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ABSTRACT 
This paper describes our experiences in exploring the applicability 
of software engineering approaches to scientific data management 
problems. Specifically, this paper describes how process 
definition languages can be used to expedite production of 
scientific datasets as well as to generate documentation of their 
provenance. Our approach uses a process definition language that 
incorporates powerful semantics to encode scientific processes in 
the form of a Process Definition Graph (PDG). The paper 
describes how execution of the PDG-defined process can generate 
Dataset Derivation Graphs (DDGs), metadata that document how 
the scientific process developed each of its product datasets. The 
paper uses an example to show that scientific processes may be 
complex and to illustrate why some of the more powerful 
semantic features of the process definition language are useful in 
supporting clarity and conciseness in representing such processes. 
This work is similar in goals to work generally referred to as 
Scientific Workflow. The paper demonstrates the contribution that 
software engineering can make to this domain. 

Categories and Subject Descriptors 
D.1.7 [Programming Techniques] Visual Programming, D.2.6 [Software 
Engineering] Programming Environments, D.3.3 [Programming 
Languages] Language Constructs and Features 

General Terms 
Documentation, Experimentation, Languages. 

Keywords 
Scientific Workflow, Continuous Process Improvement, Data 
Provenance. 
1. INTRODUCTION 
Scientific researchers devote considerable effort to the creation 
and management of data, producing collections of data, often 
called “datasets,” that may be highly evolved. To support these 
efforts, scientists are increasingly turning to Scientific Workflow 
systems, which offer some support for invoking computational 
tools and managing the resulting datasets. From the software 
engineering perspective, it seems useful to view these scientific 
datasets as products of a distributed enterprise: input datasets may 
be stored and retrieved remotely, analytic services may be 
obtained from external sources, and the results of extensive 
computation are increasingly likely to be made directly accessible. 
The totality of data and capabilities produced and consumed in 
this way can thus be thought of as a scientific data processing 
enterprise. In this work we refer to it as an analytic web [1-3]. 
There is a need for strong support of this enterprise by supporting 
both the production of such datasets (a particular focus of current 
Scientific Workflow systems) and their consumption by those 
wanting to access them for their own subsequent scientific 
investigations (a need that currently seems less well served).  
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Support for production should consist of facilities for generating 
and storing new data items and datasets. Support for consumption 
should include annotating the data sets, and when necessary 
individual data items, with precise specifications of how the data 
item or dataset was created (process provenance metadata). Such 
metadata seems essential if other scientists are to use these results 
responsibly and is also essential for reproducibility, the very 
essence of scientific validation. An analytic web should thus 
support both generating and accessing such metadata, as well as 
the use of the process provenance metadata to support the 
reproduction of datasets and the generation of additional datasets. 
 
In this paper we demonstrate that the desired annotations can be 
treated as attributes attached to nodes in a directed acyclic graph 
(DAG) created during the execution of a definition of the 
scientific process. We refer to this DAG as a Dataset Derivation 
Graph (DDG). We specify the scientific process with a graph that 
we refer to as a Process Derivation Graph (PDG). This paper 
shows that the language used to specify the PDG of a complex 
scientific process must incorporate a surprisingly challenging 
collection of semantic features in order to provide a clear and 
precise definition of the process. Finally, based on preliminary 
experiences with this approach, this paper suggests the desiderata 
for a system of tools to facilitate the production of the PDGs and 
DDGs that comprise analytic webs and to support analyses that 
should be used to guide their production and consumption. 
 
Numerous Scientific Workflow projects address many of the 
issues raised here. A key objective of this paper, however, is to 
demonstrate that current Scientific Workflow technologies can be 
improved upon by drawing upon experiences and technologies 
developed to facilitate support for such key concepts as 
abstraction, exception management and concurrency control. In 
previous papers [1, 3] we presented to the ecological research 
community an indication of the promise of our approach. This 
paper discusses the challenges and research opportunities that this 
problem domain presents for software engineering research.  

2. MOTIVATING EXAMPLE: A REALTIME 
HYDROLOGICAL SENSOR NETWORK  

The Harvard Forest Long-Term Ecological Research (LTER) site 
is building a sensor network to measure the flow of water through 
small, forested watersheds. This real-time system will integrate 
ongoing meteorological, hydrological, eddy covariance, and tree 
physiological measurements. These measurements will enable 
study of variations in water flux caused by differences in 
topography, soils, vegetation, land use, and natural disturbance 
history. Frequent sampling (5-10 Hz) will enable study of water 
flux dynamics at a wide range of temporal scales, from minutes to 
days to years. Over time, the number, nature, and variety of 
sensors to be used in this research, and datasets resulting from it, 
will grow. The system is described in detail in [3]. 

Such systems create interesting system development and data 
management challenges. As the number and variety of sensor data 
streams grow, systems for acquiring their data must be developed. 
Some processing can be automated, but it must be integrated with 
human processing activities, that must keep pace with growth in 
data rates and varieties. Measurements may be delayed or 
corrupted for many reasons, necessitating complex contingency 
handling, and varied models to create substitutes for missing data.  

To understand this better we describe briefly some essentials of 
hydrological modeling. Analysis of water flux is based on the 
mass balance equation: 

dS = P – ET – Q 
where P = precipitation, ET = evapotranspiration, Q = stream 
discharge, and dS = change in ecosystem water storage. The terms 
in this equation may represent rates that are instantaneous or 
integrated over fixed time intervals. Essential measurements are 
made at three sites, a meteorological station, an eddy flux tower, 
and a stream gauge. Because accurate and complete data are 
critically important, this system incorporates redundancy. Thus P 
is measured at two separate rain gauges (P1 and P2). ET is both 
measured directly and modeled using measured photosynthetically 
active radiation (PAR), and Q is both measured with a stream 
gauge and modeled using a simple linear reservoir model [4]. This 
redundancy requires dealing with inconsistencies in the redundant 
data. In addition some measurements might be missing or suspect 
(in which case interpolation and gap filling models create 
substitute values). While potentially fully automated, the system 
must also enable overall human oversight in real-time and must 
also support subsequent more leisurely human retrospective data 
analysis. Specifically, the system must integrate:  
(1) A real-time sub-process to collect, analyze, and document 
data from the meteorological station, eddy flux tower, and stream 
gauge: This subprocess has to retrieve measurements every 30 
minutes, do range checking, calculate best values from redundant 
sensors, create and apply models, choose between measured and 
modeled values, and calculate water storage change (dS).  
(2) A post-processing sub-process to automatically update 
datasets after a fixed time period (e.g., one month): Experience 
has shown that models created in  realtime can be improved upon 
by using both preceding and subsequent measurements, especially 
during periods of rapid ecosystem change. 
(3) An alternate measurement sub-process to support further 
modifications to data items and datasets: For example, more 
accurate adjustments may become known too late for scheduled 
post-processing, original measurements may require correction for 
sensor drift, and missing or questionable measurements may need 
replacement by data from other sites. Because this activity will 
change some values, other (modeled) values may consequently 
have to be updated because of “ripple effects.”  
(4) A new model sub-process to support modifying or replacing 
the models used in the system. This may entail changing the 
model functionality, the parameters used, or the temporal range of 
data used to create modeled value(s). This sub-process helps 
scientists to construct, evaluate, and then promulgate new 
model(s), and the circumstances under which they should be used.  

The first three of these subprocesses each produces datasets 
containing sequences of data items that represent either direct 
measurements or values that have been generated by the 
application of one or more models. Dataset consumers have a 
strong interest in being sure that datasets produced by these 
subprocesses will include at least the following:  
• All original and alternate measurements, with appropriate 
metadata annotations (e.g., value missing, value out of range, or 
value computed by model).  
• All models used to compute substituted data items, with 
documentation indicating which data items were processed by 
which models at what times.  
• Estimates of P, ET, Q, and dS for each time period of interest 
(e.g., every 30 minutes), indicating what processing steps (e.g., 
model applications) were applied and in what sequence.  



3. TECHNICAL APPROACH 
Analytic Web: Analytic webs [2] are composite objects that 
integrate PDGs and DDGs that differ from one another, for 
example, because of different input datasets, different handling of 
different contingencies that may have arisen, or different choices 
of gap-filling models made by scientists. 

Data Derivation Graph (DDG): A DDG documents the 
provenance of data items and datasets generated in executing a 
scientific process. We view a scientific process as an integrated 
system in which tools and humans function as operators, and data 
items and datasets are their operands. Intermediate and final 
outputs result from execution of this process. Each trace that 
produces a data item or dataset supports the creation of process 
provenance metadata. This, in turn, can support the reproduction 
and analysis of the data item or dataset, and provide evidence of 
its suitability for use in further scientific processes.  

The DDG in Figure 1 depicts how data items have been derived 
from each other. Each box represents a data item, and each arrow 
indicates that the data item at the head was used to develop the 
data item at the tail. Thus, for example, the arrow from “Data to 
Post-Process 1” to “Selection Criteria 2” indicates that the latter 
was used to create the former. The arrow from “Data to Post-
Process 1” to “Revised Data 1” indicates, further, that the 
derivation of “Data to Post-Process 1” required both “Selection 
Criteria 2” and “Revised Data 1” as inputs. Figure 1 also indicates 
that “Revised Data 1” was derived from three other data items, 
and one of them, “Real Time Data 1”, was itself derived from 
three additional data items. Figure 1 does not depict a 
correspondingly precise specification of the exact tool or process 
represented by each of the arrows, but this additional information 
is needed to provide a complete specification of the derivation of 
the data items. With these additional annotations the resulting 
structure becomes a DDG. In particular the DAG rooted at each 
box in Figure 1 provides the information needed to document the 
provenance of the data item represented by that box. Note that a 
DDG can incorporate different instances of a single type of a data 
item. Thus, for example, the DDG in Figure 1 incorporates 
“Revised Data 1” and “Revised Data 2”, and “Selection Criteria 

1” as well as “Selection Criteria 2”1. Different instances of a 
single data item type occur frequently, for example, as a result of 
iteration of scientific processing loops. Accurate and unambiguous 
documentation of data item and dataset provenance requires that 
the data items generated by each iteration be clearly identified and 
distinguished from one another. Analytic web DDGs do this by 
indicating the way in which subsequent instances are derived from 
prior instances and from other data items.  

Process Derivation Graph (PDG): While the DDG is a powerful 
device for recording the way in which data items and dataset 
instances have been derived, it only captures history and does not 
specify the general process and activity types by which data items 
and datasets are created. To do this, an analytic web uses a PDG, a 
definition of all possible executions of the scientific process. The 
DDG and PDG complement each other. The DDG provides a 
retrospective history of the development of all datasets and data 
items. It is a structure of instances—data and dataset instances and 
instances of the tools and processes used to create them. The PDG 
is prospective, indicating all possible ways that a process can be 
performed. Moreover, the PDG is a structure of types, the types of 
tools that can be applied to types of data items and datasets in 
order to create new instances of (possibly different) types.  

Defining real scientific processes in a way that is both clear, 
concise, and precise raised some challenges that seem to us to be 
of interest and importance to software engineers. As noted above, 
Scientific Workflow systems currently address the problem of 
defining such processes. Most of these systems have suggested the 
use of data-flow graphs (DFGs) as vehicles for doing this. Indeed 
the Kepler project [5], in particular, has demonstrated that DFGs 
can be used to specify how data items can be developed through 
sequences of tool applications. The DFG representations are clear 
and easy to grasp in some cases. In addition, Kepler provides an 

                                                                    
1 The actual instance annotation generated by an automated 
system such as we envisage would be system-generated and might 
contain additional useful information such as a timestamp.  

 
Figure 1. An excerpt of a dataset-derivation graph (DDG) 
for a small part of the water flux system. The boxes represent 
data items. Each arrow indicates that the data item at its head 
was used in deriving the data item at its tail (from [1]). 

 
Figure 2. A data-flow graph for the water flux system. 

 



impressive set of tools that support the development of DFGs and 
their viewing, editing, and evolution. On the other hand, our 
experience has indicated that the relatively restricted DFG 
semantics can make it a struggle to represent real scientific 
processes with the clarity, conciseness, and completeness that are 
often desired. Our experience has indicated that important process 
control flow aspects such as step coordination, parallel processing, 
multiple interrelated loops, exception handling, and loop iteration 
and termination conditions can help support the desired clarity, 
conciseness, and completeness. DFGs can represent these 
semantic features, but these representations can be cumbersome, 
thereby compromising clarity, and posing obstacles for process 
developers and scientists. Software engineering experience 
suggests that complete and precise definitions of complex systems 
can be facilitated by appropriately powerful language semantics. 
This suggests that software engineering concepts and technologies 
might find an additional vehicle for evaluation through their 
application in this domain. A specific example is provided by 
Figure 2’s DFG depiction of the process described in Section 2. 

The icons represent dataset types (boxes) or process types (ovals) 
and arrows indicate the flow of datasets into and out of processes 
(from [3]). 

The four subprocesses described in section 2 can all be identified 
as loops in the DFG shown in Figure 2, but the nature of their 
interactions with each other is hard to determine precisely. Thus, 
for example, the DFG suggests that many different instances of 
“Revised Data” can be generated by executing this process, but 
the diagram makes it hard to determine whether or not the 
scientist may wish to restrict which selection criteria are to be 
applied to which “Revised Data” under which circumstances. In 
general, the DFG does not specify how the various processes are 
initiated, controlled, or coordinated. For example: how is model-
building coordinated with realtime data processing? When 
alternate measurements are substituted for original measurements, 
how is the required updating of neighboring modeled values 
initiated and controlled? What happens if a process (e.g., retrieval 
of a realtime measurement) cannot complete successfully? Do the 
four major subsystems operate independently of one another? 
Such critical questions cannot be answered easily, if at all, from 
the information provided by this DFG. While it is certainly 
possible to define a far more elaborate DFG that could provide 
answers to such questions, our experience has indicated that such 
a DFG would be quite complex and confusing, and that it would 
risk denying scientists the clarity and conciseness they need. 

Our approach to such problems is to use a process definition 
language with semantic features such as abstraction, concurrency, 
and exception management. Specifically, we used the Little-JIL 
process language to define PDGs, using our experiences to help 
evaluate the importance of various language semantic features.  
 
Little-JIL: Little-JIL is a graphical language for the coordination 
of agents [6, 7]. Its semantics are precisely defined using finite-
state automata. A Little-JIL process is defined as a hierarchical 
decomposition of steps, where a step represents a task to be done 
by an assigned agent. A step is represented iconically by a step 
bar, and is best thought of as the definition of an abstract 
procedural module. Each step definition specifies its input and 
output artifact types, best thought of as parameters to the step. 
During process execution, artifact instances are bound to the step 
parameters as arguments to create step instances. A step also 
specifies the exceptions it handles, flow of control between its 
children, etc. A step with no sub-steps is called a leaf step, and 
represents an activity performed by an agent without process 

guidance. An agent may be a human or a computational tool 
executed with the designated input when the leaf step is 
encountered. In scientific processes, leaf steps may represent the 
performance of such computational activities as matrix inversion 
or curve-fitting by tools or proprietary packages, perhaps 
performed on different platforms or at remote sites. The role of the 
Little-JIL process definition in these circumstances is to define the 
way artifacts flow to and from such steps, and how their 
processing is coordinated with other needed scientific processing, 
and with the activities of humans. The example process in Figure 
3 illustrates many Little-JIL features. Some of these features are:  
 
Step sequencing. Every non-leaf step has a sequencing badge (an 
icon in the left of the step bar), which defines the order in which 
sub-steps execute. A sequential step (right arrow) indicates that its 
sub-steps are executed sequentially from left to right. A parallel 
step (equal sign) indicates that its sub-steps can be executed in any 
(possibly interleaved) order. A choice step (line through circle) 
indicates that the human executing the step can choose among 
sub-steps, while a try step (right arrow through X) mandates the 
sequence in which sub-steps are to be tried until a successful 
outcome occurs. A child step is connected to its parent by an edge 
that can carry a cardinality annotation. Kleene * and + annotations 
indicate unbounded multiple instantiation of the child step. 
 
Artifacts and artifact flows. Artifacts are entities (e.g., data items 
or datasets) that are used or produced by the step. The artifacts 
used by the step (IN parameters) or produced by the step (OUT 
parameters) are declared in the step interface (circle atop the step 
bar). In addition, the flow of artifacts between parent and child 
steps is indicated by attaching artifact annotations and directional 
arrows to parent-child edges. These annotations define the 
arguments that are to be bound to the formal parameters defined 
as part of the step interface. By specifying different bindings of 
arguments to different instances of steps, Little-JIL can create 
different contexts for different step instances. Software engineers 
might expect that such a facility for creating instances from step 
abstractions should improve process definition clarity and 
expedite step reuse. Our experience with this work offered the 
chance to evaluate this expectation.  

Requisites. A Little-JIL step optionally can be preceded and/or 
succeeded by a step executed before and/or after (respectively) the 
execution of the step’s main body. A prerequisite is represented 
by a down arrow to the left of the step bar, and a post-requisite is 
represented by an up arrow to the right of the step bar. Requisites 
enable checking a specified condition either as a precondition for 
step execution or as a post-execution check to assure acceptable 
execution. If a requisite fails, an exception is triggered. 

Channels. Artifacts can also flow between steps along channels, 
essentially buffers that hold queues of artifacts produced by the 
step(s) at the tail of the channel, and used by the step(s) at the 
head of the channel. Steps accessing the channel typically block 
until needed artifacts are delivered by the channel. Thus, channels 
can also be used for synchronization. 

Exception Handling. A Little-JIL step can signal the occurrence of 
exceptional conditions when a requisite fails or when other 
aspects of the step’s execution fail. This triggers execution of a 
matching exception handler associated with the parent or other 
ancestor of the step that throws the exception. The handler is 
represented as a step attached to an X on the right of the step bar. 
Exception handlers can receive arguments that can be used to help 
clarify the nature of the exception. This capability facilitates 
creating a descriptive context that can help the handling of the 



exception to be more precise and effective. Little-JIL also 
supports the specification of four alternatives for how execution 
proceeds after completion of exception handling. For example 
execution could continue by repeating the step to which the 
exception handler was attached, with that step’s parent, or with its 
sequential sibling. Although DFGs can be used to represent how 
exceptions are handled and how execution is to resume, our 
experience suggests that such DFGs quickly become complex and 
impenetrable, especially when exceptions can originate in multiple 
ways and from multiple process locations. Our experience 
suggests that suitable language constructs help with this problem. 

Scoping. A parent step and all of its descendants represent a 
Little-JIL scope, enabling specification that certain data items and 
datasets are specific to that scope. Little-JIL also supports 
recursive specifications of a step within its own scope. This 
language construct can greatly clarify the iterative application of a 
process step to specifically defined data items and datasets. 

 

A PDG of the hydrological modeling process. The step depicted 
in Figure 3, “Process Water Budget Datasets”, defines the four 
major subprocesses described in Section 2 and indicates that they 
can be carried out in parallel with each other. Note that the two 
left subprocesses have a Kleene + on the edges connecting them to 
the parent step, indicating that each can be instantiated one or 
more times. Each instance is created upon the availability of an 
execution agent for the step, and such an agent is created in 
response to a daily timer interrupt. The Kleene * on the rightmost 
two steps indicates that these steps may be instantiated zero or 
more times. In these cases, a new instance of the step is 
instantiated at a scientist’s request. Full definition of the last of the 
four substeps, “Create New Models” is not shown for lack of 
space, but we now sketch the details of the other three. 

 “Realtime Data Processing” is the subprocess that creates a 
dataset for each full 24-hour day. The left-pointing arrow indicates 
that this is done by first executing the left substep, “Initialize 
Dataset”, and then the right substep “Augment Realtime Dataset”. 
The Kleene + on the right substep edge indicates that this substep 

is executed at least once, and indeed this step is instantiated anew 
every 30 minutes when a new set of measurements is to be 
gathered. Recall that step parameter declarations and edge 
argument bindings are integral parts of Little-JIL process 
definitions. Most such details are not shown in this figure, 
however, where they seem obvious, to reduce diagram clutter. 
Some edge annotations are shown for emphasis and clarity, 
however. Thus, for example, the edge connecting “Initialize 
Dataset” to its parent has the annotation “Dataset for today”, with 
an upward arrow, which indicates that the result of performing 
this substep is the creation of a dataset describing readings for the 
day on which this step was instantiated, and that this dataset is 
passed onwards for use by its right sibling, “Augment Realtime 
Dataset”. “Augment Realtime Dataset” consists of the sequential 
execution of three substeps that result in augmenting the set of 
daily readings by the readings from the most recent time period. 
The first substep, “Get RT Readings” acquires the raw data from 
actual sensors and instruments. In Figure 3 we provide some 
elaboration only on the definition of the process for obtaining a 
precipitation reading, done by “Read Precip”. The “Read Others” 
step is not elaborated here, but can be expected to look quite 
similar to the elaboration of “Read Precip”, which consists of 
obtaining a reading from each of two (redundant) precipitation 
gauges (steps “Read Precip 1” and “Read Precip 2”), and also 
specifying how to handle the exceptional situation where a 
precipitation reading is missing (step “Handle No Precip”). 
Shortly, with the aid of Figure 4, we describe how this exception 
is to be handled, indicating how powerful exception handling 
semantics facilitate creating clear and concise process definitions.  
 
Once a complete set of readings has been gathered by “Get RT 
Readings”, they are passed to “Apply Models” where their 
suitability is considered. As noted above, scientists routinely 
scrutinize raw data to determine whether there seems to be a need 
to modify or replace it. Some data may be suspect because of 
environmental conditions (e.g. wind direction, ice buildup), and 
some may be completely missing (e.g. because of sensor failure). 
In such cases replacement data is generated and substituted for the 
data that are suspect or missing. Models are used to determine 

 
 

Figure 3. Example Little-JIL PDG for the hydrological modeling process described in Section 2. 



whether and how such data are to be replaced. Figure 3 shows that 
a set of such models, “Realtime Models” is passed to the step 
“Apply Models” for use in examining the data produced by “Get 
RT Readings” and for suggesting replacements. Note that “Apply 
Models” is defined by the sequential execution of “Apply A 
Model” (which selects one model and applies it to relevant data 
items), followed by the recursive execution of “Apply Models” 
(note that the name of this step is italicized to indicate that it is the 
reinvocation of a step that has previously been defined elsewhere). 
Thus this step demonstrates how iteration can be specified. 
Indeed, in this case, the iteration is more than just the repetition of 
a step “Apply A Model”, but is iteration over a set, namely the set 
of models. In this example, appropriate definition of the 
parameters to “Apply Models” and the edges connecting the 
instances to their parents can assure that the set of candidate 
models is reduced by the deletion of the model just used by the 
immediately prior execution of “Apply A Model”. Thus the 
scientist performing “Apply Models” is free to select the order in 
which models are to be considered, but will not be able to make 
the mistake of reapplying a model that had been applied 
previously. The details of how this is actually specified by Little-
JIL are less important than the observation that this recursive 
execution of a well-designed step abstraction seems to be a 
particularly useful feature in a language used to describe this 
important, and common, scientific data processing activity.  
 
“Augment Realtime Dataset” concludes with the execution of 
“Add to Dataset”, a step whose job is to take the data items that 
have resulted from the application of the appropriate models to 
raw data, and appending these data items to the growing dataset 
that represents the data gathered in realtime for the current day. To 
do this, “Add to Dataset” must incorporate subprocesses for 
considering the results of applying the various models to the 
various raw data items, selecting those that seem most 
appropriate, and annotating the resulting data items with 
specifications of which models were applied to which raw data 
items. The details of this subprocess are not shown here for lack 
of space. Subsequently, however, we describe how the annotation 
of the resulting data items is facilitated using a DDG, which 
provides a specification of the provenance of these data items. 
 
The second substep of “Process Water Budget Datasets”, “30-Day 
Retro Data Processing”, defines how realtime datasets generated 
by “Realtime Data Processing” are systematically reconsidered, as 
described in Section 2. “30-Day Retro Data Processing” is the 
sequential execution of “Get 30-Day Prior Dataset” and “Do Retro 
Processing”. The details of “Get 30-Day Prior Dataset” are not 
provided here, but note that the process defines how to handle the 
exceptional situation that arises should this dataset not be 
available. If thrown, the exception is handled by “30-Day Retro 
Data Processing” (note the X on the right of the step bar). The 
right-pointing arrow in the circle attached to the X indicates that 
the handling consists simply of terminating the execution of “30-
Day Retro Data Processing”. If the dataset is accessed 
successfully, then the annotation on the edge connecting “Get 30-
Day Prior Dataset” to its parent indicates that this dataset is then 
made available to be passed to “Do Retro Processing”.  
 
From the description of the Water Budget process given in section 
2, it should be expected that the “Do Retro Processing” process 
should bear strong resemblance to the “Realtime Data Processing” 
process. Figure 3 shows that appropriate language semantics 
emphasize this, supporting clarity and reuse. Indeed “Do Retro 
Processing” consists of the sequential execution of (another 
instance of) “Initialize Dataset” and then one or more executions 

(Kleene +) of “Augment Retro Dataset”, in strong analogy to the 
definition of “Realtime Data Processing”. In the case of “Do Retro 
Processing”, the output argument is annotated as being “Retro 
Dataset for today-30”, emphasizing that the dataset to be created 
has an appropriate name. “Augment Retro Dataset” consists of the 
sequential execution of “Get Readings”, followed by new 
instances of “Apply Models”, and “Add to Dataset”, again 
analogously to the decomposition of “Augment Realtime 
Dataset”. In the case of the decomposition of “Augment Retro 
Dataset”, however, the arguments bound to these steps are those 
relevant for retrospective processing. Thus, “Get Readings” 
obtains readings from “Retro Dataset for today-30”, the dataset 
found and passed as an output from “Get 30-Day Prior Dataset” 
rather than from a realtime data stream. These data items are then 
input to “Apply Models”. Note that this instance of “Apply 
Models” takes as input “Retro Models”, a set of models 
appropriate for modifying values in retrospective datasets. As 
noted above, retrospective datasets afford the opportunity to use 
later data items to help in deciding which raw data is to be 
modified or replaced and which data items are to be substituted. 
Thus, the set of models passed to this instance of “Apply Models” 
may be different from the set passed to the previous instance of 
this step. In addition, note that these models may require that a 
neighborhood of data items, both prior and subsequent, may have 
to be passed from “Get Readings” in order to support the use of 
these more complex models. “Add to Dataset” is an instance of a 
step previously instantiated, but in this context, it is adding 
instances of retrospectively modeled data items to a retrospective 
dataset. The complete parameter specifications and bindings are 
not shown here as they seem obvious and would create additional 
diagrammatic clutter. 
 
The third substep of “Process Water Budget Datasets”, “Alt 
Model Processing”, may be instantiated, for example, when a 
scientist wishes to evaluate one or more new models by applying 
them retrospectively to previously created datasets. The process 
for doing this is another example of how abstraction facilities can 
help improve reuse and clarity. Note that this process is defined to 
be the execution of one or more (Kleene +) instances of “Run Alt 
Model Experiment”, each of which is an evaluation against a 
different retrospective dataset. The process for doing one such 
evaluation is simply the execution of “Get Legacy Dataset”, which 
fetches a previously developed dataset, “Retro Dataset for some 
day”, followed sequentially by “Do Retro Processing”, which was 
previously defined as the principal substep of “30-Day Retro Data 
Processing”. 
 
To provide elaboration of the need for powerful exception 
handling capabilities we now provide further details of how the 
“Handle No Precip” step handles the “Missing Precip” exception 
thrown from one of the substeps of “Read Precip” shown in 
Figure 3. Figure 4 depicts the “Handle No Precip” step. This step 
is an exception handler that is called when no data has been 
received from one of the two precipitation gauges. The first step 
performed is “Choose Source”, a choice step (note the choice icon 
in the step bar) that chooses between the left substep that rereads 
from gauge 1 and the right substep that rereads from gauge 2. If 
the reread fails to produce a value, the step throws an exception 
that is handled by the “Sensor Down” handler that belongs to the 
“Handle MS Sensor Timeout” step. This handler seeks the 
precipitation measurement through the “Get Airport” step. That 
step may also throw an exception in case the airport is also not 
able to provide the requested measurement. The exception is 
handled by the “Put Null Reading” step, which is the exception 
handler for “Sensor Down”. Thus Figure 4 demonstrates how the 



context in which an exception arises can have a strong effect upon 
how the exception is handled. In this example an exception may 
arise during the handling of another exception, leading to the need 
for a different reaction. The example illustrates the benefits of 
using scope to determine context, which is commonplace in 
programming languages but not in data-flow based models. 
 
Generating DDGs from Executions of PDGs: We demonstrate 
how DDGs can be generated from executions of a PDG by 
incrementally showing how a DDG can be used to document the 
provenance of a specific data item that is produced and passed as 
an output from the “Add to Dataset” step. Our previous discussion 
noted that this output results from a scientist’s consideration of 
alternative values generated by alternative models, each applied 
by a different instance of the “Apply A Model” step. Figure 5 
illustrates a portion of a visualization of a DDG that could be 
generated by the steps leading up to “Add to Dataset”. In this 
visualization, process steps are depicted as ovals annotated with 
the name of the corresponding step in bold face. Process artifacts 
are depicted as rectangles annotated in gray type to emphasize that 
these are descriptive names, most usefully provided by the 
scientist. An actual DDG would incorporate actual values (or 
references to actual values) in place of the visualized rectangles. 
The annotations shown here are intended only to be explanatory of 
the semantic role of the artifact in the DDG. Edges whose tails 
originate from an oval indicate that the artifact at the head was 
taken as an input to the step represented by the oval. Edges whose 
tails originate from a rectangle indicate that the oval at the head 
represents the step that generated the artifact. Thus, note that 
Figure 5 documents that “Add to Dataset” produces an artifact, 
annotated “P”, by taking as inputs two artifacts, each the output of 
a different model (a DDG documenting the application and 
consideration of more than two models would be analogous). Each 
of these artifacts is shown as the output of an instance of the 

“Apply A Model” step, each of which uses the same two artifacts 
(annotated “P1” and “P2”) as inputs. But one instance of “Apply 
A Model” also uses as input a model annotated “Model 1”, while 
the other uses a model annotated “Model 2”. The details of how 
the scientist chooses between the two inputs to “Add to Dataset” 
are not documented here, as this step is a leaf step, and thus the 
PDG provides no information about this. A scientist inspecting 
this DDG would note that the artifact annotated by “P” has the 
same value as one of the two inputs, which then indicates the 
model that had been chosen by the scientist. If further process 
details are desirable, these details would be provided as 
decompositions of the “Add to Dataset” step or as documentation 
provided by the scientist. 
 
Additional information about the provenance of “P1” and “P2” is 
provided by additional parts of the DDG shown in Figure 6. This 
information is passed successively through the steps, “Read 
Precip”, “Get RT Readings”, and “Apply Models”. The DDG is a 
correct depiction of the fact that these artifacts are passed 
unchanged through these steps. DDG segment documents how 
“P1” and “P2” were generated initially by the “Read Precip 1” and 
“Read Precip 2” steps, respectively, and how these artifacts were 
then passed unchanged This is readily inferable because Little-JIL 
mandates that the relations among the parameters of Little-JIL 
steps must be documented. The DDG in Figure 6 is, however, 
more cluttered than is desirable, suggesting that it might be 
preferable to depict it as shown in Figure 7, where the steps that 
merely pass values through unchanged are shown in gray. 
 
Note that Figures 6 and 7 represent an execution of the PDG in 
which both “Read Precip 1” and “Read Precip 2” execute 
successfully. But the process allows for the handling of 
exceptional situations as well. Figure 8 depicts the DDG that 
would result in the case that “Read Precip 1” fails initially, 
triggering execution of the “Handle No Precip” exception handler, 
resulting in a retry of “Read Precip 1”. In this case, the retry also 
fails triggering an additional exception handled by the “Get 
Airport” step that produces a precipitation reading. The different 
executions of the PDG result in different DDGs, documented by 
Figures 7 and 8, each providing precise provenance of the 
eventual value “P”, that is produced by the “Add to Dataset” step.  

 
Figure 5: A DDG showing the derivation of the value p 
resulting after applying different precipitation models. 
 

 
Figure 6: DDG depicting the derivation of precipitation 
readings from two different precipitation gauges. 
 

 
Figure 4. Exception handling in step “Handle No Precip”. 

 



4. EXPERIENCE AND EVALUATION 
The entire Water Budget PDG is defined as a hierarchical 
structure of approximately 12 Little-JIL diagrams, where most 
diagrams are significantly smaller than the diagram in Figure 3. 
Creating this process definition required the use of a broad range 
of semantic features. We now present a more detailed analysis of 
what this experience suggested about the desiderata for a language 
to be used as the basis for defining an analytic web’s PDG. 
 
Decomposition and Abstraction 
The example made good use of Little-JIL’s abstraction facilities, 
as shown in the four parallel substeps of “Process Data” in Figure 
3. Note that the first two contain instantiations of the steps, 
“Initialize Dataset” and “Add to Dataset”, and the third also uses 
these steps as part of its reuse of the “Do Retro Processing” step. 
Further, all three of these substeps use the “Apply Models” step, 
although the sets of models used by the substeps may be different. 
This use of abstraction indeed seems to help in achieving clarity 
and reuse, which should be no surprise to software engineers.  
 
Concurrency specification and control 
Additional complexity in the example process is attributable to 
process parallelism. Data streams from various sensors must be 
processed in parallel and in realtime as data are gathered and 
transmitted concurrently. Other parallelism occurs in that the 
activity of generating and evaluating streams of data items (in 
“Realtime Data Processing”) must occur concurrently with the 
creation and evaluation of retrospective datasets (in “30-Day 
Retro Processing” and “Alt Model Processing”) and with new 
model generation (“Create New Models”), which tends to occur 
much more infrequently. In the example, Little-JIL channels are 
used to represent how models built by the “Create New Models” 
step are then used by all three of its sibling steps, although space 
does not permit showing the details of how this is done. 
 
Exception specification and management 
Little-JIL’s exception management facilities enabled us to define 
complex exceptional situations, including need to deal with 
exceptions that occur during the handling of exceptions 
themselves, relatively easily. Figure 4 shows only one set of 
contingencies that must be handled to deal with missing data 
items. The complete definition of this process required more 
extensive use of exception management, and this seems to be an 
important feature of scientific processes. Such exception 

management semantics as scoped exception handling and different 
exception resumption semantics proved useful in supporting 
clarity and completeness in defining this process. 
 
Late-binding of resources 
This example only hinted at the importance of supporting the late-
binding of resources to steps to permit flexible reactions to 
contingencies. Figure 4 specified an airport precipitation gauge as 
the agent used to obtain a precipitation reading. But it is 
reasonable to leave the choice of agent to an external resource 
manager (human or automated) charged with making a late-
binding decision about the agent deemed most likely to be 
successful in delivering the needed measurement. This points to 
the desirability of a process definition facility able to specify only 
the needed capability and a runtime system able to support 
realtime selection of an agent best able to provide that capability.  
 
PDG feature summary 
Our use of Little-JIL to specify the PDG for a realistically 
complex scientific process enabled us to suggest language features 
that should be useful in supporting the definition of the PDG in an 
analytic web. We are struck by the similarity between these needs 
of the scientific community and what is generally provided by 
modern programming languages. This supports our intuition that 
scientific processes have strong similarities to other systems 
traditionally implemented or modeled with computer software. 
Thus, the challenges of defining them have strong parallels with 
the challenges of programming complex software systems, and it 
is not surprising to find that a process language should incorporate 
the salient features of modern programming languages.  
 
DDG Evaluation 
The example process also shows how DDGs can be built 
incrementally as the execution of a PDG proceeds and can be 
defined as traces through the PDG. DDGs grow as DAGs, 
increasing in depth as PDG execution proceeds; iteration of 
processing steps is manifest as additional levels in the DDG DAG. 
This emphasizes the role of these steps in establishing scopes, and 
the DDG is capable of clearly illustrating this role. DDGs derived 
from executions of lengthy processes may seem cumbersome. But 
it is the pictorial depiction of an entire DDG that is large. Their 
internal representations are typical DAG-like structures that 
should be amenable to relatively terse internal representation. In 
addition, the representation of an entire DDG may not be of 
interest in many cases; elided versions might often suffice. Thus 

 
Figure 7: Another depiction of the DDG in Figure 6, 
which is intended to reduce visual clutter.  
 

 
Figure 8: DDG resulting from execution of exceptional flow 
caused by failure of one precipitation gauge. 
 



tools that allow users to tailor DDGs through elision seem useful. 
A number of tools of this kind already exist. The presentation of 
DDGs is an important area that requires future research. 

5. RELATED WORK 
There has been a great deal of prior work on scientific workflow. 
Most of this work is based on the use of data flow graphs (DFGs) 
to specify process flow. Chimera [8-10], one of the earliest 
scientific workflow systems, used pictorial visualizations of DFGs 
to represent scientific processes. Taverna [11, 12], a more recent 
effort, focuses on the integration of web services, particularly for 
bioinformatics applications. Taverna’s integration mechanism is a 
workflow notation also based upon a DFG formalism. JOpera [13, 
14] has suggested using XML to specify scientific workflows as 
plug-ins integrated using Eclipse [15]. JOpera workflows also use 
a DFG formalism to represent scientific processes. Teuta [16, 17] 
represents scientific processes through UML diagrams that offer 
some features, such as limited forms of concurrency, that go 
beyond the semantic features of a basic DFG. Kepler [5, 18, 19] is 
perhaps the most advanced of these projects. It is based upon 
Ptolemy II [20, 21], which uses a powerful and flexible DFG 
structure to specify how datasets move between processing 
capabilities. Kepler integrates a broad range of tools to support 
specification, execution, and visualization of scientific processes. 
It seems particularly effective in supporting processes for realtime 
streaming sensor data. 

It seems important to note that most of these scientific workflow 
representations incorporate semantic features that are sufficient to 
represent scientific processes. Our view is that all too often, 
however, these representations are too cumbersome and 
confusing. As noted above, software engineers should readily 
recognize that languages with weaker semantics may be sufficient 
to represent complex systems, but that there is important value in 
seeking languages whose more powerful notations support greater 
clarity and conciseness without sacrificing completeness. 
Scientific Workflow technology seems to be at a stage where the 
search for such languages is clearly indicated. 

To be more specific, Kepler’s reliance upon the use of a 
hierarchical structure of DFGs can complicate the clear 
specification of such features as alternative semantics for 
continuation after the handling of exceptions. Indeed our work 
indicates that such powerful exception management semantics 
seem necessary in defining complex scientific processes. Kepler 
represents a scientific process by means of a hierarchy of pairs. 
The pair consists of a DFG and a Director, which defines the 
semantics of the DFG. Several different Directors are defined as 
part of the Ptolemy II system, upon which Kepler is built [22]. 
Different Directors define different DFG semantics (e.g. 
Synchronous Dataflow (SDF), Finite State Machine (FSM), 
Heterochronous Dataflow (HDF), Discrete Events (DE), and 
Process Networks (PN)), and SDF, FSM, and DE seem to be 
frequently used. The process definer may use different Directors 
at different hierarchical levels to specify the semantics needed to 
facilitate a process definition. The fact that execution semantics 
may change between process hierarchical levels, however, seems 
to us to jeopardize the clarity of such process definitions. Thus, 
one may have to look at two or three diagrams at different 
hierarchical levels simultaneously (a DFG and the Directors at its 
level and its parent’s level) in order to adequately understand a 
process definition. In addition, certain nestings of Directors at 
different levels in a process hierarchy may be semantically 
problematic, and some are indeed prohibited. DFGs using 
appropriate Directors can precisely define conditionals and 

iteration. But such constructs are often cumbersome to define, and 
the Kepler technology suggests no uniform way in which to define 
them. Further, the semantics of loop executions defined through 
various layered Directors is sometimes not immediately clear.  

Among the mechanisms that augment Kepler to support 
representing procedure invocation and exception management are 
“dynamic embedding” and “collection aware actors” [23]. 
Dynamic embedding (part of a project that extends Kepler) is a 
mechanism that can be used to introduce a placeholder step into a 
DFG process definition, and then allow for the use of any of 
several processes that match that placeholder's interface. Other 
scientific workflow systems such as Taverna offer somewhat 
analogous capabilities. An agent assigned to the placeholder can 
then decide at runtime which of the actual process definitions is 
executed when the placeholder is to run. Thus the logic behind 
choosing a procedure or an exception handler is hidden in the 
programming language used to define the agent (Java is generally 
used). As is the case when an agent is late-bound to a Little-JIL 
leaf step, this complicates comprehension of process behavior and 
analysis of the process based on its definition. Moreover, when 
this construct is used to support exception handling, execution 
may not always return to exactly the point where the exception 
was raised. 

The lack of strong facilities for exploiting abstraction also leads to 
duplication, complexity, and lack of clarity. Kepler’s “composite 
actor” is an example of a construct that can be used to support a 
modest form of abstraction. A Kepler composite actor is a 
subprocess that can be assigned as the agent for a step. It is 
possible to re-use the composite actor as the actor for any of a 
number of steps. But composite actors seem to have limitations in 
their ability to reference context information that might impact the 
way in which the composite actor performs. Thus, for example, 
when a composite actor is used to define a subprocess that 
delivers its result by choosing among a set of lower level tools, the 
tools must have identical parameter lists. Our experience suggests 
the need for more adaptability in a process language’s abstraction 
capability. Other approaches to supporting abstraction seem to be 
under consideration by the process and scientific workflow 
communities. This line of work seems to us to be particularly 
important, and of particular interest to software engineering. 

Other Scientific Workflow systems offer somewhat different 
approaches to supporting these semantic features. Space 
limitations prevent detailed critiques of all of them. We suggest 
that such critiquing, and suggestions for improvement, fit nicely 
into the tradition of software engineering research. Little-JIL 
suggests some approaches to improvement, but this general line of 
research would seem to be of interest and value both to Scientific 
Workflow and Software Engineering. 

There is also other work that supports documentation of the 
provenance of scientific datasets (e.g., [24, 25]). There are 
generally two approaches to this work. In one approach (e.g., [26-
28], each data artifact is stored in a database, and annotated with 
information about the tool or system used to create it and its input 
artifacts. Artifact provenance documentation can then be obtained 
by querying the database. The other approach entails building a 
derivation graph on the fly as execution of the scientific process 
proceeds. The Chimera [9] and Kepler [19] projects have adopted 
this latter approach. Our proposed approach falls into the latter 
category as well, entailing on-the-fly construction of a derivation 
structure, the DDG. Our DDG depicts the progress of execution 
through a PDG that incorporates powerful semantic structures 
such as concurrency, exception handling, non-trivial iteration, and 



abstraction. The presence of these powerful semantic features in 
the PDG definition language makes it possible for the DDGs 
generated from such PDGs to incorporate these semantic features. 
Thus, for example, artifacts produced on different iterations 
through a given activity are shown as the roots of lower level 
subgraphs of a DDG, where the context of each activity execution 
is provided by nodes of the DDG that are specified as loop 
abstractions. Our experience suggests that these features can help 
to make DDGs clearer. Other scientific workflow systems seem to 
also value incorporation of such higher level semantic features. 
Continued investigation of how to incorporate these features to 
best effect is indicated. 

Our work is reminiscent of the Odin project [29] that documented 
how collections of software tools are used to produce software 
products. As in this work, Odin maintained a type structure, 
showing which software tools generate which types of software 
objects, and an instance structure recording the specific software 
artifacts generated by applications of specific tools. Indeed, Odin 
itself improved on such pioneering efforts as Make [30] and SCCS 
[31] and, in turn, contributed to the genesis of Software 
Configuration Management (SCM). Documenting scientific data 
provenance does indeed bear a resemblance to SCM, and we note 
that other recent work in scientific data provenance has also 
started to recognize the problem of documenting provenance in 
situations where the scientific process is evolving [19] [32].  

6. FUTURE WORK  
Analytic Tools and Their Roles: This project suggests the value 
of analytic tools to support reasoning about scientific processes, 
data, and datasets. Thus an analytic web should eventually 
incorporate tools such as parsers, cross-referencers, and semantic 
checkers for analyzing PDGs. These tools will help identify such 
process errors as incomplete or incorrect exception handling. We 
also suggest evaluating more powerful analyzers such as model 
checkers (e.g., [33, 34]) in analytic webs. Model checking should 
determine whether process definitions contain errors such as 
datasets that are generated but never used. These defects can be 
caused by incorrect process design or just misspellings. More 
importantly, such analyses might identify defects that could lead 
to unsound scientific results. Applying certain statistical 
techniques can yield unreliable results when they follow the 
application of certain other techniques [35]. Typically this occurs 
when subsequent data processing is done without knowledge of 
earlier processing. Model checkers can scan all execution 
sequences in a process defined using a language, such as Little-
JIL, detect the possibility of invalid sequences, and guide process 
modification that prevents these sequences. There is also a role for 
dynamic event sequence analysis in analytic webs, where DDGs 
can be examined for faulty analysis sequences as they are 
generated. 
DDG Optimization: Previously we noted that DDGs generated 
by long process executions can be quite large. Optimization might 
reduce the sizes of such DDGs. In addition, we plan to consider 
regenerating parts of a DDG as an alternative to storing all of its 
nodes. Odin demonstrated that complete, precise documentation 
of the artifacts and tools used to generate a DAG such as the DDG 
could be used to regenerate it. Doing so costs execution time, but 
saves storage space. We plan to evaluate this time-space tradeoff 
to decide whether some parts of a generated DDG might be 
regenerated rather than stored. 

A Full Environment: Finally, there are interesting issues 
concerning how the various tools suggested here might be 
integrated. We suggest the need for tools to create and execute 

PDGs, tools to construct DDGs, tools to generate process 
metadata, tools for viewing DDGs and PDGs, and tools for 
analysis. It is not clear how best to integrate these tools so that 
their existence and utility will be sufficiently clear to the scientists 
who are to use them (user integration), nor how best to implement 
them to make best use of each other’s capabilities and 
implementations (backend integration). Prior research on tool 
integration should be useful in providing guidance on these issues. 
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