible to define a far more elaborate DFG that could provide
answers to such questions, our experience has indicated that such
a DFG would be quite complex and confusing, and that it would
risk denying scientists the clarity and conciseness they need.

Our approach to such problems is to use a process definition
language with semantic features such as abstraction, concurrency,
and exception management. Specifically, we used the Little-JIL
process language to define PDGs, using our experiences to help
evaluate the importance of various language semantic features.

Little-JIL: Little-JIL is a graphical language for the coordination
of agents [6, 7]. Its semantics are precisely defined using finite-
state automata. A Little-JIL process is defined as a hierarchical
decomposition of steps, where a step represents a task to be done
by an assigned agent. A step is represented iconically by a step
bar, and is best thought of as the definition of an abstract
procedural module. Each step definition specifies its input and
output artifact types, best thought of as parameters to the step.
During process execution, artifact instances are bound to the step
parameters as arguments to create step instances. A step also
specifies the exceptions it handles, flow of control between its
children, etc. A step with no sub-steps is called a leaf step, and
represents an activity performed by an agent without process

guidance. An agent may be a human or a computational tool
executed with the designated input when the leaf step is
encountered. In scientific processes, leaf steps may represent the
performance of such computational activities as matrix inversion
or curve-fitting by tools or proprietary packages, perhaps
performed on different platforms or at remote sites. The role of the
Little-JIL process definition in these circumstances is to define the
way artifacts flow to and from such steps, and how their
processing is coordinated with other needed scientific processing,
and with the activities of humans. The example process in Figure
3 illustrates many Little-JIL features. Some of these features are:

Step sequencing. Every non-leaf step has a sequencing badge (an
icon in the left of the step bar), which defines the order in which
sub-steps execute. A sequential step (right arrow) indicates that its
sub-steps are executed sequentially from left to right. A parallel
step (equal sign) indicates that its sub-steps can be executed in any
(possibly interleaved) order. A choice step (line through circle)
indicates that the human executing the step can choose among
sub-steps, while a try step (right arrow through X) mandates the
sequence in which sub-steps are to be tried until a successful
outcome occurs. A child step is connected to its parent by an edge
that can carry a cardinality annotation. Kleene * and + annotations
indicate unbounded multiple instantiation of the child step.

Artifacts and artifact flows. Artifacts are entities (e.g., data items
or datasets) that are used or produced by the step. The artifacts
used by the step (IN parameters) or produced by the step (OUT
parameters) are declared in the step interface (circle atop the step
bar). In addition, the flow of artifacts between parent and child
steps is indicated by attaching artifact annotations and directional
arrows to parent-child edges. These annotations define the
arguments that are to be bound to the formal parameters defined
as part of the step interface. By specifying different bindings of
arguments to different instances of steps, Little-JIL can create
different contexts for different step instances. Software engineers
might expect that such a facility for creating instances from step
abstractions should improve process definition clarity and
expedite step reuse. Our experience with this work offered the
chance to evaluate this expectation.

Requisites. A Little-JIL step optionally can be preceded and/or
succeeded by a step executed before and/or after (respectively) the
execution of the step’s main body. A prerequisite is represented
by a down arrow to the left of the step bar, and a post-requisite is
represented by an up arrow to the right of the step bar. Requisites
enable checking a specified condition either as a precondition for
step execution or as a post-execution check to assure acceptable
execution. If a requisite fails, an exception is triggered.

Channels. Artifacts can also flow between steps along channels,
essentially buffers that hold queues of artifacts produced by the
step(s) at the tail of the channel, and used by the step(s) at the
head of the channel. Steps accessing the channel typically block
until needed artifacts are delivered by the channel. Thus, channels
can also be used for synchronization.

Exception Handling. A Little-JIL step can signal the occurrence of
exceptional conditions when a requisite fails or when other
aspects of the step’s execution fail. This triggers execution of a
matching exception handler associated with the parent or other
ancestor of the step that throws the exception. The handler is
represented as a step attached to an X on the right of the step bar.
Exception handlers can receive arguments that can be used to help
clarify the nature of the exception. This capability facilitates
creating a descriptive context that can help the handling of the

exception to be more precise and effective. Little-JIL also
supports the specification of four alternatives for how execution
proceeds after completion of exception handling. For example
execution could continue by repeating the step to which the
exception handler was attached, with that step’s parent, or with its
sequential sibling. Although DFGs can be used to represent how
exceptions are handled and how execution is to resume, our
experience suggests that such DFGs quickly become complex and
impenetrable, especially when exceptions can originate in multiple
ways and from multiple process locations. Our experience
suggests that suitable language constructs help with this problem.

Scoping. A parent step and all of its descendants represent a
Little-JIL scope, enabling specification that certain data items and
datasets are specific to that scope. Little-JIL also supports
recursive specifications of a step within its own scope. This
language construct can greatly clarify the iterative application of a
process step to specifically defined data items and datasets.

A PDG of the hydrological modeling process. The step depicted
in Figure 3, “Process Water Budget Datasets”, defines the four
major subprocesses described in Section 2 and indicates that they
can be carried out in parallel with each other. Note that the two
left subprocesses have a Kleene + on the edges connecting them to
the parent step, indicating that each can be instantiated one or
more times. Each instance is created upon the availability of an
execution agent for the step, and such an agent is created in
response to a daily timer interrupt. The Kleene * on the rightmost
two steps indicates that these steps may be instantiated zero or
more times. In these cases, a new instance of the step is
instantiated at a scientist’s request. Full definition of the last of the
four substeps, “Create New Models” is not shown for lack of
space, but we now sketch the details of the other three.

 “Realtime Data Processing” is the subprocess that creates a
dataset for each full 24-hour day. The left-pointing arrow indicates
that this is done by first executing the left substep, “Initialize
Dataset”, and then the right substep “Augment Realtime Dataset”.
The Kleene + on the right substep edge indicates that this substep

is executed at least once, and indeed this step is instantiated anew
every 30 minutes when a new set of measurements is to be
gathered. Recall that step parameter declarations and edge
argument bindings are integral parts of Little-JIL process
definitions. Most such details are not shown in this figure,
however, where they seem obvious, to reduce diagram clutter.
Some edge annotations are shown for emphasis and clarity,
however. Thus, for example, the edge connecting “Initialize
Dataset” to its parent has the annotation “Dataset for today”, with
an upward arrow, which indicates that the result of performing
this substep is the creation of a dataset describing readings for the
day on which this step was instantiated, and that this dataset is
passed onwards for use by its right sibling, “Augment Realtime
Dataset”. “Augment Realtime Dataset” consists of the sequential
execution of three substeps that result in augmenting the set of
daily readings by the readings from the most recent time period.
The first substep, “Get RT Readings” acquires the raw data from
actual sensors and instruments. In Figure 3 we provide some
elaboration only on the definition of the process for obtaining a
precipitation reading, done by “Read Precip”. The “Read Others”
step is not elaborated here, but can be expected to look quite
similar to the elaboration of “Read Precip”, which consists of
obtaining a reading from each of two (redundant) precipitation
gauges (steps “Read Precip 1” and “Read Precip 2”), and also
specifying how to handle the exceptional situation where a
precipitation reading is missing (step “Handle No Precip”).
Shortly, with the aid of Figure 4, we describe how this exception
is to be handled, indicating how powerful exception handling
semantics facilitate creating clear and concise process definitions.

Once a complete set of readings has been gathered by “Get RT
Readings”, they are passed to “Apply Models” where their
suitability is considered. As noted above, scientists routinely
scrutinize raw data to determine whether there seems to be a need
to modify or replace it. Some data may be suspect because of
environmental conditions (e.g. wind direction, ice buildup), and
some may be completely missing (e.g. because of sensor failure).
In such cases replacement data is generated and substituted for the
data that are suspect or missing. Models are used to determine

Figure 3. Example Little-JIL PDG for the hydrological modeling process described in Section 2.

whether and how such data are to be replaced. Figure 3 shows that
a set of such models, “Realtime Models” is passed to the step
“Apply Models” for use in examining the data produced by “Get
RT Readings” and for suggesting replacements. Note that “Apply
Models” is defined by the sequential execution of “Apply A
Model” (which selects one model and applies it to relevant data
items), followed by the recursive execution of “Apply Models”
(note that the name of this step is italicized to indicate that it is the
reinvocation of a step that has previously been defined elsewhere).
Thus this step demonstrates how iteration can be specified.
Indeed, in this case, the iteration is more than just the repetition of
a step “Apply A Model”, but is iteration over a set, namely the set
of models. In this example, appropriate definition of the
parameters to “Apply Models” and the edges connecting the
instances to their parents can assure that the set of candidate
models is reduced by the deletion of the model just used by the
immediately prior execution of “Apply A Model”. Thus the
scientist performing “Apply Models” is free to select the order in
which models are to be considered, but will not be able to make
the mistake of reapplying a model that had been applied
previously. The details of how this is actually specified by Little-
JIL are less important than the observation that this recursive
execution of a well-designed step abstraction seems to be a
particularly useful feature in a language used to describe this
important, and common, scientific data processing activity.

“Augment Realtime Dataset” concludes with the execution of
“Add to Dataset”, a step whose job is to take the data items that
have resulted from the application of the appropriate models to
raw data, and appending these data items to the growing dataset
that represents the data gathered in realtime for the current day. To
do this, “Add to Dataset” must incorporate subprocesses for
considering the results of applying the various models to the
various raw data items, selecting those that seem most
appropriate, and annotating the resulting data items with
specifications of which models were applied to which raw data
items. The details of this subprocess are not shown here for lack
of space. Subsequently, however, we describe how the annotation
of the resulting data items is facilitated using a DDG, which
provides a specification of the provenance of these data items.

The second substep of “Process Water Budget Datasets”, “30-Day
Retro Data Processing”, defines how realtime datasets generated
by “Realtime Data Processing” are systematically reconsidered, as
described in Section 2. “30-Day Retro Data Processing” is the
sequential execution of “Get 30-Day Prior Dataset” and “Do Retro
Processing”. The details of “Get 30-Day Prior Dataset” are not
provided here, but note that the process defines how to handle the
exceptional situation that arises should this dataset not be
available. If thrown, the exception is handled by “30-Day Retro
Data Processing” (note the X on the right of the step bar). The
right-pointing arrow in the circle attached to the X indicates that
the handling consists simply of terminating the execution of “30-
Day Retro Data Processing”. If the dataset is accessed
successfully, then the annotation on the edge connecting “Get 30-
Day Prior Dataset” to its parent indicates that this dataset is then
made available to be passed to “Do Retro Processing”.

From the description of the Water Budget process given in section
2, it should be expected that the “Do Retro Processing” process
should bear strong resemblance to the “Realtime Data Processing”
process. Figure 3 shows that appropriate language semantics
emphasize this, supporting clarity and reuse. Indeed “Do Retro
Processing” consists of the sequential execution of (another
instance of) “Initialize Dataset” and then one or more executions

(Kleene +) of “Augment Retro Dataset”, in strong analogy to the
definition of “Realtime Data Processing”. In the case of “Do Retro
Processing”, the output argument is annotated as being “Retro
Dataset for today-30”, emphasizing that the dataset to be created
has an appropriate name. “Augment Retro Dataset” consists of the
sequential execution of “Get Readings”, followed by new
instances of “Apply Models”, and “Add to Dataset”, again
analogously to the decomposition of “Augment Realtime
Dataset”. In the case of the decomposition of “Augment Retro
Dataset”, however, the arguments bound to these steps are those
relevant for retrospective processing. Thus, “Get Readings”
obtains readings from “Retro Dataset for today-30”, the dataset
found and passed as an output from “Get 30-Day Prior Dataset”
rather than from a realtime data stream. These data items are then
input to “Apply Models”. Note that this instance of “Apply
Models” takes as input “Retro Models”, a set of models
appropriate for modifying values in retrospective datasets. As
noted above, retrospective datasets afford the opportunity to use
later data items to help in deciding which raw data is to be
modified or replaced and which data items are to be substituted.
Thus, the set of models passed to this instance of “Apply Models”
may be different from the set passed to the previous instance of
this step. In addition, note that these models may require that a
neighborhood of data items, both prior and subsequent, may have
to be passed from “Get Readings” in order to support the use of
these more complex models. “Add to Dataset” is an instance of a
step previously instantiated, but in this context, it is adding
instances of retrospectively modeled data items to a retrospective
dataset. The complete parameter specifications and bindings are
not shown here as they seem obvious and would create additional
diagrammatic clutter.

The third substep of “Process Water Budget Datasets”, “Alt
Model Processing”, may be instantiated, for example, when a
scientist wishes to evaluate one or more new models by applying
them retrospectively to previously created datasets. The process
for doing this is another example of how abstraction facilities can
help improve reuse and clarity. Note that this process is defined to
be the execution of one or more (Kleene +) instances of “Run Alt
Model Experiment”, each of which is an evaluation against a
different retrospective dataset. The process for doing one such
evaluation is simply the execution of “Get Legacy Dataset”, which
fetches a previously developed dataset, “Retro Dataset for some
day”, followed sequentially by “Do Retro Processing”, which was
previously defined as the principal substep of “30-Day Retro Data
Processing”.

To provide elaboration of the need for powerful exception
handling capabilities we now provide further details of how the
“Handle No Precip” step handles the “Missing Precip” exception
thrown from one of the substeps of “Read Precip” shown in
Figure 3. Figure 4 depicts the “Handle No Precip” step. This step
is an exception handler that is called when no data has been
received from one of the two precipitation gauges. The first step
performed is “Choose Source”, a choice step (note the choice icon
in the step bar) that chooses between the left substep that rereads
from gauge 1 and the right substep that rereads from gauge 2. If
the reread fails to produce a value, the step throws an exception
that is handled by the “Sensor Down” handler that belongs to the
“Handle MS Sensor Timeout” step. This handler seeks the
precipitation measurement through the “Get Airport” step. That
step may also throw an exception in case the airport is also not
able to provide the requested measurement. The exception is
handled by the “Put Null Reading” step, which is the exception
handler for “Sensor Down”. Thus Figure 4 demonstrates how the

context in which an exception arises can have a strong effect upon
how the exception is handled. In this example an exception may
arise during the handling of another exception, leading to the need
for a different reaction. The example illustrates the benefits of
using scope to determine context, which is commonplace in
programming languages but not in data-flow based models.

Generating DDGs from Executions of PDGs: We demonstrate
how DDGs can be generated from executions of a PDG by
incrementally showing how a DDG can be used to document the
provenance of a specific data item that is produced and passed as
an output from the “Add to Dataset” step. Our previous discussion
noted that this output results from a scientist’s consideration of
alternative values generated by alternative models, each applied
by a different instance of the “Apply A Model” step. Figure 5
illustrates a portion of a visualization of a DDG that could be
generated by the steps leading up to “Add to Dataset”. In this
visualization, process steps are depicted as ovals annotated with
the name of the corresponding step in bold face. Process artifacts
are depicted as rectangles annotated in gray type to emphasize that
these are descriptive names, most usefully provided by the
scientist. An actual DDG would incorporate actual values (or
references to actual values) in place of the visualized rectangles.
The annotations shown here are intended only to be explanatory of
the semantic role of the artifact in the DDG. Edges whose tails
originate from an oval indicate that the artifact at the head was
taken as an input to the step represented by the oval. Edges whose
tails originate from a rectangle indicate that the oval at the head
represents the step that generated the artifact. Thus, note that
Figure 5 documents that “Add to Dataset” produces an artifact,
annotated “P”, by taking as inputs two artifacts, each the output of
a different model (a DDG documenting the application and
consideration of more than two models would be analogous). Each
of these artifacts is shown as the output of an instance of the

“Apply A Model” step, each of which uses the same two artifacts
(annotated “P1” and “P2”) as inputs. But one instance of “Apply
A Model” also uses as input a model annotated “Model 1”, while
the other uses a model annotated “Model 2”. The details of how
the scientist chooses between the two inputs to “Add to Dataset”
are not documented here, as this step is a leaf step, and thus the
PDG provides no information about this. A scientist inspecting
this DDG would note that the artifact annotated by “P” has the
same value as one of the two inputs, which then indicates the
model that had been chosen by the scientist. If further process
details are desirable, these details would be provided as
decompositions of the “Add to Dataset” step or as documentation
provided by the scientist.

Additional information about the provenance of “P1” and “P2” is
provided by additional parts of the DDG shown in Figure 6. This
information is passed successively through the steps, “Read
Precip”, “Get RT Readings”, and “Apply Models”. The DDG is a
correct depiction of the fact that these artifacts are passed
unchanged through these steps. DDG segment documents how
“P1” and “P2” were generated initially by the “Read Precip 1” and
“Read Precip 2” steps, respectively, and how these artifacts were
then passed unchanged This is readily inferable because Little-JIL
mandates that the relations among the parameters of Little-JIL
steps must be documented. The DDG in Figure 6 is, however,
more cluttered than is desirable, suggesting that it might be
preferable to depict it as shown in Figure 7, where the steps that
merely pass values through unchanged are shown in gray.

Note that Figures 6 and 7 represent an execution of the PDG in
which both “Read Precip 1” and “Read Precip 2” execute
successfully. But the process allows for the handling of
exceptional situations as well. Figure 8 depicts the DDG that
would result in the case that “Read Precip 1” fails initially,
triggering execution of the “Handle No Precip” exception handler,
resulting in a retry of “Read Precip 1”. In this case, the retry also
fails triggering an additional exception handled by the “Get
Airport” step that produces a precipitation reading. The different
executions of the PDG result in different DDGs, documented by
Figures 7 and 8, each providing precise provenance of the
eventual value “P”, that is produced by the “Add to Dataset” step.

Figure 5: A DDG showing the derivation of the value p
resulting after applying different precipitation models.

Figure 6: DDG depicting the derivation of precipitation
readings from two different precipitation gauges.

Figure 4. Exception handling in step “Handle No Precip”.

4. EXPERIENCE AND EVALUATION
The entire Water Budget PDG is defined as a hierarchical
structure of approximately 12 Little-JIL diagrams, where most
diagrams are significantly smaller than the diagram in Figure 3.
Creating this process definition required the use of a broad range
of semantic features. We now present a more detailed analysis of
what this experience suggested about the desiderata for a language
to be used as the basis for defining an analytic web’s PDG.

Decomposition and Abstraction
The example made good use of Little-JIL’s abstraction facilities,
as shown in the four parallel substeps of “Process Data” in Figure
3. Note that the first two contain instantiations of the steps,
“Initialize Dataset” and “Add to Dataset”, and the third also uses
these steps as part of its reuse of the “Do Retro Processing” step.
Further, all three of these substeps use the “Apply Models” step,
although the sets of models used by the substeps may be different.
This use of abstraction indeed seems to help in achieving clarity
and reuse, which should be no surprise to software engineers.

Concurrency specification and control
Additional complexity in the example process is attributable to
process parallelism. Data streams from various sensors must be
processed in parallel and in realtime as data are gathered and
transmitted concurrently. Other parallelism occurs in that the
activity of generating and evaluating streams of data items (in
“Realtime Data Processing”) must occur concurrently with the
creation and evaluation of retrospective datasets (in “30-Day
Retro Processing” and “Alt Model Processing”) and with new
model generation (“Create New Models”), which tends to occur
much more infrequently. In the example, Little-JIL channels are
used to represent how models built by the “Create New Models”
step are then used by all three of its sibling steps, although space
does not permit showing the details of how this is done.

Exception specification and management
Little-JIL’s exception management facilities enabled us to define
complex exceptional situations, including need to deal with
exceptions that occur during the handling of exceptions
themselves, relatively easily. Figure 4 shows only one set of
contingencies that must be handled to deal with missing data
items. The complete definition of this process required more
extensive use of exception management, and this seems to be an
important feature of scientific processes. Such exception

management semantics as scoped exception handling and different
exception resumption semantics proved useful in supporting
clarity and completeness in defining this process.

Late-binding of resources
This example only hinted at the importance of supporting the late-
binding of resources to steps to permit flexible reactions to
contingencies. Figure 4 specified an airport precipitation gauge as
the agent used to obtain a precipitation reading. But it is
reasonable to leave the choice of agent to an external resource
manager (human or automated) charged with making a late-
binding decision about the agent deemed most likely to be
successful in delivering the needed measurement. This points to
the desirability of a process definition facility able to specify only
the needed capability and a runtime system able to support
realtime selection of an agent best able to provide that capability.

PDG feature summary
Our use of Little-JIL to specify the PDG for a realistically
complex scientific process enabled us to suggest language features
that should be useful in supporting the definition of the PDG in an
analytic web. We are struck by the similarity between these needs
of the scientific community and what is generally provided by
modern programming languages. This supports our intuition that
scientific processes have strong similarities to other systems
traditionally implemented or modeled with computer software.
Thus, the challenges of defining them have strong parallels with
the challenges of programming complex software systems, and it
is not surprising to find that a process language should incorporate
the salient features of modern programming languages.

DDG Evaluation
The example process also shows how DDGs can be built
incrementally as the execution of a PDG proceeds and can be
defined as traces through the PDG. DDGs grow as DAGs,
increasing in depth as PDG execution proceeds; iteration of
processing steps is manifest as additional levels in the DDG DAG.
This emphasizes the role of these steps in establishing scopes, and
the DDG is capable of clearly illustrating this role. DDGs derived
from executions of lengthy processes may seem cumbersome. But
it is the pictorial depiction of an entire DDG that is large. Their
internal representations are typical DAG-like structures that
should be amenable to relatively terse internal representation. In
addition, the representation of an entire DDG may not be of
interest in many cases; elided versions might often suffice. Thus

Figure 7: Another depiction of the DDG in Figure 6,
which is intended to reduce visual clutter.

Figure 8: DDG resulting from execution of exceptional flow
caused by failure of one precipitation gauge.

tools that allow users to tailor DDGs through elision seem useful.
A number of tools of this kind already exist. The presentation of
DDGs is an important area that requires future research.

5. RELATED WORK
There has been a great deal of prior work on scientific workflow.
Most of this work is based on the use of data flow graphs (DFGs)
to specify process flow. Chimera [8-10], one of the earliest
scientific workflow systems, used pictorial visualizations of DFGs
to represent scientific processes. Taverna [11, 12], a more recent
effort, focuses on the integration of web services, particularly for
bioinformatics applications. Taverna’s integration mechanism is a
workflow notation also based upon a DFG formalism. JOpera [13,
14] has suggested using XML to specify scientific workflows as
plug-ins integrated using Eclipse [15]. JOpera workflows also use
a DFG formalism to represent scientific processes. Teuta [16, 17]
represents scientific processes through UML diagrams that offer
some features, such as limited forms of concurrency, that go
beyond the semantic features of a basic DFG. Kepler [5, 18, 19] is
perhaps the most advanced of these projects. It is based upon
Ptolemy II [20, 21], which uses a powerful and flexible DFG
structure to specify how datasets move between processing
capabilities. Kepler integrates a broad range of tools to support
specification, execution, and visualization of scientific processes.
It seems particularly effective in supporting processes for realtime
streaming sensor data.

It seems important to note that most of these scientific workflow
representations incorporate semantic features that are sufficient to
represent scientific processes. Our view is that all too often,
however, these representations are too cumbersome and
confusing. As noted above, software engineers should readily
recognize that languages with weaker semantics may be sufficient
to represent complex systems, but that there is important value in
seeking languages whose more powerful notations support greater
clarity and conciseness without sacrificing completeness.
Scientific Workflow technology seems to be at a stage where the
search for such languages is clearly indicated.

To be more specific, Kepler’s reliance upon the use of a
hierarchical structure of DFGs can complicate the clear
specification of such features as alternative semantics for
continuation after the handling of exceptions. Indeed our work
indicates that such powerful exception management semantics
seem necessary in defining complex scientific processes. Kepler
represents a scientific process by means of a hierarchy of pairs.
The pair consists of a DFG and a Director, which defines the
semantics of the DFG. Several different Directors are defined as
part of the Ptolemy II system, upon which Kepler is built [22].
Different Directors define different DFG semantics (e.g.
Synchronous Dataflow (SDF), Finite State Machine (FSM),
Heterochronous Dataflow (HDF), Discrete Events (DE), and
Process Networks (PN)), and SDF, FSM, and DE seem to be
frequently used. The process definer may use different Directors
at different hierarchical levels to specify the semantics needed to
facilitate a process definition. The fact that execution semantics
may change between process hierarchical levels, however, seems
to us to jeopardize the clarity of such process definitions. Thus,
one may have to look at two or three diagrams at different
hierarchical levels simultaneously (a DFG and the Directors at its
level and its parent’s level) in order to adequately understand a
process definition. In addition, certain nestings of Directors at
different levels in a process hierarchy may be semantically
problematic, and some are indeed prohibited. DFGs using
appropriate Directors can precisely define conditionals and

iteration. But such constructs are often cumbersome to define, and
the Kepler technology suggests no uniform way in which to define
them. Further, the semantics of loop executions defined through
various layered Directors is sometimes not immediately clear.

Among the mechanisms that augment Kepler to support
representing procedure invocation and exception management are
“dynamic embedding” and “collection aware actors” [23].
Dynamic embedding (part of a project that extends Kepler) is a
mechanism that can be used to introduce a placeholder step into a
DFG process definition, and then allow for the use of any of
several processes that match that placeholder's interface. Other
scientific workflow systems such as Taverna offer somewhat
analogous capabilities. An agent assigned to the placeholder can
then decide at runtime which of the actual process definitions is
executed when the placeholder is to run. Thus the logic behind
choosing a procedure or an exception handler is hidden in the
programming language used to define the agent (Java is generally
used). As is the case when an agent is late-bound to a Little-JIL
leaf step, this complicates comprehension of process behavior and
analysis of the process based on its definition. Moreover, when
this construct is used to support exception handling, execution
may not always return to exactly the point where the exception
was raised.

The lack of strong facilities for exploiting abstraction also leads to
duplication, complexity, and lack of clarity. Kepler’s “composite
actor” is an example of a construct that can be used to support a
modest form of abstraction. A Kepler composite actor is a
subprocess that can be assigned as the agent for a step. It is
possible to re-use the composite actor as the actor for any of a
number of steps. But composite actors seem to have limitations in
their ability to reference context information that might impact the
way in which the composite actor performs. Thus, for example,
when a composite actor is used to define a subprocess that
delivers its result by choosing among a set of lower level tools, the
tools must have identical parameter lists. Our experience suggests
the need for more adaptability in a process language’s abstraction
capability. Other approaches to supporting abstraction seem to be
under consideration by the process and scientific workflow
communities. This line of work seems to us to be particularly
important, and of particular interest to software engineering.

Other Scientific Workflow systems offer somewhat different
approaches to supporting these semantic features. Space
limitations prevent detailed critiques of all of them. We suggest
that such critiquing, and suggestions for improvement, fit nicely
into the tradition of software engineering research. Little-JIL
suggests some approaches to improvement, but this general line of
research would seem to be of interest and value both to Scientific
Workflow and Software Engineering.

There is also other work that supports documentation of the
provenance of scientific datasets (e.g., [24, 25]). There are
generally two approaches to this work. In one approach (e.g., [26-
28], each data artifact is stored in a database, and annotated with
information about the tool or system used to create it and its input
artifacts. Artifact provenance documentation can then be obtained
by querying the database. The other approach entails building a
derivation graph on the fly as execution of the scientific process
proceeds. The Chimera [9] and Kepler [19] projects have adopted
this latter approach. Our proposed approach falls into the latter
category as well, entailing on-the-fly construction of a derivation
structure, the DDG. Our DDG depicts the progress of execution
through a PDG that incorporates powerful semantic structures
such as concurrency, exception handling, non-trivial iteration, and

abstraction. The presence of these powerful semantic features in
the PDG definition language makes it possible for the DDGs
generated from such PDGs to incorporate these semantic features.
Thus, for example, artifacts produced on different iterations
through a given activity are shown as the roots of lower level
subgraphs of a DDG, where the context of each activity execution
is provided by nodes of the DDG that are specified as loop
abstractions. Our experience suggests that these features can help
to make DDGs clearer. Other scientific workflow systems seem to
also value incorporation of such higher level semantic features.
Continued investigation of how to incorporate these features to
best effect is indicated.

Our work is reminiscent of the Odin project [29] that documented
how collections of software tools are used to produce software
products. As in this work, Odin maintained a type structure,
showing which software tools generate which types of software
objects, and an instance structure recording the specific software
artifacts generated by applications of specific tools. Indeed, Odin
itself improved on such pioneering efforts as Make [30] and SCCS
[31] and, in turn, contributed to the genesis of Software
Configuration Management (SCM). Documenting scientific data
provenance does indeed bear a resemblance to SCM, and we note
that other recent work in scientific data provenance has also
started to recognize the problem of documenting provenance in
situations where the scientific process is evolving [19] [32].

6. FUTURE WORK
Analytic Tools and Their Roles: This project suggests the value
of analytic tools to support reasoning about scientific processes,
data, and datasets. Thus an analytic web should eventually
incorporate tools such as parsers, cross-referencers, and semantic
checkers for analyzing PDGs. These tools will help identify such
process errors as incomplete or incorrect exception handling. We
also suggest evaluating more powerful analyzers such as model
checkers (e.g., [33, 34]) in analytic webs. Model checking should
determine whether process definitions contain errors such as
datasets that are generated but never used. These defects can be
caused by incorrect process design or just misspellings. More
importantly, such analyses might identify defects that could lead
to unsound scientific results. Applying certain statistical
techniques can yield unreliable results when they follow the
application of certain other techniques [35]. Typically this occurs
when subsequent data processing is done without knowledge of
earlier processing. Model checkers can scan all execution
sequences in a process defined using a language, such as Little-
JIL, detect the possibility of invalid sequences, and guide process
modification that prevents these sequences. There is also a role for
dynamic event sequence analysis in analytic webs, where DDGs
can be examined for faulty analysis sequences as they are
generated.
DDG Optimization: Previously we noted that DDGs generated
by long process executions can be quite large. Optimization might
reduce the sizes of such DDGs. In addition, we plan to consider
regenerating parts of a DDG as an alternative to storing all of its
nodes. Odin demonstrated that complete, precise documentation
of the artifacts and tools used to generate a DAG such as the DDG
could be used to regenerate it. Doing so costs execution time, but
saves storage space. We plan to evaluate this time-space tradeoff
to decide whether some parts of a generated DDG might be
regenerated rather than stored.

A Full Environment: Finally, there are interesting issues
concerning how the various tools suggested here might be
integrated. We suggest the need for tools to create and execute

PDGs, tools to construct DDGs, tools to generate process
metadata, tools for viewing DDGs and PDGs, and tools for
analysis. It is not clear how best to integrate these tools so that
their existence and utility will be sufficiently clear to the scientists
who are to use them (user integration), nor how best to implement
them to make best use of each other’s capabilities and
implementations (backend integration). Prior research on tool
integration should be useful in providing guidance on these issues.

7. ACKNOWLEDGEMENTS
This paper is based upon work supported by the National Science
Foundation under Award No. CCR-0205575. Any opinions,
findings, and conclusions or recommendations expressed in this
publication are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation. We are grateful to
many colleagues who contributed ideas that led to the analytic
web concept. We thank E. Riseman, A. Hanson, D. Jensen, P.
Kuzeja, D. Foster, H. Schultz, G. Avrunin, and M. Raunak for
their conversations, and Anne Ngu for her views on Kepler.

8. REFERENCES
1. Ellison, A.M., Osterweil, L.J., Hadley, J.L., Wise, A., et al.

2006. Analytic Webs Support the Synthesis of Ecological
Data Sets. Ecology, 87, 6. June 2006, 1345-1358.

2. Osterweil, L.J., Wise, A., Clarke, L.A., Ellison, A.M., et al.
2005. Process Technology To Facilitate the Conduct of
Science. In Proceedings of the Software Process Workshop,
(Beijing, China, May 2005), Springer-Verlag, 403-415.

3. Boose, E.R., Ellison, A.M., Osterweil, L.J., Podorozhny, R., et
al. 2007. Ensuring Reliable Datasets for Environmental
Models and Forecasts. Ecological Informatics 2, 237-247.

4. Dingman, S.L. 2002. Physical Hydrology. 2nd Ed. Prentice
Hall, NJ.

5. Altintas, I., Berkeley, C., Jaeger, E., Jones, M., et al. 2004.
Kepler: An Extensible System for Design and Execution of
Scientific Workflows. In Proceedings of the 16th International
Conference on Scientific and Statistical Database
Management, (Santorini Island, Greece), 423-424.

6. Cass, A.G., Lerner, B.S., Mccall, E.K., Osterweil, L.J., et al.
2000. Little-JIL/Juliette: A Process Definition Language and
Interpreter. In Proceedings of the 22nd International
Conference on Software Engineering, Demonstration Paper,
(Limerick, Ireland, 4-11 June), 754-758.

7. Wise, A. 2006. Little-JIL 1.5 Language Report. Department of
Computer Science, University of Massachusetts, UM-CS-
2006-51.

8. Foster, I., Vöckler, J., Wilde, M. and Zhao, Y. 2003. the
Virtual Data Grid: A New Model and Architecture for Data-
Intensive Collaboration. In Proceedings of the 15th
International Conference on Scientific and Statistical Database
Management, IEEE Computer Society, 1-11.

9. Foster, I., Vöckler, J.S., Wilde, M. and Zhao, Y. 2002.
Chimera: A Virtual Data System for Representing, Querying,
and Automating Data Derivation. In Proceedings of the 14th
International Conference on Scientific and Statistical Database
Management, 37-46.

10. Deelman, E., Blythe, J., Gil, Y. and Kesselman, C. 2004.
Workflow Management In Griphyn. In Grid Resource
Management: State of the Art and Future Trends, Kluwer
Academic Publishers, 99-116.

11. Wolstencroft, K., Oinn, T., Goble, C., Ferris, J., et al. 2005.
Panoply of Utilities In Taverna. In Proceedings of the First
International Conference on E-Science and Grid Computing,
IEEE Computer Society 156-162.

12. Oinn, T., Addis, M., Ferris, J., Marvin, D., et al. 2004.
Taverna: A Tool for the Composition and Enactment of
Bioinformatics Workflows. Bioinformatics, 20, 17, 3045-
3054.

13. Heinis, T., Pautasso, C. and Alonso, G. 2006. Mirroring
Resources or Mapping Requests: Implementing WS-RF for
Grid Workflows. In Proceedings of the Sixth IEEE
International Symposium on Cluster Computing and the Grid,
IEEE Computer Society, 497-504.

14. Pautasso, C. and Alonso, G. 2005. The Jopera Visual
Composition Language. Journal of Visual Languages &
Computing, 16, 1-2, 119-152.

15. Eclipse.Org 2007. Eclipse-An Open Development Platform,
2007.

16. Fahringer, T., Jugravu, A., Pllana, S., Prodan, R., et al. 2005.
ASKALON: A Tool Set for Cluster and Grid Computing:
Research Articles. Concurrency and Computation: Practice
and Experience, 17, 2-4, 143-169.

17. Fahringer, T., Prodan, R., Duan, R., Nerieri, F., et al. 2005.
ASKALON: A Grid Application Development and
Computing Environment. In Proceedings of the Sixth
IEEE/ACM International Workshop on Grid Computing,
IEEE Computer Society, 122-131.

18. Ludäscher, B., Altintas, I., Berkeley, C., Higgins, D., et al.
2006. Scientific Workflow Management and the Kepler
System: Research Articles. Concurrency and Computation:
Practice & Experience, 18, 10, 1039-1065.

19. Altintas, I., Barney, O. and Jaeger-Frank, E. 2006.
Provenance Collection Support In the Kepler Scientific
Workflow System. In Proceedings of the International
Provenance and Annotation Workshop (Revised Selected
Papers), (Chicago, IL,, May 3-5, 2006), Springer Verlag 118-
132.

20. Edwards, S.A. and Lee, E.A. 2003. The Semantics and
Execution of A Synchronous Block-Diagram Language.
Science of Computer Programming, 48, 1, 21-42.

21. Baldwin, P., Kohli, S., Lee, E.A., Liu, X., et al. 2004.
Modeling of Sensor Nets In Ptolemy II. In Proceedings of the
Third International Symposium on Information Processing In
Sensor Networks (Berkeley, California), ACM, 359 - 368.

22. Girault, A., Lee, B. and Lee, E.A. 1999. Hierarchical Finite
State Machines with Multiple Concurrency Models. IEEE
Transactions on CAD of Integrated Circuits and Systems, 18,
6, 742-760.

23. McPhillips, T.M. and Bowers, S. 2005. An Approach for
Pipelining Nested Collections In Scientific Workflows.
SIGMOD Record, 34, 3, 12-17.

24. Simmhan, Y.L., Plale, B. and Gannon, D. 2005. A Survey of
Data Provenance In E-Science. ACM SIGMOD Record, 34, 3,
31-36.

25. Moreau, L., Ludäscher, B., Altintas, I., Barga, R.S., et al.
2008. The First Provenance Challenge. Concurrency and
Computation: Practice & Experience, 20, 5. April, 2008, 409-
418.

26. Buneman, P., Khanna, S. and Tan, W.-C. 2001. Why and
Where: A Characterization of Data Provenance. In
Proceedings of the Eighth International Conference on
Database Theory, (London, UK, January 2001), Lecture Notes
In Computer Science 1973, Springer Verlag, 316-330.

27. Lanter, D.P. 1991. Design of A Lineage-Based Meta-Data
Base for GIS. Cartography and Geographic Information
Systems, 18, 4, 255-261.

28. Aiken, A., Chen, J., Stonebraker, M. and Woodruff, A. 1996.
Tioga-2: A Direct Manipulation Database Visualization
Environment. In Proceedings of the Twelfth International
Conference on Data Engineering, IEEE Computer Society,
208 - 217

29. Clemm, G.M. and Osterweil, L.J. 1990. A Mechanism for
Environment Integration. ACM Transactions on Programming
Languages and Systems, 12, 1. January, 1-25.

30. Feldman, S.I. 1979. Make—A Program for Maintaining
Computer Programs. Software—Practice and Experience, 9, 3.
March, 255–265.

31. Rochkind, M.J. 1975. The Source Code Control System.
IEEE Transactions on Software Engineering, SE-1. December
1975, 364-370.

32. Callahan, S.P., Freire, J., Santos, E., Scheidegger, C.E., et al.
2006. Vistrails: Visualization Meets Data Management. In
Proceedings of the International Conference on Management
of Data, (Chicago, IL, June 2006), ACM SIGMOD, 745-747.

33. Dwyer, M.B., Clarke, L.A., Cobleigh, J.M. and Naumovich,
G. 2004. Flow Analysis for Verifying Properties of
Concurrent Software Systems. ACM Transactions on
Software Engineering and Methodology, 13, 4. October 2004,
359-430.

34. Cobleigh, J.M., Clarke, L.A. and Osterweil, L.J. 2002.
FLAVERS: A Finite State Verification Technique for
Software Systems. IBM Systems Journal, 41, 1. 2002, 140-
165.

35. Oates, T. and Jensen, D. 1999. Toward A Theoretical
Understanding of Why and When Decision Tree Pruning
Algorithms Fail. In Proceedings of the Sixteenth National
Conference on Artificial Intelligence (Orlando, Florida.), 372-
378.

