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At thedawnof the21st century, environmental scientists are collectingmoredatamore rapidly
than at any time in the past. Nowhere is this changemore evident than in the advent of sensor
networks able to collect and process (in real time) simultaneous measurements over broad
areas and at high sampling rates. At the same time there has been great progress in the
developmentof standards,methods, and tools fordataanalysisandsynthesis, includinganew
standard for descriptive metadata for ecological datasets (Ecological Metadata Language) and
new workflow tools that help scientists to assemble datasets and to diagram, record, and
executeanalyses. However these developments (important as theyare) are not yet sufficient to
guarantee the reliability of datasets created by a scientific process— the complex activity that
scientists carry out in order to create a dataset. We define a dataset to be reliable when the
scientific process used to create it is (1) reproducible and (2) analyzable for potential defects.
To address this problem we propose the use of an analytic web, a formal representation of a
scientific process that consists of three coordinated graphs (a data-flow graph, a dataset-
derivation graph, and a process-derivation graph) originally developed for use in software
engineering. An analytic webmeets the two key requirements for ensuring dataset reliability:
(1) a complete audit trail of all artifacts (e.g., datasets, code, models) used or created in the
execution of the scientific process that created the dataset, and (2) detailed process metadata
that precisely describe all sub-processes of the scientific process. Construction of such
metadata requires the semantic features of a high-level process definition language.

In this paper we illustrate the use of an analytic web to represent the scientific process of
constructing estimates of ecosystem water flux from data gathered by a complex, real-time
multi-sensor network.Weuse Little-JIL, a high-level process definition language, to precisely
and accurately capture the analytical processes involved. We believe that incorporation of
this approach into existing tools and evolving metadata specifications (such as EML) will
yield significant benefits to science. These benefits include: complete and accurate
representations of scientific processes; support for rigorous evaluation of such processes
for logical and statistical errors and for propagation of measurement error; and assurance of
dataset reliability for developing sound models and forecasts of environmental change.
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1. Introduction

At the dawn of the 21st century, more environmental
scientists are collecting more data at more rapid rates than
at any time in the past. The pace of environmental change is
also accelerating. Policy analysts and decision-makers require
robust and reliable models of ongoing ecological dynamics
and forecasts of environmental change (Clark et al., 2001).
Uncertainty in these forecasts will decline as more data are
accumulated and models are updated and run again (Ellison,
1996). Economicmarkets are evolving that will take advantage
of these forecasts to set prices for scarce natural resources,
emissions levels, and restoration efforts (Cacho et al., 2003).
The lone ecologist studying obscure organisms in pristine
sites who analyzes simple datasets and publishes results in
technical journals read by few is quickly being replaced by
teams of investigators who are studying “real-world” envi-
ronmental problems, analyzing terabytes of data in (near) real
time, and communicating their results to vastly broader
audiences, all with the aid of new information technologies.

Great progress has been made in recent years in the
development of standards, methods, and tools for data
analysis and synthesis (Jones et al., 2006). Descriptive meta-
data that provide essential information about the contents of
individual or aggregated datasets (Michener et al., 1997) can
now be represented using a community standard, Ecological
Metadata Language (EML).1 New scientific workflow tools help
scientists to assemble datasets and to diagram, record, and
execute analyses. Perhaps the most notable of such tools for
ecologists is the open-source Kepler,2 which is able to utilize
EML directly (Altintas et al., 2004; Ludäscher et al., 2005). There
is also growing interest in developing permanent archives of
environmental models to facilitate verification of past results
and development of future models (Thornton et al., 2005).

Nevertheless these important developments are not suffi-
cient to ensure the reliability of datasets created through a
scientific process — the complex activity that scientists carry
out in order to create a dataset. We define a dataset to be
reliable when the scientific process used to create it (both the
overall process and the specific execution trace) is (1)
reproducible and (2) analyzable for potential defects. By
reproducible, we mean that the reported results could be
replicated exactly by an independent entity (Schwab et al.,
2000; NRC, 2003). By analyzable, we mean that the process
could be rigorously evaluated for potential defects such as
undesirable outcomes or logical and statistical errors (Dwyer
et al., 2004).

EML does not have a formal structure for accurately
capturing the processes used by scientists to analyze and
synthesize data, update existing models, or create new
models. Workflow tools such as Kepler are typically based
on data-flow graphs, representations that are unable to
capture all of the essential details of many current and
increasingly complex scientific processes (see below). Further,
the archiving of models, even with extensive documentation

and versioning, does not tell us exactly how they were used in
a particular application.

The goal of dataset reliability can be realized by recording
and archiving two sets of information: (1) a complete audit
trail of all artifacts (e.g., datasets, code, statistical or simulation
models) used or created in the execution of the scientific
process that created the dataset, and (2) detailed process
metadata that completely and precisely describe all sub-
processes of the scientific process. We believe that accom-
plishing this goal will require advances on several fronts. First,
we need conceptual methods for defining processes using
formal representations with sufficient accuracy and detail to
support analysis and execution (the focus of this paper).
Second, we need community standards for expressing these
definitions in a persistent and platform-independent form
such as XML. Third, we need cyberinfrastructure tools based
on these definitions that scientists can actually use to help
ensure that their analyses are sound and reproducible. These
advances would provide critical benefits to science, including
complete and accurate records of scientific processes; support
for rigorous evaluation of such processes for logical and
statistical errors and for propagation of measurement errors;
and assurance of dataset reliability for developing sound
models and forecasts of environmental change.

In our work to date we have developed a software
prototype (SciWalker) that creates a complete audit trail for
the execution of a scientific process (Osterweil et al., 2005), and
we have applied SciWalker to the analysis of archival carbon
flux data derived from eddy-covariance towers (Ellison et al.,
2006). Rudiments of this relatively simple scientific process
were easily captured with the traditional data-flow graph
widely used in workflow tools such as Kepler. However, new
challenges arise when there is a need to create audit trails and
to construct processmetadata formore complex systems such
as the real-time analysis and modeling of data delivered
continuously by sensor networks. In this paper we illustrate
these challenges in the context of a real-time sensor network
for measuring ecosystem water flux, and we use the Little-JIL
language (Wise et al., 2000) to precisely and accurately capture
the analytical processes involved. We believe this approach
can be integrated into existing tools and evolving metadata
specifications (such as EML) and that the need to do this will
prove to be essential for emerging environmental observato-
ries such as the National Ecological Observatory Network
(NEON).3

2. A water flux sensor network

Water is essential to life, and the movement of water through
ecosystems has long been studied by scientists. In the past, for
practical reasons, such studies have been limited to specific
ecosystem components (e.g., stream discharge) or to relatively
long time frames (e.g., annual water budgets). In recent years,
new technologies and methods have made it possible to
measure elements of the water cycle that previously were
difficult to measure directly, including evapotranspiration (e.g.,

1 http://knb.ecoinformatics.org/software/eml/.
2 http://www.kepler-project.org/. 3 http://www.neoninc.org/.
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using eddy-covariance measurements; Wilson et al., 2000) and
sap flow in trees (e.g., using measurements of thermal
conductivity; Wilson et al., 2001; Phillips et al., 2004). Current
advances in sensor network technology promise a paradigm
shift in environmental research (Atkins et al., 2003; Estrin et al.,
2003) in which the ability to conduct simultaneous measure-
ments over broad areas and at high sampling rateswill open up
entirely new areas for investigation (Porter et al., 2005).
Moreover the ability to collect and process this information in
(near) real time holds considerable promise for real-time
environmental modeling and forecasting, as well as for
demonstration and education (Cayan et al., 2003). However it
also presents significant challenges for how to manage and
document the analysis of streaming data in real time.

In this section we describe a planned sensor network for
measuring real-time ecosystem water flux at the Harvard
Forest Long-Term Ecological Research (LTER) site in Peter-
sham, Massachusetts, USA (Fig. 1). This system will integrate
ongoing meteorological, hydrological, eddy flux, and tree
physiological measurements. Simultaneous measurements
in adjoining small watersheds will enable us to study
variations in water flux caused by differences in topography,
soils, vegetation, land use, and natural disturbance history.
High-frequency sampling will enable us to study water flux
dynamics at a wide range of temporal scales, from minutes
(e.g., response of evapotranspiration to light) to days (e.g.,
groundwater response to precipitation and snow melt) to

years (e.g., ecosystem response to climate, reforestation, land
use, and natural disturbance). Data will be collected via a field-
based wireless network, processed using our analytical web
tools (see below), and immediately posted to the Internet for
real-time use by the scientific community and the public.

Here we illustrate the data requirements for a simplified
system consisting of a single watershed and three key
measurements (the actual system will encompass multiple
watersheds and a wider array of measurements). The water
balance for a single watershed can be described as follows:

P� ET � Q ¼ dS ð1Þ

where P=precipitation, ET=evapotranspiration, Q=stream
discharge, and dS=change in ecosystem water storage (in-
cluding groundwater, soil moisture, surface water, snow pack,
and vegetation). The terms in this equation may represent
instantaneous rates or amounts integrated over a fixed time
interval (the equation as formulated ignores belowground
inputs and outputs).

Measurements will be made at a meteorological station, an
eddy flux tower, and a stream gauge. Because accurate and
complete measurements of precipitation (P) are critical, two
independent rain gauges will be used at the meteorological
station, and rules established for what to do if the two
measurements of precipitation (P1, P2) do not agree. For
example, a difference of more than a specified amount would

Fig. 1 – A conceptual diagram of the planned water flux sensor network at the Harvard Forest.
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generate a warning of possible sensor failure to the system
operator. Evapotranspiration (ET) will bemeasured at the eddy
flux tower and modeled using linear regression on recent
measured photosynthetically active radiation (PAR; actual
models will be based on PAR and vapor pressure deficit; J.
Hadley, unpublished data). Surface discharge (Q) will be
measured with a stream gauge and modeled using a simple
linear reservoir model (Dingman, 2002) in which recent
measured values of P and Q are used to estimate base flow
and the fraction of precipitation returned as event flow (E.
Boose, unpublished data).

The system for processing data from the sensor network is
designed to present the best possible data and metadata
online in real time. A key feature is modeling ET andQ to allow
for real-time quality control and to enable interpolation and
gap filling when measured values are unreliable or when
sensors fail. For example, the modeled value would be
substituted for the measured value if the latter were missing,
out of range, or otherwise unsuitable (e.g., eddy flux measure-
ments are not reliable under certain wind conditions; see
Ellison et al., 2006); in other cases a difference of more than a
specified amount would generate a warning to the system
operator of possible sensor failure or a new phenomenon not
predicted by the model. Note that actual measurements at
each station are preprocessed by onsite dataloggers and/or
computers, and “measured values” are 30-minute averages.

The data collection and analysis system will contain the
following three subsystems: (1) A real-time subsystem will
collect, analyze, and document data from the meteorological
station, eddy flux tower, and stream gauge. This subsystem
will retrieve measurements every 30 min, perform range
checking, calculate best values from redundant sensors (P1,
P2), create and apply models as described above (for ET and
Q), choose between measured and modeled values (of ET and
Q), and calculate the change in water storage (dS) for each
30-minute period. (2) A post-processing subsystem will update
models using before and after measurements. Real-time
models by necessity are based on preceding measurements,
but experience has shown that such models can often be
improved by using both preceding and subsequent measure-
ments, especially during periods of rapid ecosystem change
(e.g., during spring leaf-out or when soils become saturated by
heavy precipitation). This ongoing activity is scheduled to take
place 30 days after the original measurement; because new
measurements are constantly being accumulated, new post-
processing will occur daily. (3) An alternate measurement
subsystem will permit the system operator to substitute new
values for original measurements. For example, measure-
ments may arrive too late for real-time processing, original
measurements may require subsequent correction for sensor
drift, andmissing or questionablemeasurementsmay need to
be replaced with data from another site. Because measured
values (as opposed to modeled values) are changed through
this activity, all models and modeled values within 30 days of
the new measurement must also be updated to capture any
possible “ripple effects”.

Online data and metadata products will include the
following: (1) All original and alternate 30-minute measure-
ments will be retained, with appropriate quality control
metadata (e.g., value missing or out of range). (2) All original

and updated daily models will be retained, with unique
identifiers and date and time of creation. (3) An ordered
dataset will contain current best estimates of P, ET, Q, and dS
for each 30-minute period, updated regularly by the real-time
and post-processing subsystems and as needed by the
alternate measurement subsystem. Associated metadata will
identify data source (e.g., real-time measurement, alternate
measurement, modeled value), confidence level (e.g., good,
estimated, questionable), and history (e.g., processing time-
stamp, models used). Metadata will be generated on the fly
using an analytic web.

3. An analytic web

A scientific process definition is a formal representation of a
scientific process (in the form of structured metadata) that
completely and accurately describes the process and is
sufficient to support execution of the process and the re-
execution required to reproduce the original results. Such a
definition is provided by what we call an analytic web
(Osterweil et al., 2005; Ellison et al., 2006) which consists of
three coordinated graphs – a data-flow graph (DFG), a dataset-
derivation graph (DDG), and a process-derivation graph (PDG) – all
originally developed for use in defining and controlling
software development projects (Ghezzi et al., 2003). The
three graphs and the rigorous analytical information that
may be inferred from them are sufficient to render a dataset
reliable. In this section we discuss the strengths and limita-
tions of each graph in the context of the water flux sensor
network.

3.1. The data-flow graph

The most familiar of the three graphs is the data-flow graph
(DFG), a representation that also forms the basis for workflow
tools such as Kepler. The DFG defines the sequence by which
processes (perhaps as simple as the application of a specific
tool) are applied to raw and intermediate datasets to create a
final dataset. Note that the DFG identifies dataset and process
types, rather than specific instances. For example, the DFG
might specify that a process type interpolate via linear regression

be applied to a dataset type eddy flux data. The DFG specifies
only that a process for interpolating via linear regressionmust
be used; it does not specify which specific tool is used to
execute the process. However when the general description of
each dataset type in a DFG is associated with (or bound to) a
specific dataset and the general description of each process
type is bound to a specific process, the DFG and this binding
information describes the sequence of activities to be per-
formed. In a simple scientific process, the DFG and binding
information are sometimes sufficiently complete and precise
to specify what must be done in order for the process to be
executed automatically by a DFG interpreter (e.g., available in
SciWalker). In such cases, the DFG interpreter accesses the
appropriate input datasets (perhaps via the Internet), sends
them to the appropriate processes (and/or tools), initiates
execution of those processes (and/or tools) on the datasets,
and finally stores and transmits the derived datasets (again
perhaps via the Internet).
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Though useful and easy to grasp, the DFG has two
important limitations: (1) Most DFGs incorporate ambiguities
that make it impossible to be sure which, of a number of
possible alternatives, is the sequence of processing steps that
was actually used in the particular execution that led to the
creation of a particular output dataset. The dataset-derivation
graph (DDG; see next section) of an analytic web captures this
information. (2) The DFG is unable to represent the coordina-
tion of processes (e.g., parallel processing, multiple interactive
loops, exception handling) without excessive annotation. In
general, scientific processes that make significant use of such
features cannot be fully represented by the DFG or executed by
a DFG interpreter without (at the very least) substantial
difficulties that can lead to severe loss of clarity. As described
below, a process-derivation graph (PDG) can capture this
information by drawing on the greater semantic capabilities of
a language developed expressly for process definition, such as
Little-JIL (Wise et al., 2000).

The system for measuring and modeling water flux
illustrates both the utility and the limitations of a DFG
(Fig. 2). The overall design of the system is clearly captured
in the graph: e.g., the four major loops correspond to the three
major subsystems plus a fourth activity to create and apply
models, whereas Revised Data represents the current best data
to be provided to users. However it would be impossible to
determine the derivation history of a particular datum in
Revised Data based on the DFG alone. More importantly, the

DFG does not specify how the various processes are initiated,
controlled, or coordinated. For example: how is model-
building coordinated with real-time data processing? When
alternate measurements are substituted for original measure-
ments, how is the required updating of neighboring models
andmodeled values initiated and controlled?What happens if
a process (e.g., retrieval of a real-timemeasurement) is unable
to complete successfully? Do the three major subsystems
operate independently of one another? Clearly there are a lot
of critical questions that cannot be answered easily, if at all,
based solely upon information provided by the DFG.

3.2. The dataset-derivation graph

The dataset-derivation graph (DDG) documents the specific
datasets used and created in the execution of a scientific
process as well as the specific process steps whose execution
(represented as a path through the DFG) resulted in the
creation of each of these datasets. Where the DFG documents
dataset types (e.g., eddy flux data), the DDG documents dataset
instances (e.g., eddy flux data collected on 1 Oct 2006 at the

Harvard Forest). Note that a new DDG, containing a new set of
instances, is generated every time the scientific process is
executed. The instances represented as DDG nodes may be
stored independently with a unique URL (uniform resource
locator) or DOI (digital object identifier). The DDG contains the
minimal process metadata required to support reproduction

Fig. 2 – A data-flow graph for the water flux system. The icons represent dataset types (boxes) or process types (ovals). The
arrows indicate the flow of datasets into and out of processes.
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of a particular dataset and can be produced automatically with
a DFG interpreter in a tool such as SciWalker.

The DFG and DDG address complementary needs. The DDG
provides the specific information needed to reproduce particular
datasets or to verify models of interest. The DFG provides the
type information needed to replicate the scientific process using
different input datasets or different processing tools (as is
commonly done in model validation; Horn et al., 1989). The
reapplication of a scientific process using alternative dataset or
tool bindings is easily accomplished with a tool such as
SciWalker. Though the DDG provides complete information
about one specific trace through the process, it provides no
information about other traces. The testing and validation of all
possible traces through the scientific process could be done
based on a DFG representation, but a more thorough evaluation
requires amore formal structure, suchas that providedby a PDG.

The DDG excerpt for the water flux system shows that the
size and complexity of the DDG may be considerable (Fig. 3).
The figure illustrates the results of two iterations of DFG
looping, resulting in the creation of two instances of Revised
Data. The first instance (1) is a product of the real-time
subsystem, while the second instance (2) is a product of the
post-process subsystem. Note that the modeled values also
have complex derivation histories of their own. Moreover,

additional instances of Revised Data could result from the
introduction of alternate measurements.

3.3. The process-derivation graph and Little-JIL

By incorporating a stronger and broader set of semantic
features than the DFG, the process-derivation graph (PDG)
provides a complete and precise specification of all possible
executions of a scientific process. As noted above, the
relatively crude semantics of the DFG lack facilities for clear
and concise specification of iteration parameters and condi-
tions, concurrency, and exceptionmanagement. The DFGmay
also contain paths whose execution would not produce valid
datasets and that are not intended for actual execution; the
DFG lacks facilities to prevent the execution of such paths. In
addition, the DFG is unable to specify the particular dataset
instances to be used as input to a scientific process or to
identify the particular dataset instances produced as output.
Such information is critical for the large set of environmental
models created by a process of iterative reconsideration or
reevaluation, where it is imperative to know which datasets
are used as input and which are created as output (Peterson
et al., 2003). The PDG, as implemented here with the process
definition language Little-JIL, provides semantic features that
are adequate to address these specification needs. It can also
support rigorous analysis of all possible execution paths
through the use of tools such as the FLAVERS finite-state
verification system (Dwyer et al., 2004). Such analysis can be
used, for example, to eliminate defects that could otherwise
lead to invalid sequences of statistical processes and unsound
scientific results (Oates and Jensen, 1999).

Little-JIL is a visual language for the coordination of
agents (Wise et al., 2000; Wise, 2006). Its semantics are
precisely defined using finite-state automata, thereby ren-
dering it able to support precise definitions of processes.
Among its distinguishing features are its use of scoping to
make the use of required dataset inputs clear, its facilities for
specifying parallel processing and for defining the handling
of exceptional conditions, and the clarity with which itera-
tion can be specified and controlled. Little-JIL follows earlier
efforts to develop languages and diagrammatic notations for
defining processes, including procedural languages (Sutton
and Osterweil, 1997), rules (Ben-Shaul and Kaiser, 1994),
functional decomposition (Suzuki and Katayama, 1991),
data-flow diagrams (Diamant et al., 1990), and modified
Petri Nets (Bandinelli et al., 1993). However none of these
earlier efforts provide the clarity and precision needed for the
PDG.

A process is defined in Little-JIL using hierarchically
decomposed steps (Fig. 4), where a step represents a task to
be done by an assigned agent. Each step has a name. A set of
badges represents control flow among its sub-steps, its
interface (a specification of its input and output datasets),
the exceptions it handles, etc. A step with no sub-steps is
called a leaf step, and represents an activity to be performed
by an agent without any guidance from the process. An agent
may be a human or it may be a computational tool that is
executed with the designated input when the leaf step is
encountered. Other key features of the language are outlined
below.

Fig. 3 – An excerpt from a dataset-derivation graph for the
water flux system. The icons represent dataset instances.
Each arrow indicates the application of a process instance.
Arrows connect a dataset instance to the dataset instance(s)
from which it was derived.
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3.3.1. Step sequencing
Every non-leaf step has a sequencing badge (an icon embed-
ded in the left portion of the step bar) which defines the order
in which its sub-steps execute. For example, a sequential step
(right arrow) indicates that its sub-steps are to be executed
sequentially from left to right; the step is completed only after
all of its sub-steps have completed. A parallel step (equal sign)
indicates that its sub-steps can be executed in any (possibly
arbitrarily interleaved) order. It, too, is completed only after all
of its sub-steps have completed. A choice step (line through
circle) indicates that the agent executing the step is to make a
choice among sub-steps, while a try step (right arrow through
X) mandates the sequence in which sub-steps are to be tried.

3.3.2. Artifacts and artifact flows
Artifacts are entities (e.g., a datum, data, or datasets) that are
used or produced by the step. The artifacts used by the step (IN
parameters) or produced by the step (OUT parameters) are
declared in the step interface (circle atop the step bar). In
addition, the flow of artifacts between parent and child steps
is indicated by attaching artifact identifications and appropri-
ate arrows to the edges (lines) between parent and child.

3.3.3. Requisites
A step optionally can be preceded and/or succeeded by a step
that is executed before and/or after (respectively) the execu-
tion of the main body of the step. A prerequisite is
represented by a downward arrowhead to the left of the
step bar, and a post-requisite is represented by an upward
arrowhead to the right of the step bar. Requisites enable the
checking of a specified condition either as a precondition for
step execution or as a post-execution check to assure that the
execution has been acceptable. If a requisite fails, an
exception is triggered.

3.3.4. Exception handling
A step can signal the occurrence of exceptional conditions
when there are aspects of the step's execution that fail (e.g.,

violation of one of the step's requisites). This triggers the
execution of a matching exception handler associated with
the parent of the step that throws the exception (represented
as a step attached to an X on the right of the step bar). Of
particular interest and importance is the Little-JIL facility for
specifying how execution proceeds after completion of the
exception handler; for example, execution may return to the
step that triggered the exception or it may continue with the
step that handled the exception. Although it is possible for
DFGs to represent how exceptions are to be handled and how
execution is to resume subsequently, such DFGs quickly
become quite complex and impenetrable, especially when
exceptions can originate in multiple ways and from multiple
process locations. Little-JIL supports these specifications in a
particularly clear and intuitive way.

3.3.5. Scoping
A parent step and all of its descendants represent a scope,
enabling the specification that certain datasets are to be
treated as specific to that scope. Little-JIL also supports
recursive specifications of a step within its own scope, greatly
clarifying the iterative application of a process step to
specifically defined datasets.

The PDG for the water flux system illustrates the power of
this approach (Fig. 5). The requisite root process (Process Data)
has three parallel sub-steps that represent the three sub-
systems (real-time, post-processing, alternate; Fig. 5a). Each of
these steps has a series of sequential sub-steps that retrieve
and process a datum; the Process Alt Datum step in the
alternate measurement subsystem has an additional iterative
sub-step (Process Next Datum) to ensure that models and
modeled values from the appropriate temporal window are
duly updated. The real-time subsystem (Process RT Datum)
has two sequential sub-steps that are expanded in the next
two figures (Fig. 5b and c). The Get RT Datum step retrieves
real-time data from the three measurement stations, per-
forms range checking, and selects among the two precipita-
tion measurements. The Process Datum step retrieves the

Fig. 4 – A Little-JIL step icon (from Wise et al., 2000).
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appropriate context data (a 30-day or 60-day window for real-
time and post-processing, respectively), gets the model
estimates, selects among measured and modeled values,
and calculates the change in water storage (dS). Creation and
application of the two models (for ET and Q) are parallel
processes. Note that the Process Datum step is utilized by each
of the threemajor subsystems but only has to be defined once.

It is important that the water flux system be robust and
able to react properly to a wide range of contingencies. The

PDG provides an effective and efficient means for ensuring
robustness through the use of exceptions and exception
handlers. For example, in Fig. 5b an exception handler
(Measurement Unavailable) provides instructions for what to
do if a real-timemeasurement is not available (e.g., because of
a communications timeout), whereas in Fig. 5c an exception
handler (Model Unavailable) provides instructions forwhat to do
if a model cannot be generated (e.g., because of a significant
gap in the data required to construct the model). In both cases

Fig. 5 – Simplified excerpts from the process-derivation graph (in Little-JIL) for the water flux system, showing (a) the root
process andmajor sub-steps, (b) the process for real-time data collection and quality control, and (c) the process for creation and
application of models and calculation of the water budget.
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the PDG makes the way in which processing is to be resumed
clear.

The detail captured in the PDG also allows us to apply
rigorous testing and analysis tools. Bounding the number of
iterations to consider, it is possible to determine the set of
distinct paths that could be executed based on a PDG and then
to select test cases that would exercise each of these. If there is
parallelism in the PDG, then the number of paths can be
extremely large. In such situations, it is useful to apply static
analysis techniques, such as the FLAVERS tool mentioned
above, to verify that expected sequences of events always (or
never) occur. For example, it might be essential that corrective
action be taken whenever the precipitation measured by the
two rain gauges varies by more than a specified amount. If
FLAVERS analysis reveals there is a path where this is not the
case, this path would be displayed so that the process
description could be corrected. As processes become large,
and especially when parallelism and exception handling are
included, it is particularly important to apply such techniques
to validate that the process definition adheres to required
behaviors.

The complete PDG for thewater flux system is considerably
larger (nearly all of the leaf steps shown in Fig. 5 would be
decomposed into sub-steps) and contains significantly more
annotations (e.g., artifact and requisite details). Nevertheless,
even this abbreviated version illustrates how the questions
raised above (in connection with the DFG for the water flux
system) can be answered through the use of specification
details made available in the PDG.

3.4. Process metadata

The three graphs of an analytic web provide complementary
views of a scientific process. The DFG is not sufficient (either
by itself or with the DDG) to ensure dataset reliability in all but
the simplest cases. Nevertheless we have retained it as a
component of the analytic web because of its familiarity to a
broader audience and because it provides a useful high-level
view of a scientific process. Just as software designers often
start with a high-level design to gain some understanding of a
problem and then subsequently develop a detailed design, so
we expect that scientists may first outline a scientific process
using a DFG and then elaborate the details of that process
using a PDG. Analysis techniques could even be developed to
determine if the PDG is consistent with the corresponding DFG
and to report any discrepancies that were found in order to
help detect misunderstandings in either representation.

The DDG, by tracking what did happen in a particular
execution of a scientific process, contains the instance
information needed to reproduce that particular trace through
the process and to evaluate it for soundness. The PDG, on the
other hand, contains the type information needed to recon-
struct the overall process and to understand the choices made
in a particular execution. Moreover, by specifying everything
that could happen during execution, the PDG supports eva-
luation of all possible traces (and thus of the entire process) for
soundness.

Dataset reliability is ensured by either (1) the PDG plus the
DDG, because the DDG provides a complete derivation history
and the PDG provides all the information needed to recon-

struct and analyze the processes utilized; or (2) the PDG plus
the input dataset instances, because together they can be used
to re-derive all intermediate and final datasets (in effect, to
recreate the DDG). The first strategy provides a complete
record of all artifacts but usually requires more storage space,
while the second strategy saves space but requires more
processing time (and access to the original tools and com-
puting environment).

The same tradeoff of space versus time can be seen in a
common and related problem: how to ensure access to earlier
versions of a dataset so that earlier analyses can be verified.
One solution, which works well for traditional ecological
studies, is to permanently archive snapshot versions of the
dataset as it evolves over time, using nonproprietary formats
and unambiguous identifiers (Jones et al., 2006). However this
approach is problematic for streaming data and virtually
untenable for systems like the water flux system where the
data not only are streaming but also are subject to constant
revision. In this case it would be far more efficient to archive
the PDG and all input data instances (real-time measure-
ments, alternate measurements, selection criteria, etc.), since
together these can be used to recreate on demand the current
best dataset at any point in time.

Two complementary approaches have been identified for
establishing dataset provenance (Braun et al., 2006). In a
“disclosed-provenance system” there is a defined process that
describes how data items and datasets are generated. In an
“observed-provenance system” data items and datasets are
logged and monitored as they are created. The analytic web
combines the strengths of both approaches: the PDG provides
an a priori process definition, while the DDG is created by
recordingwhat happens as the process is executed.We believe
that constructing the DDG directly from execution of a
sufficiently articulate process definition is inherently simpler
than reconstructing what happened through queries of a
structured database of artifacts (as proposed, e.g., in Bowers
et al., 2006).

The DDG and PDG play complementary roles in supporting
the critical goals of reproducibility and repeatability in science.
A scientific study is reproducible if one is able to get the same
results from the same input data; it is repeatable if one is able
to get comparable results after repeating the experiment with
new measurements (Cassey and Blackburn, 2006). The DDG
supports reproducibility by ensuring that the original data
analysis can be replicated exactly. The PDG supports repeat-
ability by ensuring that the same kind of analysis can be
applied to new input data.

It remains to be seen whether the process metadata
associated with an analytic web can be standardized and
reduced in size and complexity to the point where it will gain
acceptance from the scientific community. Selecting the
appropriate level of granularity in the PDG is also a challenge
and practical guidelines may be required to guide users.
While the PDG supports any level of granularity and greater
detail tends to improve dataset reliability, excessive detail is
counterproductive. Nevertheless we are optimistic that
standards can be developed for the XML representation of
the three graphs that comprise an analytic web and for
unique identifiers for dataset and process instances, and that
software tools can be developed that will greatly simplify
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the task of generating, managing, and interpreting process
metadata.

4. Discussion

In the long run we expect that scientific process definition
tools will be universally accepted as a basic requirement for
scientific data analysis. Eventually such tools will be unob-
trusive and will be able to record all relevant details as the
scientist works. In the short run we predict that scientists will
increasingly choose to use such tools as a means to create,
test, execute, and document their analyses. Though there has
been great progress in tool development in recent years, we
think that current efforts could be strengthened by the
inclusion of concepts and methods from analytic webs. In
particular we believe that enhancing existing tools to include
DDG and PDG capabilities would provide the following critical
advantages:

(1) Creation of a PDG requires scientists to think carefully
about how they perform a given data analysis. It is our
experience that such analyses are often carried out on
an intuitive level, without clear articulation (even in the
mind of the scientist).

(2) The PDG allows a scientist to create representations that
are flexible and scalable. Individual process steps can be
kept relatively simple and the overall design can be
quickly modified by changing the PDG.

(3) The PDG supports execution of a scientific process and
re-execution using different input data and/or different
tools, often leading to a significant savings in time and
effort.

(4) The PDG provides a useful and efficient framework for
structuring and generating the DDG.

(5) Scientific processes represented by PDGs can be rigor-
ously evaluated for undesirable outcomes, logical and
statistical errors, and propagation of measurement
errors. This is a significant advantage, especially for
complex systems.

(6) The PDG provides an alternative to retaining versioned
datasets, which may be impractical for streaming data
and for other situations where datasets are subject to
frequent change.

(7) The combination of the PDG and the DDG (or the PDG
and the input dataset instances) provides a basis for
evaluating dataset reliability regardless of the complex-
ity of the scientific process.

We believe these advantages will prove to be increasingly
important in the future, especially for real-time sensor
networks in emerging environmental observatories such as
NEON. There are significant practical problems that remain to
be addressed, including (1) developing XML (or similar)
standards for representing the graphs, (2) devising efficient
methods for storing and managing process metadata, (3)
developing guidelines for optimal granularity, (4) creating
scientific process definition tools that are easy to use and
reliable, (5) training scientists in the analytical thinking
required to create a PDG, and (6) promoting the use of such

tools and their benefits to the scientific community. But the
potential benefits to science are great.
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