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SPECIAL FEATURE

The Statistics of Rarity1

Ecologists deal with rarity in many guises—species can be rare, particular interactions may
be uncommon, and catastrophic events that reshape landscapes are, by definition, infrequent.
Although ecologists often seek out abundant species or events for their investigations out of
convenience, rare species are often of special central concern to conservation biologists, reserve
managers, and legislators, and historical legacies of rare events are pervasive in ecosystems.
Statistical analysis and modeling of rare events is often necessary, but as MacKenzie et al. point
out in their contribution to this Special Feature, ‘‘rare species [or events] are simultaneously the
species for which strong inferences about state variables and vital rates are most needed and the
species for which such information is most difficult to obtain.’’ The standard set of statistical
tools used by the majority of ecologists are difficult or inappropriate to use when analyzing rare
species or events, either because assumptions such as normality or homoscedasticity do not hold,
or because the required sample sizes are impossibly large. The overall goal of this Special Feature
is to present a cross-section of techniques for sampling, quantifying, and modeling rarity.

Methods for analyzing data on rare species and events come from a variety of disciplines and
were originally designed for addressing specific questions. Most of these questions, including
problems related to quality control in manufacturing, frequency of flooding, and econometrics,
are unrelated to ecological questions, but the mathematical and statistical tools transcend disci-
plinary boundaries. As a result, most of the papers in this Special Feature represent collaborations
between ecologists and statisticians and reflect the growing need for interdisciplinary cooperation
to effectively address complex ecological questions.

The first step in a study of rarity is collecting the data. Sampling rare species is challenging
precisely because they are hard to find. The first three papers discuss sampling methods for rare
species. The papers by Edwards et al. and Philippi focus on increasing the efficiency of sampling
when the focal taxon is rare. Edwards et al. present methods for stratifying the sampling effort
by modeling occurrences of common species known to be associated with the rare species of
interest. Their interest is simply in determining whether or not a species occurs at a particular
site. In contrast, Philippi addresses the problem of designing a sampling regime to more accurately
estimate the abundance of a rare species. Measures of abundance are required to determine the
legal status of a species (e.g., secure, threatened, or endangered), and the adaptive cluster sampling
described by Philippi is more efficient than simple random sampling for estimating the abundance
of sessile species that tend to be clumped. MacKenzie et al. discuss sampling and modeling
methods for estimating the occupancy of a given site or patch by a mobile species. Occupancy
can be used as a surrogate for abundance, especially in capture–recapture studies of mobile
animals. Of particular importance is improvement of the accuracy of occupancy estimates when
the probability of actually observing the species of interest is less than 1. The generality of all
three of these approaches is reflected in the diversity of example organisms: lichens (Edwards
et al.), herbaceous plants (Philippi), and giant wetas, gaurs, and salamanders (MacKenzie et al.).

Deriving precise estimates of rare events and expressing the uncertainty surrounding these
estimates is challenging because the study of rare events often involves small sample sizes that
provide little confidence in the estimates. Just as the papers by Edwards et al. and MacKenzie
et al. take advantage of auxiliary data to improve sampling efficiency and estimates of occupancy,
the paper by Dixon et al. uses auxiliary data to increase the precision (decrease the variance or
uncertainty) in estimates of the frequency of rare events. Dixon et al. apply simple Bayesian
methods with informed prior probability distributions, stratified data, regression with continuous

1 Reprints of this 85-page Special Feature are available for $12.75 each, either as pdf files or as hard copy.
Prepayment is required. Order reprints from the Ecological Society of America, Attention: Reprint Department,
1707 H Street, N.W., Suite 400, Washington, DC 20006.
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covariates, and aggregated data from additional samples to the question of how frequently a sit-
and-wait predator, the carnivorous plant Darlingtonia californica, captures prey. Large-scale
disturbances are also infrequent events, and Katz et al. illustrate techniques for distinguishing
the ‘‘signal’’ of extreme events from the ‘‘noise’’ of temporal variability. These techniques derive
from the large body of statistical work devoted to the study of extremes, which were introduced
to ecologists by Steve Gaines and Mark Denny in their 1993 paper, ‘‘The largest, smallest, highest,
lowest, longest, and shortest: extremes in ecology’’ (Ecology 74:1677–1692). Gaines and Denny
focused on ‘‘light-tailed’’ distributions, in which the frequency of extreme events decreases at a
relatively rapid rate, but many uncommon disturbances, including fires, floods, and large hurri-
canes, have ‘‘heavy-tailed’’ distributions, in which the frequency of extreme events decreases at
a relatively slow rate. In their analysis of sedimentation rates at Nicolay Bay, Canada over ;500
years and in Chesapeake Bay since 1800, Katz et al. illustrate the utility of the statistics of
extremes and show that these indicators of hydrological, climatological, and anthropogenic dis-
turbances are heavy-tailed. The implication of their results is that some apparently rare events
are less ‘‘rare’’ than would appear on first glance.

Armed with reasonable samples and reasonably precise parameter estimates, it is possible to
model the effects of biotic processes or environmental drivers on the rare species or event of
interest. Katz et al. show that the Nicolay Bay sedimentation record reflects only hydrological
perturbations, whereas the Chesapeake Bay record reflects both climatic and anthropogenic dis-
turbances. In a return to rare species, Cunningham and Lindenmayer use generalized linear models
with link functions designed to account for excess zeros in presence/absence or abundance data
to determine predictors of occurrence of Leadbeater’s possum in Australian eucalypt forests, and
predictors of abundance of nesting frigatebirds and boobies in the Coral Sea.

The last two papers address issues of major importance to conservation planners and managers.
Mao and Colwell discuss how to accurately estimate the species richness of a given assemblage
when some (or many) of the species are rare. Two questions are of paramount interest. First, can
rare species that go undetected in inventories be accounted for statistically? Second, when is an
inventory complete? Their analysis, based on empirical data for breeding birds, seeds, and beetles,
as well as from simulations, suggests that while it is relatively straightforward to estimate a lower
bound for the number of species present in an assemblage, estimating the actual number of species
present remains a challenging statistical problem. Managers cannot always wait for better data,
however, and Doak et al. discuss how to build demographic models for rare species when few
data are available. The counterintuitive conclusion from their simulations is that, for rare species,
simple deterministic models of population growth and population viability analyses are preferable
to data-hungry stochastic models, even though the former have known biases.

Many of the methods presented in these papers will be unfamiliar to ecologists raised on a
steady diet of ANOVA, regression, and contingency tables. To encourage the use of these tools,
the authors have published the statistical code and data sets accompanying their papers in Eco-
logical Archives, or have made sophisticated packages freely available on their web sites. We
hope that these methods will be used and that they will continue to evolve through productive
collaborations between ecologists, statisticians, conservation planners, and managers.

—AARON M. ELLISON

Associate Editor-in-Chief
—ANURAG A. AGRAWAL

Special Features Editor

Key words: adaptive cluster sampling; Bayesian inference; detection probability; extremes; general
linear models; maximum likelihood; parameter estimation; Poisson distribution; population viability analysis;
precision; rarity; sampling.
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MODEL-BASED STRATIFICATIONS FOR ENHANCING THE DETECTION OF
RARE ECOLOGICAL EVENTS
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Abstract. A common concern when designing surveys for rare species is ensuring
sufficient detections for analytical purposes, such as estimating frequency on the landscape
or modeling habitat relationships. Strict design-based approaches provide the least biased
estimates but often result in low detection rates of rare species. Here, we demonstrate how
model-based stratification can improve the probability of detecting five rare epiphytic
macrolichens (Nephroma laevigatum, N. occultum, N. parile, Lobaria scrobiculataa, and
Psuedocyphelaria rainierensis) in the Pacific Northwest. We constructed classification tree
models for four more common lichens (L. oregana, L. pulmonaria, P. anomala, and P.
anthraspis) that are associated with the rare species, then used the models to generate strata
for sampling for the five lichen species considered rare. The classification tree models were
developed using topographic and bio-climatic variables hypothesized to have direct rela-
tionships to the presence of the modeled lichen species. When the expected detection rates
using the model-based stratification approach was tested on an independent data set, it
resulted in two- to fivefold gains in detection compared to the observed detection rates for
four of the five tested rare species.

Key words: classification trees; epiphytic lichens; model-based stratification; Northwest Forest
Plan; rare lichens; sampling; species rarity.

INTRODUCTION

Ecologists and conservationists often deal with rare
or uncommon species. Reasons for interest in these
species range from curiosity about the underlying eco-
logical relationships that determine rarity (Goerck
1997) to the need for information about the species so
that proper management and conservation strategies
can be developed (Sheldon 1988, Maina and Howe
2000). A common concern when designing surveys for
rare species is ensuring sufficient detections for ana-
lytical purposes (Green and Young 1993, Edwards et
al. 2004), be they for estimations of frequency on land-
scapes (Alexander et al. 1997), or for use in explana-
tory or predictive models of suitable habitat or spatial
distribution (Hill and Keddy 1992, Wiser et al. 1998).

One specific example where the species of interest
appear to be ecologically rare, and for which there ex-
ists a strong need for estimates of frequencies for con-
servation purposes, is in the U.S. Pacific Northwest
and a subset of that area defined by the Pacific North-

Manuscript received 1 April 2004; revised 29 June 2004; ac-
cepted 1 July 2004; final version received 13 September 2004.
Corresponding Editor: A. M. Ellison. For reprints of this Special
Feature, see footnote 1, p. 1079.

6 E-mail: tce@nr.usu.edu

west Forest Management Plan (hereafter NWFP). The
NWFP was a direct consequence of a court-mandated
requirement to develop a scientifically credible con-
servation strategy for the Northern Spotted Owl Strix
occidentalis (see Thomas et al. 1990, Murphy and Noon
1992) while also maintaining biodiversity on public
lands within the area of the Plan. The Record of De-
cision leading to the Plan (ROD; U.S. Department of
Agriculture, Forest Service, and U.S. Department of
Interior, Bureau of Land Management 1994), and sub-
sequent amendments (U.S. Department of Agriculture,
Forest Service, and U.S. Department of Interior, Bureau
of Land Management 2001), identify more than 350
species of concern in the Plan area that required man-
agement plans. These species included fungi, lichens,
bryophytes, terrestrial mollusks, arthropods, a small
number of vascular plants, and several terrestrial ver-
tebrates. Collectively, these species and species groups
were referred to as Survey and Manage species. All
were hypothesized to have associations with old for-
ests, and concern existed over the possible impacts of
forest management on the persistence of these species.

One immediate realization was that insufficient in-
formation existed to ascertain the impacts of conser-
vation decisions on Survey and Manage species. Most
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FIG. 1. Generalized location of the LAQ (lichen air qual-
ity) model building plots (medium gray) and PILOT vali-
dation plots (black) in relation to the area of the Northwest
Forest Plan (light gray). The figure inset is a representation
of the validation PILOT points (black) and LAQ model build-
ing points (medium gray).

of the species were known from relatively few sites,
and their spatial distributions were unclear as well.
Even less was known about basic life history attributes.
In one sense, the Survey and Manage species are rare
events in time and space. They are often associated
with microsite characteristics that are themselves rare
and patchy in time and space (lichens [McCune 1993,
Esseen et al. 1996]). Many also exhibit irruptive pop-
ulation behavior, appearing only for brief periods or
only once or twice over extended periods (fungi [Mo-
lina et al. 2001]), while in other cases, large distances
may exist between individuals or populations (fungi
[Dreisbach et al. 2002]). These characteristics make it
difficult to design statistically valid sampling schemes,
particularly when little is known about the species’
distribution or habitat requirements that could be used
to focus sampling efforts.

Sound study designs and analytical techniques for
estimating species frequencies are well represented in
the scientific literature (see Schreuder et al. 1993, Olsen
and Schreuder 1997) and have been successfully ap-
plied to diverse resource issues (forest resources [Gre-
goire et al. 1995, Shiver and Borders 1996], animals
[Sauer and Droege 1990, James et al. 1996], aquatic
systems [Stow et al. 1998]). However, many of these
approaches rely on design-based sampling efforts.
While design-based approaches clearly provide the
least biased estimates, they unfortunately are often of
insufficient sampling intensity to ensure enough ob-
servations of rare species. Methods such as adaptive
cluster sampling (Lohr 1999, Cutler et al. 2002, Phi-
lippi 2005) can increase sampling efficiencies, but
themselves can be limited by the information needed
for cluster starting points, or the need for immediate
identification of the sample unit of interest so that the
cluster can be identified and additional samples col-
lected or measured.

One way to increase detection probabilities for rare
species is to use presence–absence information from
other, more abundant but related species to generate
strata for sampling for the rare species. Strata could be
derived from any number of available statistical models
capable of relating a binary response to a set of pre-
dictor variables, such as generalized additive models,
logistic regression, and classification trees (see Hoeting
et al. 2000). Here, we examine the efficacy of a model-
based stratification approach based on classification
trees to enhance detection probabilities for rare epi-
phytic macrolichens in the Pacific Northwest. We fit
classification trees for four common lichen species, us-
ing selected topographic and bio-climatic variables all
hypothesized to have direct relationships to the pres-
ence of the common lichen species. The fitted trees
were then used to define sampling strata for associated,
rare lichen species. Specifically, we test whether mod-
el-based strata developed from more common, asso-
ciated species can improve the detection probabilities
of rare species. We next evaluate the efficacy of the

stratification process for predicting occurrences of rare
species on an independent data set within the same
geographic area, comparing the gains in the model-
based detection probabilities against those realized
from a systematic random sample design.

METHODS

Study area and species

Data used in our analyses were collected in the
NWFP area of the U.S. Pacific Northwest (Fig. 1). Two
subset study areas within the plan boundary were used
in our analyses. The first (hereafter LAQ) was used for
model building purposes and included sampling sites
on seven national forests: the Umpqua, Willamette,
Mt. Hood, Deshutes, Gifford-Pinchot, Siuslaw, and
Winema (Fig. 1). Epiphytic macrolichen species were
surveyed from 1993 to 2000 as part of a larger effort
using lichens to evaluate air quality in the Pacific North-
west (Geiser 2004). The second survey (hereafter
PILOT) was conducted to provide data on rare, old-forest-
associated species to the NWFP Survey and Manage
program. These data served as an independent assess-
ment tool for the models. The PILOT surveys included
forests in three regions: the southern Washington Cas-
cades (Gifford Pinchot National Forest); the Oregon
Coast Range (Siuslaw National Forest and portions of
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TABLE 1. Numbers (percentage) of detections of rare species that are co-located with more common species in the LAQ
(lichen air quality) study area within the range of the Pacific Northwest Forest Plan.

Rare species

Common species†

Lobaria oregana Lobaria pulmonaria
Pseudocyphellaria

anomala
Pseudocyphellaria

anthraspis

Lobaria scrobiculata 37/47 (78.7) 39/47 (83.0)
Nephroma laevigatum 24/25 (96.0) 19/25 (76.0) 19/25 (76.0)
Nephroma occultum 10/13 (76.9) 13/13 (100.0)
Nephroma parile 24/31 (77.4) 27/31 (87.1)
Pseudocyphellaria rainierensis 8/9 (88.9) 8/9 (88.9) 7/9 (77.8)

Note: Empty cells indicate species that were never co-located.
† Numerator 5 number of detections of the rare species that are co-located with the common species; denominator 5 total

number of occurrences of the rare species in the LAQ study area.

Coos Bay, Eugene, and Salem Bureau of Land Manage-
ment lands); and the Umpqua Basin (Umpqua National
Forest, Roseburg BLM [Bureau of Land Management],
and portions of the Willamette National Forest, and
Eugene and Coos Bay BLM).

All sample sites in both the LAQ and PILOT study
areas were surveyed at least once and samples of each
detected epiphytic macrolichen were collected for sub-
sequent identification. Crustose (e.g., Calicium spp.
and Chaenotheca spp.) and ground-dwelling species
(e.g., Cladonia norvegica, Peltigera pacifica) were not
surveyed at all sites and were excluded from analysis.
A total of 49 lichen species having designations rang-
ing from rare to common were considered. The four
most abundant species in the LAQ surveys that were
also sampled in the PILOT surveys, Lobaria oregana,
L. pulmonaria, Psuedocyphelaria anomala, and P. an-
thraspis, were used for modeling purposes. Each of
these species was detected on .120 of the 840 LAQ
sites, providing sufficient sample sizes for developing
model-based strata. Cross-tabulations of these species
with other, rarer species detected in both the LAQ and
PILOT surveys revealed substantial overlap of five spe-
cific rare species with the four identified more common
species (Table 1). Accordingly, we fit classification
trees for each of these four common species, with a
view to using the resulting predictive model for L. pul-
monaria to predict the presences of Nephroma laevi-
gatum, L. scrobiculataa, and P. rainierensis; the mod-
els for L. oregana and P. anthraspis to predict pres-
ences of P. rainierensis; and the model for P. anomala
to predict presences for N. occultum, L. scrobiculataa,
and N. parile.

Data structure and characteristics

Data in both study areas were collected on the current
vegetation survey plots (CVS), a systematic grid over-
laid on all Forest Service and BLM lands in the Pacific
Northwest. Its principal application is the generation
of estimates of forest resources (see Max et al. 1996).
A total of 840 CVS plots were sampled in the LAQ,
and an additional 300 sites in the PILOT study area.
Sample sites were apportioned equally among the three
areas comprising the PILOT study area. Presence and

absence of each lichen species was recorded on a 1-
acre (0.4-ha) plot centered on the central (#1) subplot
on each CVS site for the LAQ survey (details in Ed-
wards et al. 2004). Plot size for the PILOT surveys
was 0.5 acres (0.2 ha). If the purpose of our study was
to compare the estimated percent occupancy rates from
the LAQ and PILOT surveys, the difference in the size
of the sample units would be a concern given that larger
plots will have higher probabilities of occupancy. How-
ever, the purpose of our analyses is to use the LAQ
data to fit a model that can be used to predict PILOT
survey sites that are more or less likely to be occupied
by the rare lichens, with a view to developing a strat-
ification for the PILOT sampling. For this application,
it does not matter if the PILOT plot size is the same,
larger, or smaller than the LAQ plot size.

All plot locations were intersected with spatially ex-
plicit maps of topographic and bio-climatic variables
(Table 2) in a geographic information system (GIS).
The selected topographic and bio-climatic variables
were all hypothesized to have direct relationships to
the presence of the modeled lichen species. Ninety-
meter resolution topographic variables (slope, aspect
and elevation) were obtained by resampling the 30-m
resolution national elevation data set (NED) (Gesch et
al. 2002). Bio-climatic variables were derived from the
DAYMET 1-km daily gridded weather surfaces that
have been reduced to 18-yr monthly and yearly cli-
matological summaries (1981–1998; data is from DAY-
MET U.S. Data Center for Daily Surface Weather Data
and Climatological Summaries, available online).7

DAYMET generates daily surfaces of temperature,
precipitation, humidity, and radiation over large areas
of complex terrain (Thornton et al. 1997, Thornton and
Running 1999). It uses digital topographic models and
observations of precipitation, maximum and minimum
temperature from ground-based meteorological stations
to generate other bio-climatic variables. Derivations for
the modeled variables follow the DAYMET method-
ology described by Thornton et al. (1997), applied to
monthly averages. Only the variable potential evapo-
transpiration (ETPJ), which is not part of the DAYMET

7 ^http://www.daymet.org&
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TABLE 2. Topographic and bio-climatic variables used to model the probability of presence
for four common lichen species in the LAQ study area of the Pacific Northwest Forest Plan.

Variable type/
name Description Units

Topographic
SLPE percent slope percent, 0–90
ASPE aspect degrees, 1–360
ELEV elevation m

Bio-climatic
PREC precipitation cm
TMAX maximum temperature 8C
TMIN minimum temperature 8C
TAVE monthly average temperature 8C
ETPJ potential evapotranspiration mm
RELH relative humidity percent
VPAM ambient vapor pressure Pa
VPSA saturated vapor pressure Pa
SFMM monthly potential global radiation kJ
TDAY monthly average daytime temperature 8C
MIND monthly moisture index cm

Note: Classification tree models based on these variables were used to generate sampling
strata for rare species.

procedures, was derived differently (see Jensen and
Haise 1963). We down-scaled the 1-km DAYMET var-
iables to 90-m resolution by first generating moving
window regressions between the monthly averages of
PREC, TMIN, and TMAX, and the topographic mod-
els, and then applying the regression parameters to the
center cell of each 1-km window position. The regres-
sion parameters (i.e., lapse rates and intercept) were
next interpolated to a 90-m resolution using inverse
distance weighed interpolations, thus generating
monthly 90-m resolution maps for each bio-climatic
variable.

Preliminary analyses showed that correlations
among the monthly values for the 11 sets of bio-cli-
matic predictor variables were extremely high. Such
extreme collinearity has implications for modeling. For
example, two variables that essentially contain the
same information can be selected in models for dif-
ferent species, implying differences in the models that
are not real. The same phenomenon can occur even at
different stages of the same classification tree model.
To address the issue of collinearity, a principal com-
ponents analysis was carried out on each of the 11 sets
of monthly bio-climatic predictors.

In each case, the first principal component was an
average of the 12 monthly measurements, while the
second principal component was a contrast of values
for six so-called summer months (April–September) to
the six so-called winter months (October–March). For
each set of 12 monthly variables, these two principal
components explained over 95% of the variability, and
in most cases the first two principal components ex-
plained over 99% of the variability in the sets of var-
iables. Accordingly, for each set of monthly bio-cli-
matic predictors we defined two new variables: (1) the
average of the 12 monthly variables; and (2) the dif-
ference between the sum of the summer monthly values

and the winter monthly values, divided by 12. Hereafter
we use the variable suffix ‘‘A’’ to denote the average
of the 12 monthly measurements, and the suffix ‘‘D’’
to denote the difference derived variable. Thus, TMI-
NA is the average minimum temperature for the 12
months and PRECD is the difference between summer
and winter precipitation.

Statistical modeling and assessment

We used classification trees (Breiman et al. 1984) to
relate the LAQ lichen presences to the modeled bio-
climatic and topographic predictor variables. Classifi-
cation trees have several advantages over other dis-
crimination techniques (e.g., GLMs, GAMs), principal
among these being the ability to deal with nonlinear-
ities in the predictor variables and assess interactions,
and ease of interpretation. For the most part we fol-
lowed the approach of De’ath and Fabricius (2000), but
instead of allowing the tree size to be determined com-
pletely by cross-validation and the 1-SE rule, we set
the complexity parameter at 0.02 instead of using the
default value of 0.01. This relaxation in complexity
results in smaller, easier to interpret classification trees
that have cross-validated error rates at least as good as
the larger trees obtained from the default value. The
classification trees were fit using the rpart library of
functions in the R statistical package (Ihaka and Gen-
tleman 1996 and online resources).8

We next fit the LAQ-based classification trees to our
spatially explicit predictors within the GIS and mod-
eled the probability of presence of each the four com-
mon lichen species across the entirety of the NWFP
region. This was accomplished by applying the clas-
sification tree to the GIS layers and generating new
maps that portrayed, for each 90-m pixel, the proba-

8 ^http://www.r-project.org/&
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bility of each of the four common lichen species being
present at that particular pixel. Proportions of presences
from sample plots in the PILOT study area were then
examined against predicted probability for that plot,
allowing us to link the presence or absence of each of
the four common species to an estimate of the proba-
bility of presence. Ideal concordance between the LAQ
models and the common species in the PILOT area
would be represented as a 458 line on a scatter plot of
observed probabilities of presence against predicted
probabilities of presence (see Ferrier and Watson 1997:
Fig. 6.2). Data and a description of the process used
to estimate expected values for each rare species under
different sampling probabilities are found in Appen-
dices A–D.

Three measures of model error were used to evaluate
model performance. These measures were: (1) a re-
substitution (model) error rate, calculated using the
LAQ data and hence providing an indication of how
well the classification tree fit the modeling data; (2) a
10-fold cross-validation (Manly 1997) estimate of error
obtained by using 1000 subsamples of the original LAQ
data; and (3) a prediction error rate for the PILOT
surveys, based on a probability of presence threshold
of P . 0.5.

Under the Survey and Manage program, actual de-
tections as opposed to region-wide estimates were of
paramount importance. To reflect this need and desire
for additional observed occurrences of the rare species,
we chose to allocate sample units proportionally to the
estimated probability of occurrence of the associated
common species in each stratum. Different researchers
with different objectives could use a different objective
function for assigning sample units to the strata and
still use all the other methodology described in this
section.

RESULTS

Although the classification tree models are purely
predictive in nature, it is interesting to note that the
first split in each classification tree is on an average
temperature index (Fig. 2) and that precipitation only
occurs in one of the four classification trees (L. ore-
gana). No topographic variables entered any of the
models as significant predictors. Not unexpectedly, the
LAQ model error estimates were lower than the LAQ
cross-validated error (Table 3), ranging from a low of
10.2% to a high of 18.3%. Cross-validation error
ranged from approximately 13% to 22%. Prediction
errors were 15% to 27%, indicating that the LAQ mod-
els had, on average, about a one in four chance of being
wrong. The cross-validated error rates were much clos-
er to the observed error rates on the PILOT data, and
likely better reflect the true error of the models.

LAQ models for the four common species, when
evaluated as plots of the observed occurrences versus
the predicted probabilities of occurrence, indicate all
models had substantial predictive power (Fig. 3). Mod-

els for L. pulmonaria, L. oregana, and P. anomala are
best, with the estimated values and their 95% confi-
dence intervals encompassing the 458 line. The model
for P. anthraspis is not as good, with observed values
tailing off as the predicted probability of occurrence
increases, indicating on over-prediction of potential lo-
cations for these species.

To evaluate the efficacy of the LAQ classification
trees in determining a stratification for sampling of the
rare, associated species, we calculated the estimated
number of detections expected for each of the rare spe-
cies had the predicted probabilities of presence ob-
tained from the LAQ classification trees been used for
stratification purposes. For almost all combinations of
rare species and models of the more abundant species,
the expected number of detections would have been
higher under our model-based stratification than under
the systematic design that characterized the PILOT sur-
veys (Table 4). Gains in sampling efficiencies for four
of the five species (L. scrobiculata, N. laevigatum, N.
occultum, and N. parile) ranged from 1.2 to 5.0-fold,
while results showed no difference for P. rainierensis.
These increases in likely detections indicate that use
of the LAQ models as the basis for developing sam-
pling strata substantially increase the likelihood of de-
tection of the rare lichens.

DISCUSSION

The models of the four common lichen species used
to develop the prediction strata for the rare lichens all
showed similar error rates when evaluated on the LAQ
data set. However, when tested on the independent PI-
LOT data set, the P. anthraspis and P. anomala models
performed best, followed by L. pulmonaria. The L.
oregana model produced the highest error rate. Overall,
the models were successful in generating clear im-
provements in estimated, or expected, detection rates
for four of the five rare lichen species (Table 4). Only
the model of L. oregana applied to P. rainierensis did
not perform well. The most likely explanation for the
low predictive extrapolation of this last model is the
lack of spatially explicit depictions of stand age for
use in building the associative models. In this case, L.
oregana and P. rainierensis are both associated with
old forest, but rainierensis is more likely to be found
in 3001-yr-old stands. Such subtle differences in eco-
logical relationships like this could easily confound
model-based stratifications, increasing the likelihood
of prediction error. This observation reinforces the im-
portance of having a solid understanding of species
ecology when model building, as well as the impor-
tance of testing any predictive model with an indepen-
dent test data.

Existing knowledge on lichen ecology suggests that
prediction error rates may be reduced substantially by
including additional information about forest stand
characteristics (e.g., stand age, size classes, hardwood
shrubs), and local moisture content (McCune 1993, Sil-
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FIG. 2. Classification trees of the four modeled common lichen species used to develop prediction strata for the five rare
lichen species in the area of the Northwest Forest Plan. See Table 2 for variable descriptions.

TABLE 3. Measures of error (%) for classification tree models built for four species of lichen
in the LAQ study area, and assessed using independent data collected in the PILOT study
area, Pacific Northwest Forest Plan.

Species

LAQ stratification models

Model error
Cross-validation

error

PILOT
assessment

Prediction
error

Lobaria oregana 18.3 22.5 27.3
Lobaria pulmonaria 15.2 18.3 19.3
Pseudocyphellaria anomala 12.6 15.4 15.0
Pseudocyphellaria anthraspis 10.2 13.2 15.3

lett and Goslin 1999, Rosso et al. 2000, Peterson and
McCune 2001) into models to be used for stratification.
However, these types of variables were not available
in spatially explicit formats for the entire study region,
and hence could not be used for the purposes of strat-

ification in advance of sampling. Spatially explicit de-
pictions of these kinds of variables are simply un-
available in the vast majority of predictive modeling
efforts, often forcing models to be built using surro-
gates (e.g., topography) that may or may not have rel-
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FIG. 3. Plot of the cumulative observed proportion of occurrences (plus 95% CI) against the probability of occurrence
for four species of common lichen in the area of the Northwest Forest Plan. Predicted observations and 95% confidence
intervals that encompass the expected 1:1 fit indicate models with high predictive capability.

evance to the distribution of the species being modeled.
This shortcoming—the lack of strong linkage between
species presence and ecologically relevant variables—
is a common constraint faced by ecologists and cannot
be satisfactorily resolved until spatially explicit pre-
dictions of such variables are more readily available
(see Frescino et al. 2001).

There are several reasons why a species is or remains
rare in a certain area, some of which can be captured
by predictive models, while others cannot (see Gaston
1994 for an overview). Key patterns associated with
rarity are (1) the main distribution of the species lies
outside of the study area, ostensibly because the latter
does not provide much suitable habitat (locally rare,
otherwise abundant); (2) the species has a patchy, scat-
tered distribution throughout its range, and populations
are smaller and likely limited by competition and/or
population constraints (generally and locally rare); (3)
the species has a patchy distribution, but population
size can be large at known sites (locally abundant, gen-
erally rare). Following the classification by Hanski
(1982) and Collins et al. (1993), the first group would
be classified as an ‘‘urban’’ type, the second as ‘‘rural’’
type, while the last group can be labeled as ‘‘satellite’’
type.

Accurate, predictive models for urban species that
are dominant within their realized range are easier to
construct than models for rural or satellite species. So-
called urban species may not occur in many locations
within the study area, but if the environment is suitable,
they usually are present. Satellite type species may be
restricted to few locations because there are actually
only few suitable sites available. Often, however, dis-
persal limitations and other life history constraints limit
this type from persisting, regenerating, or migrating to
other suitable habitats. Predictive models may not eas-
ily predict the presences of satellite type species suc-
cessfully, but the absences can be more accurately por-
trayed. This is because such species usually show a
well defined ecological niche even though they do not
occur on every suitable location. The most difficult
group of species to model would be the rural type.

Because our approach uses associative models pre-
dicting rare from more common species, care must be
exercised to ensure that the potential types of error are
understood. For example, it is likely that rare species
would have different niches than common species, by
definition alone (Gaston 1994). In this case, the poten-
tial for commission error exists if the niche of the rare
species is a subset of the more common species used
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TABLE 4. Number of detections in the PILOT study area using simple random sampling (numerator), number of detections
using the model-based stratifications (denominator), and model efficiency (value in parentheses).

Rare species

Common species

Lobaria
oregana

Lobaria
pulmonaria

Pseudocyphellaria
anomala

Pseudocyphellaria
anthraspis

Lobaria scrobiculata 13/26 (2.0) 13/36 (2.8)
Nephroma laevigatum 19/23 (1.2) 19/48 (2.5) 19/60 (3.2)
Nephroma occultum 1/5 (5.0) 1/5 (5.0)
Nephroma parile 7/14 (2.0) 7/16 (2.3)
Pseudocyphellaria rainierensis 2/1 (0.5) 2/5 (2.5) 2/5 (2.5)

Note: Model efficiency is estimated as the ratio of detections from the model-based stratification to those detected in the
PILOT study area, Pacific Northwest Forest Plan. Empty cells indicate species that were never co-located.

to develop the stratification model. Although it is less
likely that rare species’ niches are larger than common
species, it must be acknowledged that the potential for
omission error also exists. Yet even though omission
and commission errors occur with any predictive mod-
el, our use of models to develop sampling strata should
overcome this problem. Any sampling based on models
like ours should also include sampling effort allocated
to the lowest probabilities of presence, thereby ensur-
ing that sampling occurs across the spectrum of po-
tential locations for the rare species. We acknowledge,
however, that absences in the lower probability sites
may still be confounded with low detection rates, such
as is often the case for fungi (Dreisbach et al. 2002).
We know of no simple resolution to this concern.

We argue that distinguishing different types of rarity
may help to improve modeling of such rare events. To
our knowledge, none of the cited studies for modeling
rare species used any sort of formal model-based strat-
ification design based on more common species. Wiser
et al. (1998) demonstrated the difficulty of generating
viable models from very limited observations only
(10–24 presences), even though detailed, site-specific
bio-geochemical predictors were additionally used to
increase predictive capabilities. Engler et al. (2004)
used two initial data sets of 46 and 77 occurrences of
the rare species Erynguim alpinum L. to generate a
model-based design improved their ability to identify
new sites. A similar approach was performed by Sper-
duto and Congalton (1996). Such an approach is only
a viable alternative if a minimal set of observations is
available up-front for a realistic initial model. This was
not the case for any of the tested rare species in our
study.

A possible reason our effort worked so well is be-
cause all of our tested lichen species are cyanolichens,
and they therefore have distinct and similar habitat re-
quirements compared to green algal lichens. Green al-
gal lichens, which are approximately 75% of the lichens
in the Pacific Northwest, occupy wider ranges of hab-
itats. Consequently the use of intrageneric species
might not work so well in when applied to these lichens.
In a study on coastal lichens, L. Geiser (unpublished
data) documented the presence of Ramalina farianacea
on nearly every plot, leading to an almost virtual over-

lap with two species, R. thrausta and R. menziessi,
known to be rare. In such cases as this, it might be
better to select a less common species that also has
high association the targeted rare species, as we did
here.

Our results suggest a model-based stratification de-
sign that predicts rare species from more common ones
can improve detection likelihoods, especially if only
very limited information is available. We expect that
so-called ‘‘satellite’’ and ‘‘rural’’ type species would
benefit from most from such a design, since their re-
alized niches are difficult to detect if only very few
observations are available for direct modeling an eval-
uation of the rare species. If one is interested in one
to few rare species for management and evaluation, the
best approach seems to be a combination of several
approaches. Model-based stratification as presented
here would logically be a first step in a sampling and
modeling process.

ACKNOWLEDGMENTS

The authors acknowledge the contributions of the following
people in field collection, identification and database entry:
S. Berryman, M. Boyll, C. Derr, A. Ingersoll, D. Glavich, K.
Gossen, A. Mikulin, J. Riley, and R. Ulrich. Special thanks
to P. Halonen and B. Ryan (deceased) for help with difficult
identifications, and to the many others who assisted with field
collections. Field work was funded by the PNW Region Air
Program. We are also grateful for the assistance from a large
number of individuals working on Survey and Manage spe-
cies in the Pacific Northwest. Specifically, we thank T. Brum-
ley, N. Diaz, B. Rittenhouse, and N. Middlebrook for guid-
ance on Forest Service and Bureau of Land Management
Survey and Manage Issues. Two anonymous reviewers and
T. B. Murphy helped improve the manuscript with their in-
sights. Funding was provided by the State of Oregon Bureau
of Land Management through a cooperative research arrange-
ment with the USGS Forest and Rangeland Ecosystem Sci-
ence Center (FRESC), Corvallis, Oregon, and the USGS Utah
Cooperative Research Unit, Utah State University. Last, we
thank A. Ellison and A. Agrawal for organizing the special
features section on rarity, and for inviting our participation.

LITERATURE CITED

Alexander, H. M., N. A. Slade, and W. D. Kettle. 1997. Ap-
plication of mark–recapture models to estimation of the
population size of plants. Ecology 78:1230–1237.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone.
1984. Classification and regression trees. Wadsworth and
Brooks/Cole, Monterey, California, USA.



May 2005 1089STATISTICS OF RARITY

S
pec

ial
Featu

r
e

Collins, S. L., S. M. Glenn, and D. W. Roberts. 1993. The
hierarchical continuum concept. Journal of Vegetation Sci-
ence 4:149–156.

Cutler, R., T. C. Edwards, Jr., J. Alegria, and D. McKenzie.
2002. A sample design framework for Survey and Manage
species under the Northwest Forest Plan. Proceedings of
the Section on Statistics and Environment, 2001 Joint Sta-
tistical Meeting. American Statistical Association, Alex-
andria, Virginia, USA.

De’ath, G., and K. E. Fabricius. 2000. Classification and
regression trees: a powerful yet simple technique for eco-
logical data analysis. Ecology 81:3178–3192.

Dreisbach, T. A., J. E. Smith, and R. Molina. 2002. Chal-
lenges of modelling fungal habitat: when and where do you
find chanterelles? Pages 475–481 in J. M. Scott, P. J. Heg-
lund, M. L. Morrison, J. B. Haufler, M. G. Raphael, W. A.
Wall, and F. B. Samson, editors. Predicting species occur-
rence: issues of accuracy and scale. Island Press, Covello,
California, USA.

Edwards, T. C.,Jr., R. Cutler, L. Geiser, J. Alegria, and D.
McKenzie. 2004. Assessing rarity and seral stage associ-
ation of species with low detectability: lichens in western
Oregon and Washington forests. Ecological Applications
14:414–424.

Engler, R., A. Guisan, and L. Rechsteiner. 2004. An improved
approach for predicting the distribution of rare and endan-
gered species from occurrence and pseudo-absence data.
Journal of Applied Ecology 41:263–274.

Esseen, P-A., K-E. Renhorn, and R. B. Pettersson. 1996. Epi-
phytic lichen biomass in managed and old-growth boreal
forests: effect of branch quality. Ecological Applications
6:228–238.

Ferrier, S., and G. Watson. 1997. An evaluation of the ef-
fectiveness of environmental surrogates and modelling
techniques in predicting the distribution of biological di-
versity. Environment Australia, New South Wales National
Parks and Wildlife Service, Armidale, New South Wales,
Australia.

Frescino, T. S., T. C. Edwards,Jr., and G. G. Moisen. 2001.
Modelling spatially explicit forest structural attributes us-
ing generalized additive models. Journal of Vegetation Sci-
ence 12:15–26.

Gaston, K. J. 1994. Rarity. First edition. Chapman and Hall,
London, UK.

Geiser, L. 2004. Manual for monitoring air quality using
lichens on national forests of the Pacific Northwest. Tech-
nical Paper R6-NR-AQ-TP-1-04. USDA Forest Service,
Pacific Northwest Region, Portland, Oregon, USA.

Gesch, D., M. Oimoen, S. Greenlee, C. Nelson, M. Steuck,
and D. Tyler. 2002. The national elevation data set. Pho-
togrammetric Engineering and Remote Sensing 68:5–12.

Goerck, J. M. 1997. Patterns of rarity in the birds of the
Atlantic forest of Brazil. Conservation Biology 11:112–
118.

Green, R. H., and R. C. Young. 1993. Sampling to detect
rare species. Ecological Applications 3:351–356.

Gregoire, T. G., H. T. Valentine, and G. M. Furnival. 1995.
Sampling methods to estimate foliage and other character-
istics of individual trees. Ecology 76:1181–1194.

Hanski, I. 1982. Dynamics of regional distribution: the core
and satellite species hypothesis. Oikos 38:210–221.

Hill, N. M., and P. A. Keddy. 1992. Prediction of rarities
from habitat variables: coastal plain plants on Nova Scotian
lakeshores. Ecology 73:1852–1859.

Hoeting, J. A., M. Leecaster, D. Bowden. 2000. An improved
model for spatially correlated binary responses. Journal of
Agricultural, Biological and Environmental Statistics 5:
102–114.

Ihaka, R., and R. Gentleman. 1996. R: a language for data
analysis and graphics. Journal of Computational and
Graphical Statistics 5:299–314.

James, F. C., C. E. McCulloch, and D. A. Wiedenfeld. 1996.
New approaches to the analysis of population trends in land
birds. Ecology 77:13–21.

Jensen, M. E., and H. R. Haise. 1963. Estimating evapo-
transpiration from solar radiation. Journal of Irrigation and
Drainage Engineering-ASCE 89:15–41.

Lohr, S. L. 1999. Sampling: design and analysis. Duxbury
Press, Pacific Grove, California, USA.

Maina, G. G., and H. F. Howe. 2000. Inherent rarity in com-
munity restoration. Conservation Biology 14:1335–1340.

Manly, B. F. J. 1997. Randomization, bootstrap and Monte
Carlo methods in biology. Chapman and Hall, New York,
New York, USA.

Max, T. A., H. T. Schreuder, J. W. Hazard, J. Teply, and J.
Alegria. 1996. The Region 6 vegetation inventory and
monitoring System. General Technical Report PNW-RP-
493. USDA Forest Service, Pacific Northwest Research
Station, Portland, Oregon, USA.

McCune, B. 1993. Gradients in epiphyte biomass in three
Pseudotsuga–Tsuga forest of different ages in western
Oregon and Washington. Bryologist 96:405–411.

Molina, R., D. Pilz, J. Smith, S. Dunham, T. Dreisbach, T.
O’Dell, and M. Castellano. 2001. Conservation and man-
agement of forest fungi in the Pacific Northwestern United
States: an integrated ecosystem approach. Pages 19–63 in
D. Moore, M. M. Nauta, S. E. Evans, and M. Rotheroe,
editors. Fungal conservation. Issues and solutions. Cam-
bridge University Press, New York, New York, USA.

Murphy, D. D., and B. R. Noon. 1992. Integrating scientific
methods with habitat conservation planning: reserve design
for northern spotted owls. Ecological Applications 2:3–17.

Olsen, A. R., and H. T. Schreuder. 1997. Perspectives on
large-scale natural resource surveys when cause–effect is
a potential issue. Environmental and Ecological Statistics
4:167–180.

Peterson, E. B., and B. McCune. 2001. Diversity and suc-
cession of epiphytic macrolichen communities in low-el-
evation managed conifer forests in western Oregon. Journal
of Vegetation Science 12:511–524.

Philippi, T. 2005. Adaptive cluster sampling for estimation
of abundances within local populations of low-abundance
plants. Ecology 86:1091–1100.

Rosso, A. L., B. McCune, and T. R. Rambo. 2000. Ecology
and conservation of a rare, old-growth-associated canopy
lichen in a silvicultural landscape. Bryologist 103:117–
127.

Sauer, J. R., and S. Droege, editors. 1990. Survey designs
and statistical methods for the estimation of avian popu-
lation trends. Biological Report 90(1), U.S. Fish and Wild-
life Service, Washington, D.C., USA.

Schreuder, H. T., T. G. Gregoire, and G. B. Wood. 1993.
Sampling methods for multiresource forest inventory. John
Wiley and Sons, New York, New York, USA.

Sheldon, A. L. 1988. Conservation of stream fishes: patterns
of diversity, rarity, and risk. Conservation Biology 2:149–
156.

Shiver, B. D., and B. E. Borders. 1996. Sampling techniques
for forest resource inventory. John Wiley and Sons, New
York, New York, USA.

Sillett, S. C., and M. N. Goslin. 1999. Distribution of epi-
phytic macrolichens in relation to remnant trees in a mul-
tiple-age Douglas-fir forest. Canadian Journal of Forest Re-
search 29:1204–1215.

Sperduto, M. B., and R. G. Congalton. 1996. Predicting rare
orchid (small-whorled Pogonia) habitat using GIS. Pho-
togrammetric Engineering and Remote Sensing 62:1269–
1279.

Stow, C. A., S. R. Carpenter, K. E. Webster, and T. M. Frost.
1998. Long-term environmental monitoring: some per-
spectives from lakes. Ecological Applications 8:269–276.



S
pe

c
ia
l

Fe
at

u
r
e

1090 THOMAS C. EDWARDS, JR., ET AL. Ecology, Vol. 86, No. 5

Thomas, J. W., E. D. Forsman, J. B. Lint, E. C. Meslow, B.
R. Noon, and J. Verner. 1990. A conservation strategy for
the northern spotted owl. Interagency Scientific Committee
to Address the Conservation of the Northern Spotted Owl.
Report No. 1990-791-171/20026. United States Govern-
ment Printing Office, Washington, D.C., USA.

Thornton, P. E., and S. W. Running. 1999. An improved
algorithm for estimating incident daily solar radiation from
measurements of temperature, humidity, and precipitation.
Agricultural and Forest Meteorology 93:211–228.

Thornton, P. E., S. W. Running, and M. A. White. 1997.
Generating surfaces of daily meteorological variables over
large regions of complex terrain. Journal of Hydrology 190:
214–251.

U.S. Department of Agriculture, Forest Service, and U.S. De-
partment of Interior, Bureau of Land Management. 1994. Rec-
ord of decision for amendments to Forest Service and Bureau
of Land Management planning documents within the range
of the northern spotted owl. ^http://www.or.blm.gov/
roseburg/ROD RMP/roseburg/appendices/appendixa.html&.

U. S. Department of Agriculture, Forest Service, and U.S. De-
partment of Interior, Bureau of Land Management. 2001.
Record of decision and standards and guidelines for amend-
ments to the survey and manage, protection buffer, and other
mitigation measures. Standards and guidelines. ^http://
www.or.blm.gov/nwfpnepa/FSEIS-2000/ROD-SandG.pdf&.

Wiser, S. K., R. K. Peet, and P. S. White. 1998. Prediction
of rare-plant occurrence: a southern Appalachian example.
Ecological Applications 8:909–920.

APPENDIX A

A table showing the expected number of detections on model-assisted sampling for Pseudocyphellaria rainierensis from
the classification tree model of Lobaria oregana is presented in ESA’s Electronic Data Archive: Ecological Archives E086-
057-A1.

APPENDIX B

A table showing the expected number of detections based on model-assisted sampling for Pseudocyphellaria rainierensis
and Nephroma laevigatum from the classification tree model of Lobaria pulmonaria is presented in ESA’s Electronic Data
Archive: Ecological Archives E086-057-A2.

APPENDIX C

A table showing the expected number of detections based on model-assisted sampling for Nephroma occultum and Nephroma
parile from the classification tree model of Pseudocyphellaria anomala is presented in ESA’s Electronic Data Archive:
Ecological Archives E086-057-A3.

APPENDIX D

A table showing the expected number of detections based on model-assisted sampling for Pseudocyphellaria anthraspis
is presented in ESA’s Electronic Data Archive: Ecological Archives E086-057-A4.
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ADAPTIVE CLUSTER SAMPLING FOR ESTIMATION OF ABUNDANCES
WITHIN LOCAL POPULATIONS OF LOW-ABUNDANCE PLANTS

THOMAS PHILIPPI1

Department of Biological Sciences and Florida Coastal Everglades LTER, Florida International University,
Miami, Florida 33199 USA

Abstract. Quantitative estimates of abundance for rare plants can be difficult, as the
most widely used sampling techniques are ill-suited for rarity. Adaptive cluster sampling
(ACS) can take advantage of the spatial clustering common in rare plant populations to
provide more efficient unbiased estimates of population sizes than simple random sampling.
When plants are found in a quadrat, all adjacent quadrats are adaptively added to the sample.
Despite this biased sampling, the Horvitz-Thompson estimator for adaptive cluster sampling
provides unbiased estimates of population means or totals, and variances of those estimates.
Because ACS disproportionately samples quadrats with plants, it can provide additional
efficiency whenever further attributes of rare individuals need to be assessed, such as
demographic parameters or genotypes. Adaptive cluster sampling was performed on a
population of Aletris bracteata, a moderately visible herbaceous species, in a savanna near
Chekika, Everglades National Park, Florida. Both 1-m2 and 4-m2 quadrats provided rea-
sonable estimates of the population size. The 1-m2 sampling included 30–36% of the
estimated total plants while sampling only 5% of the total area. The 4-m2 sampling captured
78% of the estimated total population while sampling only 21% of the area.

Key words: adaptive cluster sampling; Aletris bracteata; Chekika; population abundance; rare
plant sampling.

INTRODUCTION

The numbers of individuals occurring in populations
is one fundamental piece of information for conser-
vation and management of rare species. In terms of
legal mandates, abundances are a major component of
‘‘status.’’ If several populations exist, population sizes
allow prioritization for land acquisition or protection.
Because processes ranging from demographic stochas-
ticity to loss of genetic variation are functions of the
numbers of individuals within breeding populations,
the numbers of individuals within populations are cru-
cial initial descriptors for population viability analysis
(Soule 1986, Morris and Doak 2002). Conversely, ex-
otic species are much easier to eradicate or manage if
caught when still rare (Doren and Ferriter 2002), and
accurate estimates of abundances are necessary to fund
or oversee eradication efforts.

Censusing or estimating population sizes, however,
is only one component of almost any rare species man-
agement program, especially rare plants. Management
actions such as collection of seeds or cuttings or pro-
tection of individual plants may be at least as important
as estimating population sizes. For exotic invasive spe-
cies, management generally includes eradication as
well as assessment. For conservation, additional in-

Manuscript received 7 April 2004; revised 9 August 2004;
accepted 9 August 2004; final version received 15 November
2004. Corresponding Editor: A. M. Ellison. For reprints of this
Special Feature, see footnote 1, p. 1079.

1 E-mail: philippi@fiu.edu

formation is often obtained for each individual discov-
ered in the population. For plants, because the expected
contribution to future population size (reproductive
value) can vary by six or seven orders of magnitude
among individuals, demographic status such as size and
reproductive state are often recorded, and individuals
tagged for estimates of survival. Survivorship and re-
productive output can be combined to estimate size- or
stage-specific reproductive value; those reproductive
values can then be used as weights to provide a more
informative population size than the unweighted num-
ber of individuals (Caswell 2001, Philippi et al. 2001).
Tissue samples may be collected for genetic analysis
to ascertain the genetic structure within the population.
For plants and sessile animals, the locations of indi-
viduals may be mapped, allowing assessment of dis-
persal distances in conjunction with the genetic data.
Finally, habitat attributes such as soil depth, shade, and
nutrients and pH may be collected at each located plant
and at random locations in order to delineate suitable
microhabitat, both for possible management interven-
tion and for subsequent model-based detection (Ed-
wards et al. 2005). All of these components place a
premium on the number of individuals encountered.

If rare plants are highly visible, their rarity may make
nearly complete enumeration possible via systematic
searching. Most rare plant species, however, require at
least moderate effort to detect, especially when seed-
lings are included. Except for the most spatially con-
strained populations, such effort precludes searching
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the entire spatial extent of the population, and some
form of sampling is required.

Unfortunately, low-abundance species present prob-
lems for sampling. Gaston (1994) pointed out that the
sampling methods presented in most ecological meth-
odology texts are aimed at abundant species, and do
not address the special conditions of rare plants. Most
notably, simple random sampling can lead to the vast
majority of quadrats having no individuals, and thus
large variances of estimates of population size, driven
more by the binomial variation of numbers of quadrats
with or without individuals than the variation in num-
bers of individuals among quadrats with individuals.
Even moderate precision in estimates of population siz-
es may require substantial effort for little practical ben-
efit (e.g., Evans and Viengkham 2001). Therefore,
many rare plant surveys omit any quantitative sampling
for estimation of population sizes in favor of expert
guesses, and allocate the saved effort to other com-
ponents (Keith 2000).

Alternative approaches to sampling exist that may
be more applicable for rare plants. One approach in
particular, adaptive cluster sampling, may be especially
applicable, as it takes advantage of spatial clustering
among individuals common in rare plant populations.
Spatial clustering implies that once one plant is found,
nearby locations are much more likely than random
locations to also have plants. Many insects, fish, and
birds with clumped prey use this information content
from successful prey capture for adaptive foraging,
modifying distances between probes and turning rules
dynamically based on recent success rate (reviewed in
Pyke 1984). Adaptive cluster sampling is a way for
ecologists to use this information for their own benefit.

Sampling designs and estimators

To a field ecologist, nearly all of sampling theory
can be thought of as special cases for applying ancillary
information to provide more efficient estimates than
simple random sampling—either more precise esti-
mates for the same effort, or equally precise estimates
with reduced effort. This growing collection of special
cases can be organized by two attributes: the design of
the sampling per se and the form of the inference from
the sample to the population.

Sampling designs specify rules for which units of
the population are included in the sample. Thompson
and Seber (1996) distinguish three classes of sampling
designs: conventional designs, adaptive designs, and
nonstandard designs. In conventional designs, sample
selection does not depend on the observed values, and
thus the sample can be specified before any data are
collected. Sample selection may depend on ancillary
variables known beforehand for all units in the popu-
lation, so stratified sampling, systematic sampling,
sampling with probabilities proportional to a known
attribute, as well as simple random sampling are all
conventional designs. In adaptive designs, sample se-

lection may also depend on the observed values of the
sampled variable for units included in the sample. Sam-
pling with stopping rules based on the observed values
(e.g., sample randomly until 100 plants have been
found) are adaptive designs. Nonstandard designs may
also include unknown parameters or ancillary infor-
mation from units not included in the sample, and thus
are much more restricted in the forms of inferences
they can support.

The two major approaches to making inferences from
a sample to the population are design-based and model-
based. Design-based inferences make few assumptions
about properties of the population, and obtain their
unbiasedness from the properties of the design itself.
Such methods of inference are evaluated for unbiased-
ness and efficiency in terms of their expectation over
repeated samples from the same fixed population. Mod-
el-based inferences assume a model for the distribution
of values for the attributes of the population. Therefore,
model-based inferences are evaluated for unbiasedness
and efficiency in terms of expectations over repeated
realizations of populations, given underlying popula-
tion model parameters. Ratio estimators and spatial
kriging are examples of model-based inferences. Ed-
wards et al. (2005) explore model-based inferences for
rare species in the context of detecting populations at
much larger spatial scales. Both design-based and mod-
el-based inferences are possible with conventional de-
signs. Similarly, adaptive designs might support either
design-based or model-based inferences.

One important estimator for design-based inferences
is the Horvitz-Thompson estimator:

n1 yim̂ 5 (1)O
N pi51 i

where is the estimate of the population mean, N ism̂
the total number of sample units (quadrats) in the pop-
ulation, n quadrats are sampled, yi is the number of
plants in quadrat i, pi is the probability that quadrat i
is included in the sample, and the sum is across all
units included in the sample (notation mostly follows
Thompson 2002).

Under simple random sampling without replacement,
the probability that any specified quadrat is included
is the same for all quadrats, and is the number of pos-
sible samples that include quadrat i divided by the total
number of possible samples. Thus, under simple ran-
dom sampling, the Horvitz-Thompson estimator re-
duces to the more familiar estimator:

n n n1 y 1 y 1i im̂ 5 5 5 y 5 ȳ. (2)O O O iN p N ni51 i51 i51i n1 2N

An estimator for the variance of the Horvitz-Thompson
estimator is the following:
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FIG. 1. Simulation example with 10 clusters, each with a
Poisson mean of 10 individuals. The 10 initial quadrats are
numbered and indicated with diagonal stripes, additional
quadrats within intersected networks are indicated with wavy
lines, and edge quadrats are stippled.

n n y y p1 j k jkv̂ar (m̂) 5 2 1 (3)O O2 1 2[ ]N p p pj51 k51 jk j k

where pjk is the probability that both quadrat j and
quadrat k are included in the sample (Thompson and
Seber 1996).

The utility of the Horvitz-Thompson estimator is that
it allows unbiased estimates of the population mean or
total with unequal inclusion probabilities. Thompson
(2002:54) notes in passing that to the extent that the
inclusion probabilities pi can be chosen to be propor-
tional to the abundances yi, the variance of this esti-
mator will be reduced. While strict proportionality
would require advance knowledge of the abundances,
this observation provides insight into how many dif-
ferent design-based approaches improve on the effi-
ciency of simple random sampling with equal inclusion
probabilities. Sampling designs with unequal inclusion
probabilities increase efficiency by using different
forms of ancillary information to adjust the inclusion
probabilities among units in the direction of the vari-
ation in abundances among units, so units with higher
abundances are more likely to be included in the sam-
ple. For example, stratified random sampling increases
efficiency when strata differ in densities (abundances
per unit) and sampling intensity is higher in the strata
with greater densities.

Adaptive cluster sampling

Adaptive cluster sampling (ACS) is an adaptive de-
sign that takes advantage of clustering of individuals
within a population to adjust inclusion probabilities in
favor of those quadrats with higher yi. (Thompson
1990, 1991a, b, Thompson et al. 1992, Thompson and
Seber 1996, Christman 2000b). The simplest example
to visualize and the focus of this paper is spatial clus-
tering. For many low-abundance plants and animals,
restricted dispersal distances produces clumped spatial
distributions, as in the points in Fig. 1. Therefore, once
a quadrat is found to have plants present, quadrats in
the neighborhood of that occupied quadrat are more
likely than average to also have plants. Inclusion of
such quadrats, if their inclusion probabilities can be
computed, may reduce the variance of the Horvitz-
Thompson estimator and thus increase the efficiency
of the sampling. The criterion for sampling adjacent
quadrats need not be the presence of a single plant, but
could be the presence of more than some threshold
number of plants. The only constraint is that the def-
inition of neighbor must be transitive, so i is a neighbor
of j implies that j is also a neighbor of i. The example
below estimating Aletris by stage classes will take ad-
vantage of this flexibility. Further, the definition of
neighbor need not be spatial adjacency, but could be
based on degree of relatedness or participation as sex-
ual partners, if the rare event were a genetic condition
or sexually transmitted disease. A necessary condition
for adaptive cluster sampling to be more efficient than

simple random sampling is that neighbors have positive
covariation of some form in the sampled attribute yi.

For illustration, consider a sampling design that
starts with a simple random sample of quadrats in the
population (diagonal striped and numbered quadrats in
Fig. 1). Because of the low abundance of plants, most
of these quadrats will have no plants. Assuming an
inclusion threshold of any plants present, if a plant is
found, the neighbors of that quadrat are added to the
sample. In this example, the neighborhood is defined
to be the four adjacent quadrats, as can be seen in the
four stippled quadrats surrounding quadrat 5. (The
neighborhood could also be defined as the 8 adjacent
quadrats including diagonals.) If a neighboring quadrat
also includes plants (wavy quadrats in Fig. 1), it is
added to the network and its neighbors are recursively
sampled as well. This procedure grows networks of
sampled quadrats until each network is surrounded by
a ring of empty quadrats (stippled quadrats in Fig. 1).
The final result of this procedure is a sample with three
types of quadrats. The first type is quadrats included
in the original random sample (diagonal stripe), wheth-
er or not plants were found. The second type is quadrats
with plants that were sampled not because they were
included in the original draw, but because they were
in the recursive neighborhood of a quadrat in the initial
sample that included plants (wavy quadrats in Fig. 1).
The third type is edge quadrats: quadrats without plants
that were not in the initial sample, but were neighbors
of quadrats with plants of either of the first two types.
A network is either an initially sampled quadrat that
had no plants, or an initial quadrat with plants plus all



S
pe

c
ia
l

Fe
at

u
r
e

1094 THOMAS PHILIPPI Ecology, Vol. 86, No. 5

of the neighboring quadrats that also have plants, but
a network does not include the associated empty edge
quadrats. Networks thus are sets of quadrats such that
if any quadrat in the network is sampled, all quadrats
in the network are sampled.

Clearly, the simple average ȳ of these sampled quad-
rats is a biased estimate of the population mean, as the
point of this sampling design was to disproportionately
include more quadrats with plants in them, and quadrats
within large networks have increased probabilities of
inclusion in the sample. In order to use the Horvitz-
Thompson estimator, the inclusion probabilities pi must
be known for each sampled quadrat. Because quadrats
may be included via more than one process (in the
original sample, within a chain that had at least one
quadrat included in the initial sample, or an edge quad-
rat adjacent to a network with at least one quadrat in
the initial sample), the probability of inclusion is com-
puted as 1 minus the fraction of possible sample draws
that would not have included that quadrat (Thompson
and Seber 1996):

N 2 m 2 b Ni ip 5 1 2 (4)i 1 2 1 2[ ]n n@
where n is the number of quadrats in the initial sample,
mi is the number of quadrats in the network that in-
cluded quadrat i, and bi is the number of quadrats in
networks for which quadrat i is an edge. N and n are
known from the initial design, and mi can be tallied for
each sampled quadrat as long as the recursive sampling
continued until the entire network was sampled. How-
ever, the sampling design does not provide enough in-
formation to calculate the probability of each quadrat
being included in the sample because it was an edge
of a network. Note in Fig. 1 that quadrat 6 could have
been sampled as an edge quadrat for the network to its
left, but the sampling procedure did not detect the ex-
istence of that cluster.

The solution is to exclude edge quadrats from the
estimation (Thompson 1990, Thompson and Seber
1996). Then, the probability of inclusion in the esti-
mator (instead of in the sample) for quadrat i can be
calculated from the information obtained in the sam-
pling. The probability of inclusion is equal for all quad-
rats in a network, so, switching subscripting from quad-
rats to networks, ak, the probability of inclusion for
network k is

N 2 x Nka 5 1 2 (5)k 1 2 1 2[ ]n n@
where xk is the number of quadrats found in network
k. The Horvitz-Thompson estimator for this adaptive
design is thus Eq. 1 with ak substituted for pi, and the
number of individuals found in the entire network yk

rather than the numbers of individuals found in each
quadrat yi as follows:

v1 ykm̂ 5 . (6)O
N ak51 k

The estimator for the variance of the Horvitz-Thomp-
son estimator also requires terms for the probabilities
that both network j and network k were included in the
sample:

 N 2 x N 2 x N 2 x 2 xj k j k1 21 2 1 2 1 2n n n 
 a 5 1 2 (7)jk

N 1 2n 
v v y y a1 j k jkv̂ar (m̂) 5 2 1 . (8)O O2 1 2[ ]N a a aj51 k±j jk j k

The summations in both the Horvitz-Thompson esti-
mator and estimated variance are over (unique) net-
works n (#n). A given network may be intersected by
more than one quadrat in the initial sample. For the
Horvitz-Thompson estimators, that network is only in-
cluded once; the estimators are based on the probabil-
ities of inclusion or intersection of each sampled net-
work.

A second unbiased estimator based on the Hansen-
Hurwitz estimator exists for this adaptive sampling de-
sign, and is presented in Thompson and Seber (1996)
and Thompson (2002). The Hansen-Hurwitz estimator
is based on the numbers of times each network was
intersected. Therefore, the summation is across initial
sample quadrats, and networks intersected more than
once are included multiple times in the computation.
The second edition of Krebs’ textbook (Krebs 1999)
briefly presents the Hansen-Hurwitz estimator, which
is simpler to compute than the Horvitz-Thompson es-
timator:

n1
m̃ 5 wOHH in i51

nN 2 n
2v̂ar (m̃ ) 5 (w 2 m̃ ) (9)OHH i HHNn(n 2 1) i51

where wi is the mean quadrat abundance for quadrats
in cluster i (yi/xi). However, in Thompson’s examples
and in Salehi’s more extensive simulations (Salehi
2003), the Horvitz-Thompson estimator almost always
had smaller variance than the Hansen-Hurwitz esti-
mator. Christman (1997) and Smith et al. (1995) also
found that the Horvitz-Thompson estimator had small-
er variance than the Hansen-Hurwitz estimator. How-
ever, because of the computational simplicity of the
Hansen-Hurwitz estimator, it has been used in analyses
of confidence intervals (Christman 2000a) and the
comparative efficiency of different sampling designs.

For the example in Fig. 1, the networks detected are
listed in Table 1. The SAS macro for computing both
estimators given in the Supplement requires a data set
with one observation for each initial sample point and
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TABLE 1. Tallied numbers of individuals per network (Y )
from adaptive cluster sampling in Fig. 1.

Network Y values Sum of Y Size (mi)

1 1, 1, 1, 4, 5, 1 13 6
2 0 0 1
3 0 0 1
4 0 0 1
5 1 1 1
6 0 0 1
7 0 0 1
8 0 0 1
9 4, 2, 1, 4, 1 12 5

10 0 0 1

TABLE 2. Horvitz-Thompson and Hansen-Hurwitz estimates of the number of plants in Fig. 1.

Parameter Horvitz-Thompson Hansen-Hurwitz

Total 139.4 131.2
Mean 0.619 0.583
Variance of estimated mean 0.0968 0.0987
Approximate 95% CI for total (2.2–276.6) (27.3–269.8)

Note: The true number of plants is 96.

three variables. One variable is the identification of the
network, unique for initial sample points except when
two or more initial sample points intersect the same
network. The second variable is the number of quadrats
in that network (edge quadrats are not in the network),
and is 1 for initial sample points without plants. The
third variable is the number of plants found in that
network, which is 0 for networks consisting of empty
initial sample points only. The resulting estimators and
variances are given in Table 2. The estimates are greater
than the actual value, as this sample happened to hit
three clusters with only 10 initial sample quadrats.

Aletris example

Aletris bracteata Northr. (Nartheciaceae) is an her-
baceous perennial found in southern Florida and the
Bahamas. A. bracteata is either an endangered species,
or a white- to cream- flower color mutant or subspecies
of the yellow-flowered A. lutea. A. bracteata is known
from fewer than a dozen locations in southern Florida,
all in savanna or glade vegetation with grasses, sedges,
and other herbaceous species producing nearly 100%
vegetative cover. A. bracteata grows as a nearly pros-
trate basal rosette up to 25 cm in diameter, and produces
flowering stalks up to 40 cm tall. While flowers are
visible at a distance of a few meters, rosettes and non-
flowering individuals require close inspection and gen-
tle moving of the grasses and sedges, and seedlings
require careful searching of quadrats from hands and
knees.

The known populations of A. bracteata differ greatly
in their extent, abundance, and spatial patterning. The
population in eastern Singeltary, Miami–Dade county,
Florida, is abundant and compact enough that simple
random sampling provided reasonable estimates of

population size. Conversely, currently only three iso-
lated individuals spread over roughly 0.5 km2 are
known from a nearby site, so neither simple random
sampling nor adaptive cluster sampling will work for
that population. At Chekika in eastern Everglades Na-
tional Park, preliminary reconnaissance found scat-
tered clusters of plants, suggesting that adaptive cluster
sampling might be appropriate.

The general goals for the Chekika population were
to estimate the total abundance, characterize the spatial
distribution, collect flowers from individuals for lab-
oratory analysis of flower color and morphology, and
obtain demographic information for a sample of indi-
viduals to allow comparison to other populations. Ad-
ditionally, plants were mapped and measured for com-
parison with post-fire demography if the site burns (a
fresh fire line 25 m from the population was observed
during sampling). While the diffuseness of these goals
may reflect early stages of academic research compared
to more concrete goals in rare species management, the
multiplicity of goals is common to both situations. On
two successive Saturdays during the flowering (and
dry) season, different volunteer graduate students spent
the afternoon sampling the same 40 3 100 m area
containing several clusters of Aletris bracteata. For
each trial, 150 random quadrat locations were gener-
ated without replacement, with southeast corner co-
ordinates integer meters in UTM (even numbered me-
ters for the 4-m2 trial). These quadrat locations were
sorted into order along the long axis, and printed on
data sheets. A single 100-m tape was run as a centerline
the long axis of the plot; distances perpendicular to the
centerline were listed as 620 m. Sample quadrats were
located by running short tapes perpendicular to the cen-
terline at the appropriate distances.

On the first trial, in one afternoon (;4 h), three peo-
ple were able to complete a sample of 150 initial 1-m2

quadrats, while the fourth marked and collected GPS
locations for all observed plants (including those de-
tected but not part of the sampling effort). This trial
intersected only two clusters of plants: one network of
nine quadrats with a total of 33 plants and 16 additional
edge quadrats; the other network of 16 quadrats with
32 plants and 18 edge quadrats (Table 3). On the second
trial, in the same 4 h, seven people were able to com-
plete a sample of 150 initial 4-m2 (2 3 2 m) quadrats,
plus record the number of leaves and length of longest
leaf and flowering status for each individual, and record
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TABLE 3. Tallied data from adaptive cluster sampling of Aletris bracteata in Chekika, Ev-
erglades National Park, Florida, USA.

1-m2 quadrats

Network
No. times
intersected

No.
quadrats Y

4-m2 quadrats

Network
No. times
intersected

No.
quadrats Y

1 1 9 33 1 1 3 14
2 1 16 32 2 3 20 114
3–150 1 1 0 3 1 6 33

4–150 1 1 0

TABLE 4. Estimates and 1 SD of estimates (in parentheses)
for Aletris bracteata in Chekika, Everglades National Park.

Parameter Horvitz-Thompson Hansen-Hurwitz

1-m2 quadrats
Total plants 183 (108) 151 (109)

4-m2 quadrats
Total plants 207 (49) 258 (88)
Flowering 99 (28) 114 (39)
Nonflowering 80 (19) 99 (34)
Seedlings 28 (5.4) 45 (18.3)

Notes: With 1-m2 quadrats, 150 initial quadrats plus 23
additional network quadrats and 34 edge quadrats (207 total)
detected 65 plants. With 4-m2 quadrats, 150 initial quadrats
plus 26 additional network quadrats plus 38 edge quadrats
(212 total) detected 161 plants.

a soil depth in the center of every sampled quadrat.
This trial intersected three clusters: 14 plants in three
quadrats 1 seven edge, 114 plants in 20 quadrats 1
20 edge, and 33 plants in six quadrats 1 11 edge (Table
3). Both trials detected the 33 plants in one cluster,
falling into a network of nine 1-m2 or six 4-m2 quadrats.
The second cluster detected by both trials included 114
plants in the 4-m2 trial, but only 32 plants were in the
network defined by 1-m2 quadrats. The three-quadrat,
14-plant network detected in the 4-m2 trial was not
intersected in the 1-m2 trial.

The Horvitz-Thompson and Hansen-Hurwitz esti-
mates for these trials are presented in Table 4. In both
cases, the Horvitz-Thompson confidence intervals were
somewhat narrower than the Hansen-Hurwitz intervals.
The 4-m2 trial produced much smaller confidence in-
tervals for the Horvitz-Thompson estimator, but that is
to be expected, as it included sampling of 21% of the
population area while the 1-m2 trial included only 5%.
More to the point for the overall study of Aletris brac-
teata, the 4-m2 trial yielded 161 of an estimated 207
plants (78%) with that 21% sampling, and even the 1-
m2 trial yielded 65 plants, 36% of the 1-m2 estimate or
31% of the 4-m2 estimate from only 5% of the area.

The demographic information collected in the second
trial was used to compute separate estimates for flow-
ering, nonflowering, and seedlings (Table 4). This il-
lustrates an application of flexibility in the rule for
network inclusion. Separate adaptive sampling for each
life stage was not required. Rather, the single adaptive
sampling, with presence of any plants as the inclusion

rule, was used for all four estimates. Only the abun-
dances yi for each network differed for different stages
(see the data file in the Supplement). The inclusion rule
based on any life stage meets the transitivity require-
ment, and as long as included quadrats are also more
likely than random quadrats to have individuals of each
life stage, ACS can be more efficient than complete
random sampling, even though some included quadrats
(or even networks) contain no individuals of the life
stage being estimated.

In addition to estimating total population size, the
sampling also indicated that the Chekika population of
A. bracteata was comprised of a few (perhaps 5–10)
clusters of plants, with a wide range of cluster sizes
(14, 33, and 114). This information suggests biological
hypotheses for further investigation: are the smaller
clusters comprised of single maternal genotypes (lo-
calized seed dispersal from individual source plants)?
Is the large cluster merely a few single- maternal line
clusters in spatial proximity, or does it have funda-
mentally different genetic structure than the smaller
clusters (e.g., source–sink dynamics for the popula-
tion)?

These two trials represent roughly equal person-
hours (;12) dedicated to estimating population size.
Even though the random initial locations were sorted
spatially on the data sheet, the time to locate and move
to the next primary quadrat location exceeded the time
required to thoroughly search either quadrat size. Dur-
ing the second trial over half of the person-hours were
spent collecting the rudimentary demographic data. In
this case, the larger quadrat size was more efficient in
the broad sense of the overall project—while it only
provided a slightly smaller variance about the popu-
lation size estimate, it detected more than twice as
many plants.

EXTENSIONS

Adaptive cluster sampling was developed largely
with ecological (albeit animal) motivation (Thompson
1990, 1991a, b, Thompson et al. 1992). Many papers
extending ACS have been published in ecological sta-
tistics journals such as The Journal of Agricultural Bi-
ological and Environmental Statistics, Environmental
and Ecological Statistics, and Environmetrics; several
key papers are published in Biometrics. Environmental
and Ecological Statistics published a special feature on
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adaptive sampling in 2003 (Brown 2003, Chao 2003,
Christman 2003, Di Battista 2003, Dryver 2003, Felix-
Medina 2003, Salehi 2003, Smith et al. 2003, Su and
Quinn 2003, Thompson 2003).

Applications of adaptive cluster sampling to birds
(Smith et al. 1995), amphibians (Ishwar et al. 2001,
Vasudevan et al. 2001), and marine and aquatic species
(Lo et al. 1997, Conners and Schwager 2002, Hansel-
man et al. 2003, Smith et al. 2003) have been published.
However, only one published paper applies ACS to rare
plants. Acharya et al. (2000) sampled rare species of
trees in Nepal. They used systematic plot location for
the first stage sampling, and an inclusion rule based on
the presence of an individual of a target species. They
adaptively added plots separately for each target spe-
cies, as unlike in the Aletris life-stage example above,
the presence of an individual of one rare species was
not predictive of the presence of other rare species in
neighboring plots.

Other forms of initial sampling

The initial sampling need not be simple random sam-
pling as in these examples. When movement within the
population area is expensive relative to search, adaptive
strip sampling (Thompson and Seber 1996, Pontius
1997) may be much more efficient. If plants are de-
tectable over a narrow width while walking, initial sam-
ples may be chosen as contiguous parallel strips of
quadrats, with random choice of origin of strips in the
perpendicular direction. Whenever quadrats meet the
inclusion threshold, surrounding individual quadrats
are added to the sample. Computation of the co-inclu-
sion probabilities ajk for pairs of networks is more com-
plex, as networks might be jointly included by the same
strip or different strips. For larger areas, the area may
first be divided into strata, then adaptive cluster sam-
pling performed within each stratum (Thompson
1991b, Thompson and Seber 1996). When ancillary
measures are to be kriged across the entire area, sys-
tematic initial sampling of regularly spaced plots may
be appropriate.

OPEN ISSUES

Optimal quadrat size

Quadrat size matters for most forms of sampling
through the trade-off in costs between numbers and
sizes of quadrats, and to a lesser extent through an
effect on sample variances via means of occupied quad-
rats being proportional to quadrat area (Pielou 1957,
Greig-Smith 1983, Elzinga et al. 1998). In adaptive
cluster sampling, quadrat size relative to plant nearest
neighbor distances also controls network size, and thus
total effort for a given number of initial samples. Quad-
rats too small will not capture additional individuals
within clusters; quadrats that are too large may capture
the entire cluster in one or a few quadrats. Brown
(2003) explored efficiency in terms of network sizes

and found that smaller network sizes (two to four quad-
rats) and higher variance among quadrats within net-
works increased the efficiency of designs. However,
her results were from simulations varying the cluster
sizes in the population and the threshold for inclusion
(1 for rare plants, but other fixed thresholds are possible
for other applications), and not quadrat size per se.
Given limited prior knowledge about the rare plants
being sampled, quadrat sizes somewhat larger than the
nearest neighbor distances within clusters may be a
sufficient rule of thumb.

Confidence intervals

Confidence intervals generated from the standard de-
viations are problematic for rare plant applications of
ACS, as they are based on asymptotics or large sample
behavior. Such confidence intervals tend to be very
large, and because they are symmetric, the lower bound
is often smaller than the number of plants actually ob-
served in the survey, and might even be negative (see
Table 2). Christman and Pontius (2000) evaluated the
performance of several approaches to bootstrap con-
fidence intervals for the Hansen-Hurwitz estimator.
They simulated distributions of rare (ø7% of quadrats
occupied) and uncommon (ø15% occupied) plants, and
initial samples of 20 or 40 quadrats out of a population
of 400 quadrats. For rare plants and n 5 20, all nom-
inally 90% confidence intervals had more than 98%
coverage (included the true value in more than 98% of
the simulations). While the coverages were closer to
the nominal values for the other three combinations,
the tails tended to be asymmetric, and no single ap-
proach was best across all three combinations.

Detectability

For many species of herbaceous plants, detection is
not perfect, even for close inspection of small quadrats.
Some individuals may dieback and resprout the fol-
lowing year, so are extant and alive belowground, but
have no aboveground presence during the census and
thus are not detected (Gilbert and Lee 1980, Shefferson
et al. 2001, Kery and Gregg 2003, Kery 2004). If the
detection probability g can be estimated by other means
(e.g., MacKenzie et al. 2005) and is constant across
individuals, the correction under conventional sam-
pling designs is straightforward upweighting by 1/g to
estimate the true number of individuals in the popu-
lation. The variance of the estimator corrected for im-
perfect detection is only slightly more complicated
(e.g., Thompson and Seber 1996). For adaptive sam-
pling, the detection probabilities also enter into the
numbers of quadrats sampled in each intersected clus-
ter, and thus the inclusion probabilities for sampled
quadrats. (Thompson and Seber 1994, 1996) provide a
correction for adaptive cluster sampling with imperfect
detection conditioned on the observed values of y.

In general, the detectability of rare plants is likely
to differ greatly between individuals of different life
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stages—large flowering individuals are highly visible,
but seedlings have lower detection probabilities. If
stage-specific detection probabilities can be estimated
from mark-recapture or other approaches, it might be
useful to use presence of reliably-detected stages for
the cluster inclusion rule, count all seedlings within
such networks, and then use the 1/g upweighting, but
under what conditions (if any) that this might be ben-
eficial has not been explored.

Monitoring

Conventional sampling designs provide the oppor-
tunity to repeatedly sample the fixed sample locations
over time, and then analyze the data as repeated mea-
sures, separating the spatial variation from the temporal
variation (e.g., Ryan and Heyward 2003). Adaptive de-
signs do not provide the same opportunity, as inclusion
probabilities in the second sampling bout would be
based on values observed in the first bout. There may
be cases where the gain in efficiency from adaptive
sampling within each sampling episode is greater than
the loss of power due to confounding temporal varia-
tion with spatial variation, but that need not be the case
in general. It might be possible to implement ACS in
a form of rotating panel design, where in subsequent
years both previously detected clusters and new pri-
mary sample units are sampled (Jim Nichols, personal
communication). Additionally, monitoring efforts for
populations small enough to require adaptive cluster
sampling are likely to require information on demo-
graphic transitions as well (e.g., Doak 2005), so the
premium of detecting more plants may be important.

When is adaptive cluster sampling more efficient
than other approaches?

The usual approach to maximizing sampling effi-
ciency is to consider sampling in isolation, assign costs
to initial setup, travel among quadrats, and inspection
of each quadrat (often a function of both quadrat size
and the number of individuals found), and then mini-
mize the variance of estimators for a given total effort.
For adaptive designs, the total effort is not known until
the sample is drawn. Brown and Manly (1998) showed
that simple stopping rules that could stabilize the total
effort (e.g., continue drawing initial sample quadrats
until the total effort [initial plus network plus edge
quadrats] exceeds 200) preclude an unbiased estimator,
although Christman and Lan (2001) developed an un-
biased estimator for adaptive cluster sampling based
on an approximately fixed number of occupied (meet-
ing the threshold for inclusion) quadrats. Therefore,
equal-effort comparisons between sampling designs are
difficult, and only rough guidance is possible.

The general pattern is that ACS is efficient for rare,
relatively tight clusters of individuals, where the spatial
extent of the population is compact enough that feasible
sampling effort will allow initial sampling to intersect
several clusters. Conversely, alternatives are more ef-

ficient if clusters are diffuse, or if spatial variation in
abundance is driven by habitat attributes at spatial
scales larger than restricted dispersal. Christman
(1997) compared the efficiency of adaptive cluster sam-
pling to balanced sampling excluding contiguous units
(BSEC), and found that adaptive cluster sampling was
more efficient for rare and highly clustered populations,
but BSEC was more efficient over a broader range of
parameters she considered—moderately common and
diffuse clusters. (Brown 1999) compared adaptive clus-
ter sampling to two-phase adaptive sampling—break-
ing the population into regional strata, sampling within
each stratum, then performing a second sampling stage
in those strata with high densities in the primary stage.
She found the two-phase adaptive sampling more ef-
ficient when there were more than 20 clusters, and when
the clusters were diffuse. Christman (2000b) reviewed
and compared several designs for quadrat sampling of
rare, clustered plants and found that stratification (e.g.,
by habitat variables) that confined individuals to a sin-
gle small stratum was the most efficient design if such
habitat attributes were available.

For the case of a low-abundance population spread
over a large spatial extent, even if plants are tightly
clustered, ACS alone will not succeed, as it requires
sufficient initial sampling to intersect several clusters.
ACS would not help for Aletris in the western Singel-
tary population, where three individuals are known in
0.5 km2, and, at most, 500 1-m2 quadrats could be sam-
pled (0.1%). Unless there are a large number of clus-
ters, the chances of intersecting even one cluster are
extremely small. Some form of model-based stratifi-
cation is required to winnow the search area down to
a size where several percent of the area can be sampled.
At that point, decisions could be made among the var-
ious sampling designs.

Finally, for estimation of abundances of rare plants
within populations, efficiency of the estimation cannot
be considered in isolation. Plants need to be found,
mapped, and measured for viability analyses (Doak
2005), and most of that effort will occur whether or
not the total population size is estimated. Therefore,
adaptive methods such as adaptive cluster sampling (or
design-based stratification) that yield larger fractions
of individuals included in the sample may provide the
most efficient unbiased estimates of population sizes
from the perspective of the combined investigation of
that population.
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Abstract. For the vast majority of cases, it is highly unlikely that all the individuals
of a population will be encountered during a study. Furthermore, it is unlikely that a constant
fraction of the population is encountered over times, locations, or species to be compared.
Hence, simple counts usually will not be good indices of population size. We recommend
that detection probabilities (the probability of including an individual in a count) be esti-
mated and incorporated into inference procedures. However, most techniques for estimating
detection probability require moderate sample sizes, which may not be achievable when
studying rare species. In order to improve the reliability of inferences from studies of rare
species, we suggest two general approaches that researchers may wish to consider that
incorporate the concept of imperfect detectability: (1) borrowing information about de-
tectability or the other quantities of interest from other times, places, or species; and (2)
using state variables other than abundance (e.g., species richness and occupancy). We
illustrate these suggestions with examples and discuss the relative benefits and drawbacks
of each approach.

Key words: abundance; detection probability; occupancy; rare species; species richness.

INTRODUCTION

Estimation of abundance and related quantities for
animal populations requires that investigators deal with
two important sources of variation in resulting count
data (Skalski and Robson 1992, Lancia et al. 1994,
Thompson et al. 1998, Yoccoz et al. 2001, Pollock et
al. 2002, Williams et al. 2002). The first source of
variation involves spatial sampling. Investigators are
frequently interested in inferences about areas so large
that they cannot survey or count animals over the entire
areas of interest. This problem requires that investi-
gators select a sample of smaller areas on which to
conduct survey efforts and that this selection be con-
ducted in a manner that permits inference about the
entire area of interest. That is, sample locations must
be selected such that counts on these areas can be used
to draw inferences about locations that do not appear
in the sample (i.e., by using a probabilistic sampling
scheme). This problem is not unique to the sampling
of animal and plant populations, and ecologists and
wildlife managers can use the various sampling designs
developed by statisticians in other contexts (e.g., Coch-
ran 1977, Thompson 1992).

Manuscript received 5 July 2004; accepted 26 July 2004. Cor-
responding Editor: A. M. Ellison. For reprints of this Special
Feature, see footnote 1, p. 1079.

6 E-mail: Darryl@proteus.co.nz

The second source of variation involves the issue of
detectability and the fact that even when efforts are
made to count animals on sample areas, it is extremely
unlikely that the investigator will count every animal
in any such area. Instead, the investigator obtains count
statistics that represent unknown fractions of animals
present in the sampled area. Count statistics, C, reflect
the number of animals observed, captured, heard, har-
vested or otherwise detected by one or more survey
methods used by animal ecologists. Count statistics are
best viewed as random variables with expectation equal
to the product of the true number of animals (N ) present
in the sample location and the detection probability ( p)
associated with the count:

E(C ) 5 pN. (1)

Inference about N requires inference about, or knowl-
edge of, p. For example, estimation of abundance is
accomplished by

C
N̂ 5 (2)

p̂

where p̂ is the estimated detection probability associ-
ated with the specific count statistic. We note that the
seemingly diverse abundance and density estimation
methods appearing in books such as Seber (1982) and
Williams et al. (2002) represent different ways of es-
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timating detection probability, but that the final step in
abundance estimation involves Eq. 2.

We note that in addition to abundance, estimation of
demographic rate parameters also requires consider-
ation of detection probability. For example, reproduc-
tive rate is often estimated using age ratios, repre-
senting relative abundances of young to adult or young
to adult females. If inferences about age ratios are based
on raw counts, neglecting detection probabilities, then
resulting ratios will reflect a confounded function of
true relative abundances and relative detection proba-
bilities (MacKenzie and Kendall 2002, Williams et al.
2002). Estimates of survival and movement probabil-
ities are typically based on marked individuals released
at one time and location and estimated to be alive at
some later time in the same or a different location. If
time- and location-specific detection probabilities are
not incorporated into estimation models, then biased
estimates of survival and movement can result (Wil-
liams et al. 2002).

Rarity will typically increase the difficulties in deal-
ing with both spatial sampling and detectability in the
estimation of abundance and related parameters. A spe-
cies may be considered ‘‘rare’’ either because it occurs
at very low densities across a broad range, or it could
be locally abundant but not widely distributed across
the landscape, with the consequence that the species
may only occupy a small fraction of spatial sampling
units (Gaston 1994). Rarity is also likely to be asso-
ciated with low probabilities of detecting individuals
even in sampling units that are occupied. When detec-
tion probabilities are known and not estimated then for
a fixed count C, (N̂) will be larger when p is smallv̂ar
(as (N̂) 5 (C )/p2; from Eq. 2). Furthermore, de-̂ ̂var var
tection probability is seldom known, and most methods
for estimating p use the count data themselves (e.g.,
Seber 1982, Williams et al. 2002). Small sample sizes
tend to produce large (p̂) and, hence large (N̂).̂ ̂var var
Thus, observation-based methods such as distance sam-
pling, multiple-observers, time at detection or temporal
removal, and marked subsamples, as well as capture-
based methods such as capture–recapture, catch-effort,
and change-in-ratio, all perform best with sample sizes
that frequently exceed those that can be obtained for
rare species (see Williams et al. 2002, and references
therein, for details of these various techniques).

There may also be other more practical impediments
to estimating abundance for rare species. In order to
obtain an accurate count of the number of unique in-
dividuals, it must be possible to identify individual
animals. Capture–recapture or resighting methods re-
quire that individuals detected during one sample pe-
riod can be recognized as such if they are detected in
a subsequent period. If animals can not be reliably
identified using natural colorations or patternings, then
some form of mark will need to be applied to the an-
imal, which may require animals to be captured and
handled. However many rare species are listed as a

protected or endangered and in some instances there
may be resistance (from a variety of quarters) to han-
dling and marking animals if there is the potential for
negative impact on the animals.

In this paper, we focus on the detectability issue and
consider approaches to obtaining reliable inferences
about animal populations and communities when deal-
ing with rare species and with detection probabilities
,1. We discuss two general approaches. First, we brief-
ly present our views on the concept of borrowing in-
formation about detectability and relevant state vari-
ables from other times, places, and classes of animals
(even species). The other approach involves consid-
eration of state variables other than abundance to char-
acterize status and changes in the population. We be-
lieve that both approaches hold promise for permitting
reasonable inferences about populations and commu-
nities of rare species.

BORROWING INFORMATION

In some situations, it may be appropriate to share or
borrow information about population parameters for
rare species from multiple data sources. The general
concept is that by combining the data, where appro-
priate, more precise estimates of the parameters may
be obtained. We describe two situations that are dis-
tinguished by the similarity of the data being combined.
In one situation, data of exactly the same type are ag-
gregated over times, locations, individuals, or species.
In the second situation, different kinds of data are com-
bined to yield inferences about a common parameter(s).

The first situation is exemplified by capture–recap-
ture modeling, where it has become common to con-
sider aggregation of capture history data over times,
places and individuals (e.g., Seber 1982, Lebreton et
al. 1992, Williams et al. 2002). The decision about the
appropriate level of aggregation is considered as a
problem in model selection, where the task is to select
a level that describes the data reasonably well, with the
smallest number of parameters and greatest degree of
aggregation (Burnham and Anderson 2002). The data
are considered jointly, and the model set includes gen-
eral models with separate parameters for different times
and locations, for example, and reduced parameter
models in which parameters are constrained to be equal
over times and/or locations. The competing models
thus represent different levels of aggregation and dif-
ferent degrees to which data are shared. We note that
there are other approaches to aggregation than the de-
scribed approach of equating model parameters (as-
suming homogeneity) over times, places, and individ-
uals. For example, modeling parameters as function of
covariates represents a form of aggregation in which a
common relationship (over times, places, individuals,
etc.) is assumed between a covariate and the parameter
of interest (for closed capture–recapture models, see
Pollock et al. [1984], Huggins [1989, 1991], Alho
[1990]). Another approach is to assume a distributional
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form for variation in a parameter of interest over in-
dividuals, for example, and then use a hierarchical
modeling approach to estimate parameters of that dis-
tribution for an aggregation of individuals (e.g., Dor-
azio and Royle 2003). Both covariate modeling and
hierarchical modeling assume some common form or
relationship for the variation in a parameter over in-
dividuals, or times, or places, and the task is then to
estimate the parameters that describe that form or re-
lationship. As for the case of equality constraints on
parameters, model selection approaches are needed to
ascertain the appropriateness of different distributions
or relationships linking the different data sets.

This general approach to sharing information is rel-
atively common and was used by Boyce et al. (2001)
to estimate the number of female grizzly bears (Ursus
arctos) with cubs-of-the-year in the Yellowstone eco-
system. Capture frequency data from 1986–1998 were
fit to truncated negative binomial distributions with
various assumptions about constancy of parameters
over time. Model selection results favored a model with
a heterogeneity in ‘‘sightability’’ parameter constant
over time, so that information across years was bor-
rowed to yield realistic, annual estimates of abundance.
Franklin et al. (2004) conducted capture–recapture
studies of California Spotted Owls (Strix occidentalis
occidentalis) at four sites in the Sierra Nevada moun-
tain range. They conducted a meta-analysis in which
they investigated the plausibility of additive location
1 time models for rate of population increase. The a
priori hypothesis was that the different sites might ex-
perience different average rates of population increase,
but that the sites were exposed to similar environmental
conditions and should thus exhibit parallel changes in
population size. Indeed, a model with additive location
1 time effects was appropriate for the data, leading to
the interesting biological inference about similar en-
vironmental effects and also permitting more precise
estimation of rate of population increase than was pos-
sible for any single location.

A form of aggregation that is not used very com-
monly by ecologists involves sharing information
across species. For example, Nichols et al. (2000) used
double-observer models to estimate detection proba-
bility and abundance from avian point count data. They
grouped species a priori based on hypothesized simi-
larity of detection probabilities. These models appeared
to work well and were used to estimate abundance for
relatively rare species for which data were inadequate
to compute species-specific estimates of detection
probability. M. W. Alldredge, K. H. Pollock, T. R. Si-
mons, and S. A. Shriner (unpublished manuscript) have
greatly expanded on this idea and have developed sets
of models for avian point count data that incorporate
various assumptions about similarity of species groups
identified a priori. They present a unified model se-
lection framework similar to that now used for aggre-
gating over time and space. We believe that this ap-

proach of borrowing information from species believed
to exhibit similarities in detection or population dy-
namics will prove to be very useful for rare species.

The second situation in which information is bor-
rowed uses different types of data within a modeling
framework that contains shared parameters. Dixon et
al. (2005) use such an approach to improve estimates
of capture efficiency of wasps by the insectivorous
pitcher plant, Darlingtonia californica. They had two
forms of available data, both of which contained some
information about the capture rate of wasps by the
pitcher plant. One data set permitted direct estimation
of capture efficiency, whereas the other permitted es-
timation of a function of capture efficiency and visi-
tation rate. Combination of the two data sets permitted
use of the information about capture efficiency encoded
in the second data set, and thus resulted in more precise
estimates. Other examples of this type of approach to
borrowing information include recent work on inte-
grating animal count data with capture-recapture data
(Besbeas et al. 2002, 2003). Information about survival
rate comes from the data on marked animals, whereas
information about population growth rate comes from
the count data. Population growth rate can also be com-
puted using survival and reproductive rates with a sim-
ple population projection model. Thus an integrated
estimation approach incorporating the two data types
with a population model permits estimation of repro-
ductive rate in addition to population growth and sur-
vival (Besbeas et al. 2002, 2003). We expect such ef-
forts to combine data from multiple sources to become
more common in the near future (see Schnute 1994,
Gallucci et al. 1996, Quinn and Deriso 1999, Elliott
and Little 2000, Millar and Meyer 2000, Trenkel et al.
2000, Grove et al. 2002, White and Lubow 2002).

STATE VARIABLES OTHER THAN ABUNDANCE

As indicated above, despite the large number of po-
tential methods for estimating detection probability of
individual animals, and hence their abundance and den-
sity, rarity will typically translate into small sample
sizes and imprecise estimates of relevant parameters.
One approach to sample size problems using existing
methods is to increase sampling effort. This approach
usually increases expenses but is sometimes feasible
nonetheless. As another approach, we suggest that, in
many cases, it may be appropriate to consider alter-
native state variables: (1) the number of species present
within the area (species richness; perhaps within some
taxonomic or other group of interest), or (2) the pro-
portion of the area occupied by a single species (oc-
cupancy). As with abundance, we believe that these are
relevant state variables that provide important infor-
mation about systems of ecological and conservation
interest. For example, species richness conveys infor-
mation about community structure and biodiversity,
while occupancy provides information about species
range, likelihood of extinction (e.g., Lande 1988),



S
pe

c
ia
l

Fe
at

u
r
e

1104 DARRYL I. MACKENZIE ET AL. Ecology, Vol. 86, No. 5

metapopulation dynamics (e.g., Hanski 1999), and
abundance. In addition, vital rates associated with dy-
namics of these state variables can be identified and
estimated. The sampling effort required to estimate
these two variables and their associated vital rates will
typically be smaller (often substantially so) than that
required to estimate abundance and rates of birth,
death, and movement. Below we expand upon these
concepts, provide a brief overview of potential ana-
lytical methods and give examples where these alter-
native state variables have been used in practice.

Species richness

Species richness (the number of species inhabiting
a predefined area) is a state variable representing an
alternative to abundance that may be useful in studies
of groups of rare species. This state variable is aimed
more at the community level than at a single species,
and is widely used in ecological investigations and in
conservation initiatives (e.g., Barbault and Hochberg
1992, Scott et al. 1993, Mangel et al. 1996, Boulinier
et al. 1998, 2001, Cam et al. 2002, Doherty et al.
2003a, b). As in most cases in animal sampling, it is
unlikely that all species at a sampling location will be
observed. Even if the investigator is simply interested
in relative species richness (e.g., computed as the ratio
of richness at points in time and/or space), it is unlikely
that raw species counts will be useful, as the fraction
of any species pool that is observed will likely vary
according to such factors as habitat and differences in
the local species composition. The problem is then how
to estimate species richness in the face of imperfect
detectability. Although the bulk of the work on this
topic has been relatively recent, the estimation of spe-
cies richness has been considered many times over the
last decade, including reviews by Bunge and Fitzpat-
rick (1993), Colwell and Coddington (1994), Nichols
and Conroy (1996), Williams et al. (2002), and new
synthetic contributions by Dorazio and Royle (2005)
and Mao and Colwell (2005). Therefore, here we sim-
ply provide a brief overview of the various sampling
situations that permit estimation of species richness,
with reference to key publications that can be sought
for further details of the particular methods. We also
note that the concept of estimating species richness
could be considered as a form of borrowing informa-
tion: inferences about rare and infrequently encoun-
tered species are made by borrowing information about
detectability from the other species in the community.

One sampling approach is where a single (or small
number) of locations are surveyed multiple times with-
in a relatively short time period. At each survey a list
is maintained of the species detected, hence at the con-
clusion of the sampling it is possible to construct a
‘‘capture history’’ for each species, denoting whether
the species was detected within each survey. The sam-
pling should be conducted over a reasonably short time
period to avoid any potential change in species com-

position, i.e., the community is assumed to be closed
to any species additions or deletions. A species is con-
sidered to be analogous to an individual in a single-
species, closed population capture–recapture study.
Based upon the detection histories of species detected
at least once, the number of species that were never
detected can be estimated, i.e., an estimate of the total
number of species at that location can be obtained.
There is a wide range of capture–recapture models that
could be used (e.g., Otis et al. 1978, Williams et al.
2002), although generally we would suggest that mod-
els permitting heterogeneous detection probabilities
will be needed because of the variation in abundances
and individual detection probabilities associated with
different species.

Another sampling approach involves geographic rep-
lication rather than temporal replication. An area of
interest is defined, and interest is focused on the com-
munity of species (perhaps of a certain taxon or func-
tional guild) associated with that area. Sample locations
are randomly selected from the area of interest, and the
investigator surveys each such location only once. A
capture history for each species can then be formed by
denoting whether the species was encountered at each
location, and species richness can be estimated as
above. The key difference between the two sampling
approaches is that one uses temporal replication of sur-
veys, while the other uses spatial replication. Naturally
this has some influence on how the results are inter-
preted, but the mechanics of the estimation procedure
are identical.

A third general design is one where the investigator
has both temporal and spatial replication. The usual
approach to estimation with such data involves two
steps. Species richness is estimated for each sampling
site using the temporal replication, and then means and
other summary statistics are computed for all sites
within strata of interest. However, a more integrated
approach is to consider prior distributions of individ-
uals and species over space and to estimate parameters
of this spatial distribution (see Dorazio and Royle
2005).

A final sampling design for richness estimation in-
volves the so-called empirical species abundance dis-
tribution. Sampling is conducted at a single location
during a single short time interval so there is neither
temporal nor geographic replication. However, the in-
vestigator now records the number of individuals for
each detected species. So the data used for estimation
are the so-called detection frequencies, fi, indicating
the number of species for which exactly one individual
was detected ( f1), exactly two individuals ( f2), etc.
These data can then be used with a limiting form of
the jackknife estimator developed by Burnham and Ov-
erton (1979), or other appropriate methods (e.g., Norris
and Pollock 1998, or see Bunge and Fitzpatrick 1993).

The previously cited reviews deal almost exclusively
with estimation of species richness, itself, and there
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has been much less attention devoted to estimation of
the vital rates influencing this state variable. Initial ap-
proaches to estimate local species extinction probabil-
ity, number of local colonizing species, colonization
rate, and species turnover have been developed by
Nichols et al. (1998a, b; also see Williams et al. 2002).
These methods have been used to draw inferences about
community dynamics of forest birds exposed to forest
fragmentation (Boulinier 1998, 2001), avian commu-
nity dynamics at the edge and center of species ranges
(Doherty et al. 2003b), and the relationship between
avian community dynamics and sexual dichromatism
(Doherty et al. 2003a). These analyses are especially
relevant to the issue of rare species, as many of the
species included in these different analyses were char-
acterized by data that would have been inadequate for
single-species inferences.

Finally, we note that an interesting quantity in some
community studies is the fraction of the members of
some identified species pool that are present in a spe-
cific community or location of interest. This problem
was considered by Cam et al. (2000; also see Nichols
1998b, Chao et al. 2000). Here, we note that there are
similarities between this problem and the estimation of
the occupancy state variable discussed below, where
the intent is to estimate the fraction of sites at which
a species is present. By considering each species in the
pool (or each species on any a priori reference list) as
a ‘‘site,’’ the mechanics of the two problems are iden-
tical: the nondetection in the sampled community of a
species on the list does not imply that the species was
absent. Thus, we believe that some of the occupancy
estimation and modeling described below (e.g.,
MacKenzie et al. 2002, 2003, Royle and Nichols 2003)
may prove useful in community studies as well.

Occupancy

Occupancy has been used as an alternative state var-
iable to abundance for many inferential purposes rang-
ing from questions about habitat selection (e.g., Reu-
nanen et al. 2002, Scott et al. 2002, Bradford et al.
2003) to questions about population dynamics and dis-
tribution (e.g., Hames et al. 2001, Barbraud et al. 2003,
Martinez-Solano et al. 2003). Occupancy data are rec-
ognized to be especially useful for the study of rare
species, although the historical emphasis for such spe-
cies has been on use of occupancy as an index to abun-
dance, rather than on occupancy as a state variable of
interest in its own right (e.g., Diefenbach et al. 1994).
When occupancy is viewed as the state variable of in-
terest, focus shifts from ‘‘how many individuals of the
species are located at various locations across the land-
scape?’’ to ‘‘what fraction of the landscape does the
species inhabit?’’ For most species, the two questions
should be closely related, as occupancy is simply the
proportion of the landscape for which the local abun-
dance distribution for the species of interest is .0. For
territorial species, the number of individuals within an

area will frequently be directly proportional to the frac-
tion of the area occupied by the species. However, in
other situations changes in abundance do not always
result in a change in occupancy or species range (i.e.,
there is only a change in the density of the species).
In such instances, occupancy may not be a useful sur-
rogate state variable for abundance. However, we note
that for questions dealing with topics such as meta-
population ecology (e.g., Hanski 1999) or geographic
range (Brown 1995, Wikle 2003), occupancy is the
state variable of primary interest regardless of the re-
lationship between occupancy and abundance.

Occupancy is usually measured as the proportion of
the area of interest where the species is present during
the sampling. We use the term ‘‘area’’ in the sense of
a statistical population, namely a collection of all the
possible sampling units that we wish to make inference
about. The sampling units themselves may represent
naturally occurring discrete habitat patches (e.g., rem-
nant patches of forest, islands, or ponds), or arbitrarily
defined quadrats (henceforth we shall generically refer
to sampling units as sites). The intent is to then survey
a fraction of the total area (using an appropriate sta-
tistical method for selecting which sites to survey) and
determine the presence or absence of the species at
each site. However for most species, the investigator
can never confirm species absence. There will generally
be a non-negligible chance that the species was actually
present, but due to chance, was undetected by the sur-
vey techniques. This issue of imperfect detectability
(as in the case of abundance estimation) must be ac-
counted for if robust inferences about occupancy are
to be made. Comparisons of uncorrected, or naı̈ve, es-
timates of occupancy can be strongly influenced by
changes in species detectability, possibly leading to
incorrect inferences about changes in occupancy. An
observed difference between two naı̈ve occupancy es-
timates may be due to differences in our ability to detect
the species at the two times or places, rather than to a
true difference in occupancy. In fact, Moilanen (2002)
recently investigated the effect of various assumption
violations with respect to metapopulation incidence
functions (Hanski 1992, 1999) and found that changes
in species detectability were the greatest contributor of
bias to the estimated functions.

This issue of imperfect detectability has long been
recognized. In an effort to minimize the probability of
declaring the species falsely absent, many studies and
monitoring programs for rare species conduct repeated
surveys of sites over a reasonable timeframe, during
which no changes in the occupancy states of sties are
thought to occur. With this type of information (re-
peated surveys) it is possible to account for detection
probabilities and obtain corrected, or unbiased, esti-
mates of occupancy.

The development of analytical methods for estimat-
ing occupancy at a single point in time has been spo-
radic over the last 20 years (Geissler and Fuller 1987,
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Azuma et al. 1990), but more recently there have been
a number of similar methods published (MacKenzie et
al. 2002, Royle and Nichols 2003, Tyre et al. 2003,
Stauffer et al. 2004, Wintle et al. 2004). Here, we shall
briefly review the method presented by MacKenzie et
al. (2002), of which Stauffer et al. (2004), Tyre et al.
(2003) and Wintle et al. (2004) could be considered
special cases. Royle and Nichols (2003) have devel-
oped a useful extension that allows for heterogeneity
in detection probability between sites caused by dif-
ferences in local abundance.

Despite this interest in occupancy estimation, until
recently, few methods have been developed for esti-
mating changes in occupancy, and the vital rates (local
probabilities of extinction and colonization) that pro-
duce such changes, that explicitly account for imperfect
detectability. Often in metapopulation studies, changes
caused by local extinctions and colonizations of patch-
es by the target species are of primary interest (e.g.,
Hanski 1992, 1999). Only recently has any attempt
been made to allow for the possibility of false absences
(Moilanen 2002), with arguable success. As noted
above, Moilanen (2002) found that issues related to
species detectability were the major contributor to bias
in estimated incidence functions. Two recent papers
(Barbraud et al. 2003, MacKenzie et al. 2003) use sim-
ilar approaches to estimate local extinction and colo-
nization probabilities directly, whilst allowing for im-
perfect detection. Given that the data have been col-
lected from monitoring sites over several seasons or
years, and within each season sites are surveyed more
than once, probabilistic arguments are applied to form
a model likelihood that can be used to obtain parameter
estimates. The main difference between the two meth-
ods is that the approach of Barbraud et al. (2003) is
conditional upon the first occasion at which the target
species is detected at a site, whereas the approach of
MacKenzie et al. (2003) is unconditional, allowing the
proportion of sites occupied by the species each season
to be estimated.

A general sampling scheme

From the area of interest, U sites are selected to be
surveyed for the species using appropriate methods.
These sites are surveyed multiple times each season
for T seasons (e.g., years). In each survey, detections
are regarded as truth (the species is never falsely re-
corded as being present), but nondetections are rec-
ognized as arising from both (1) true absence and (2)
presence with nondetection (sometimes referred to as
false absences). Within a season, sites are closed to
changes in occupancy (i.e., sites are either always oc-
cupied or unoccupied by the species). This assumption
may be relaxed provided that any changes occur com-
pletely at random in which case ‘‘occupancy’’ should
be interpreted as ‘‘use.’’ Sites are repeatedly surveyed
(possibly an unequal number of times), with the species
either being detected or not detected. Between seasons,

changes in occupancy may occur which are referred to
as the processes of colonization and local extinction.

The sequence of detections and nondetections re-
corded at the sites form a detection history (Hi for site
i). For example Hi 5 101 000 represents data collected
over two seasons, each with three surveys per season.
In the first season, the species was detected in the first
and third survey, but undetected in the second. In the
second season, the species was never detected at the
site during the surveys. The basic procedure for build-
ing a model is to develop a verbal description of the
observed data, then translate that description into a
mathematical equation representing the probability of
observing the data using the defined model parameters.

A single season model

MacKenzie et al. (2002) define c as the probability
that a site is occupied by the species, and pj is the
probability of detecting the species (given presence)
during the jth independent survey of a site. To illustrate
model construction, consider the detection history
1001. A verbal description of this history would be that
the species is present (as it was detected at least once),
and it was then detected in the first and fourth surveys
of the site, but not in surveys two and three. Translating
this into a mathematical equation using the model pa-
rameters, the probability of observing this history
could be expressed as

Pr(H 5 1001) 5 cp (1 2 p )(1 2 p )p .i 1 2 3 4

A similar expression can be obtained for detection his-
tories from all sites at which the species is detected at
least once. However, for sites where the species was
never detected (e.g., Hi 5 0000), there are two pos-
sibilities that must be accounted for. The verbal de-
scription for this history would be, either the species
was present but went undetected in the surveys (which
has a probability of c (1 2 pi)), or the species was4Pj51

genuinely absent from the site (with probability (1 2
c)). As either reason for never detecting the species at
the site is possible, the probability of observing this
history is the sum of these two components, i.e.,

4

Pr(H 5 0000) 5 c (1 2 p ) 1 (1 2 c).Pi j
j51

Assuming that the detection histories for all sites are
independent, the likelihood function for an estimation
model takes the usual form:

U

L(c, p z H , . . . , H ) 5 Pr(H ).P1 U i
i51

Note that this requires both the probability of occu-
pancy and each detection probability to be constant
across all U sites. If this not the case, then the prob-
abilities are said to be heterogeneous. While it is not
possible to estimate site-specific occupancy probabil-
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ities, the probabilities may be modeled as a function
of measured covariates using the logistic equation

exp(X b)iu 5i 1 1 exp(X b)i

where ui is the probability of interest for site i, Xi is
the row vector of covariate information for site i and
b is the column vector of coefficients to be estimated.
In general, occupancy may be a function of site-specific
covariates that are constant throughout the season (e.g.,
habitat type), while detection probabilities may also be
a function of covariates that change through the season
(e.g., weather conditions).

However one potential source of heterogeneity that
cannot be easily accommodated directly by a covariate
is heterogeneity in detection probabilities caused by
differences in the species abundance between sites.
Royle and Nichols (2003) extend the above approach
by arguing that the species is not detected only if none
of the Ni individuals at site i are detected. This suggests
the probability of detection can be written as a function
of abundance, i.e., pij 5 1 2 , where ri is theNi(1 2 r )j
probability of detecting an individual of the species in
the jth survey. As the Ni are unknown, this approach
requires that a distribution for how Ni varies across
sites be specified. Estimation under this model permits
estimation of occupancy in the face of abundance-re-
lated heterogeneity.

An additional comment on the method for estimating
occupancy detailed by MacKenzie et al. (2002) is that
an equal number of surveys across all sites is not re-
quired. By having the ability to deal with ‘‘missing
observations,’’ MacKenzie et al. (2002) developed a
very flexible method that could be used to analyze data
from a number of different designs that could be used
in practice (e.g., repeatedly surveying only a subset of
all sites or surveying only until the species is first de-
tected). Finally, we note that recent work on single-
season occupancy modeling includes development of
a goodness-of-fit test for the above model (MacKenzie
and Bailey 2004) and an approach for modeling and
estimating possible dependencies in occupancy pat-
terns (and detection probabilities) of multiple species
(MacKenzie et al. 2004).

A multiple season model

MacKenzie et al. (2003) extended the single season
model of MacKenzie et al. (2002) to multiple seasons
by introducing two parameters that govern changes in
the occupancy state of sites over time. These param-
eters can be viewed as the vital rates associated with
occupancy dynamics. Let «t be the probability that a
site occupied in season t is unoccupied by the species
in season t 1 1 (local extinction), and gt be the prob-
ability that an unoccupied site in season t is occupied
by the species in season t 1 1 (colonization). Therefore,
a matrix of the probability of a site transitioning be-

tween occupancy states between seasons may be de-
fined as;

1 2 « «t t
f 5 ,t [ ]g 1 2 gt t

where rows of ft represent the occupancy state of the
site at t (state 1 5 occupied; state 2 5 unoccupied),
and columns represent the occupancy state at t 1 1.
For completeness, a row vector f0 may be defined as
f0 5 [c1 1 2 c1], where c1 is the probability the site
is occupied in the first season (t 5 1).

To incorporate detection probabilities into the model,
define a column vector pH,t that denotes the probability
of observing the portion of the detection history Hi

relevant to season t, conditional upon occupancy state.
For instance

p (1 2 p )pt,1 t,2 t,3p 5101,t [ ]0

3 
(1 2 p P t, j

j51 p 5000,t  
1 

where pt,j denotes the detection probability for visit j
in season t. Note that whenever the species is detected
at least once during a season, the second element of
pH,t will be zero because it is impossible to observe
such a history if the site is in the unoccupied state.
Similarly, the second element of p0,t will always be 1,
because the all zero history is the only observable out-
come if the site is unoccupied.

For any given detection history, the probability of
observing such an outcome can be expressed as, Pr(Hi)
5 f0 [D(pH,t) ft] pH,K, where D(pH,t) is a 2 3 2k21Pt51

diagonal matrix with the elements of pH,t along the main
diagonal (top left to bottom right), zero otherwise. For
example, consider again the detection history Hi 5
110 000 010. The probability of observing this would be

Pr(H 5 110 000 010)i

5 f D(p )f D(p )f p0 110,1 1 000,2 2 010,3

p p (1 2 p ) 01,1 1,2 1,35 [c 1 2 c ]1 1 [ ]0 0

3 
 (1 2 p ) 0P 2, j1 2 « «1 1  j513  [ ]g 1 2 g1 1 0 1 

1 2 « « (1 2 p )p (1 2 p )2 2 3,1 3,2 3,33 [ ][ ]g 1 2 g 02 2

5 c p p (1 2 p )1 1,1 1,2 1,3

3

3 (1 2 « ) (1 2 p )(1 2 « ) 1 « gP1 2, j 2 1 2[ ]j51

3 (1 2 p )p (1 2 p ).3,1 3,2 3,3
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The central term in brackets on the final line represents
the two possibilities for the species during the second
season when it was not detected. Either the species (1)
did not go locally extinct between seasons 1 and 2, was
undetected in the three surveys during the second sea-
son, and continued to occupy the site into season three
(with probability (1 2 «1) (1 2 p2,j) (1 2 «2)); or3P j51

(2) went locally extinct between seasons 1 and 2, and
recolonized the site between seasons 2 and 3 (with
probability «1g2).

Once the probability of observing each detection his-
tory has been established, the model likelihood can be
formed as usual, i.e.,

U

L(c , «, g, p z H , . . . , H ) 5 Pr(H ).P1 1 U i
i51

MacKenzie et al. (2003) describe how missing obser-
vations and covariate information can be included in
the model, and also how the model can be reparame-
terized to get seasonal estimates of occupancy or es-
timates of the rate in change of occupancy.

EXAMPLES

To illustrate how the above occupancy estimation
methods could be used in practice with respect to rare
species, we now consider data collected for the follow-
ing three species: (1) Mahoenui giant weta (Deinacrida
mahoenui) from New Zealand, (2) gaur (Bos frontalis)
from Malaysa, and (3) Blue-ridge salamander (Eurycea
wilderae) from the eastern United States. Each example
is used to demonstrate some aspects of the methods we
describe above: single-season occupancy estimation,
occupancy at multiple study areas with the concept of
borrowing information, and multiple-season occupancy
estimation. For brevity, only relatively simple analyses
are presented here, but note that more complex analyses
could be conducted to further investigate relationships
between occupancy (and related parameters) and co-
variates that have been collected in the field. All anal-
yses have been conducted using Program PRESENCE
(available online).7

Mahoenui giant weta

Weta are one of the more unique and specialized
groups of New Zealand insects. More than 70 endemic
species of weta survive in New Zealand today. Weta
are ancient species of the order Orthoptera (e.g., grass-
hoppers, crickets, and locusts) and remain almost un-
changed from their ancestors of 190 million years ago.
All weta are flightless and relatively large, and mem-
bers of a subgroup called the giant weta are among the
largest insects in the world. Most giant weta species
are now endangered, with populations having been dec-
imated by the introduction of mammalian predators.
Currently, most species only survive on predator-free
offshore islands or in protected reserves.

7 ^http://www.mbr-pwrc.usgs.gov/software&

The Mahoenui giant weta (Deinacrida mahoenui) is
endemic to the King Country on the North Island of
New Zealand. The main naturally occurring population
is restricted to a 240-ha block of reverting farmland at
Mahoenui (near the town of Te Kuiti), which is des-
ignated as a scientific reserve, with a second population
near Otangiwai 20 km to the east. The reserve is char-
acterized by steep-sided gullies and is largely covered
by dense gorse, Ulex europaeus, a perennial pest plant
with sharp spiny stems and bright yellow flowers that
can form dense thickets, originally introduced to New
Zealand as a hedging plant by the early European set-
tlers. The New Zealand Department of Conservation
(DOC) uses goats and cattle to maintain the gorse hab-
itat through browsing. Mahoenui giant weta use gorse
as protection from predators and also as a food source.

In order to monitor the population, in March 2004
DOC began a pilot study to assess the effectiveness of
using occupancy as the state variable of interest. While
ideally DOC would like to monitor abundance of the
species, the main impediments are (1) the weta only
occur at low densities, hence few individuals are likely
to be observed in any given survey; (2) they are not
individually identifiable by natural markings; and (3)
the weta are usually found in the brittle, dead foliage
of a gorse bush, hence attempts to capture and mark
them would likely destroy their apparently preferred
habitat. Thus the decision was made to try occupancy
rather than use unadjusted transect counts as had been
done previously.

Between 23 and 27 March 2004, 72 circular plots of
3 m radius where surveyed for the Mahoenui giant
weta. The plots were randomly positioned within the
more accessible regions of the reserve. This means
some caution must be used if the results are generalized
to the entire reserve, but restricting the sample frame
was determined to be reasonable given it was a pilot
study. Each plot was surveyed between three and five
times during the 5-d period. Three different surveyors
were used and the study was designed such that each
surveyor surveyed each site at least once. This allows
surveyor-specific detection probabilities to be estimat-
ed.

Weta were detected at 35 of the 72 plots (a naı̈ve
occupancy estimate of 0.49), however often weta were
only detected in one or two of the repeated surveys
clearly indicating that detection probabilities are ,1.
Conceivably, there may be a number of plots where
weta were indeed present but were simply never de-
tected during the surveys. Here we use the single-sea-
son occupancy model described above to estimate the
proportion of plots that may be occupied. We consider
four simple models. In each case occupancy probability
is assumed to be constant for all plots (denoted as c(·)),
and detection probability was either constant (p(·)), dif-
ferent on each day (p(t)), varied by surveyor (p(S)) or
varied by both day and surveyor (p(t 1 S)).
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TABLE 1. Summary of models fit to Mahoenui giant weta
example.

Model AIC DAIC ĉ SE( )ĉ

c(·)p(t 1 S) 258.55 0.00 0.64 0.09
c(·)p(t) 260.80 2.25 0.63 0.09
c(·)p(S) 263.36 4.81 0.62 0.09
c(·)p(·) 265.79 7.24 0.62 0.09

Notes: Models are ranked in terms of Akiake’s Information
Criterion (AIC). The relative difference in values (DAIC),
estimates of occupancy ( ), and its standard error (SE( )) areˆ ˆc c
also given.

TABLE 2. Summary of model selection procedure for the Malaysian gaur example.

Model DAIC w

(SE( ))ˆ ˆc c

Area 1 Area 2 Area 3

c(area)p(·) 0.00 0.62 0.79 0.66 0.13
(0.20) (0.21) (0.13)

c(area)p(average) 1.00 0.38 0.90 0.61 0.13
(0.29) (0.19) (0.13)

c(area)p(area) 1.28 0.86 0.60 1.00
(0.26) (0.18) (0.00)

Model-averaged 0.83 0.64 0.13
estimates (0.24) (0.20) (0.13)

Notes: Models are ranked in terms of Akiake’s Information Criterion (AIC). Presented here
are the relative difference in values (DAIC), AIC model weights (w), estimates of occupancy
( ), and its associated standard error (SE( ), in parentheses) for each of the three study areas.ˆ ˆc c
Model-averaged estimates are based upon the first two models only.

The four models are ranked for parsimony in terms
of Akiake’s Information Criterion (AIC; Burnham and
Anderson 2002), with the results summarized in Table
1. In this instance, regardless of the structure used to
model detection probability, estimates of occupancy
(and its associated standard error) are similar, approx-
imately 30% greater than the naı̈ve estimate. This result
is partially due to the design of the study so will not
always be the case. There is some evidence that the
surveyors differed in their ability to detect weta. If
surveyors always sampled the same sites, a form of
heterogeneity in detection probability would be intro-
duced, resulting in underestimates of occupancy if not
accounted for (Royle and Nichols 2003).

Malaysian gaur

The gaur (Bos frontalis) is a large (up to 1000 kg)
Asian bovid found in scattered areas of suitable habitat
(forests and associated grassy clearings) extending
from India and Nepal eastward to Indochina and the
Malaysian peninsula. The species is believed to have
declined dramatically over the past several decades. It
is classified as vulnerable by IUCN, as endangered by
the U.S. Department of Interior, and is listed on ap-
pendix 1 of CITES (Nowak and Paradiso 1983).

Kawanishi studied tigers (Panthera tigris) and po-
tential prey species in three extensive study areas with-
in Taman Negara National Park in Peninsular Malaysia
(Kawanishi and Sunquist 2004). A grid with nine 5 3
5 km cells was superimposed on each of the three study

areas for the purpose of estimating occupancy by gaur.
Each grid cell was sampled monthly for 5 mo using
camera traps and ground surveys for animal sign. Vir-
tually all travel was on foot, so the three areas were
sampled sequentially over the period 1999–2001.

Gaur were detected in six, five, and one of the grid
cells in each of the study areas, leading to naı̈ve oc-
cupancy estimates of 0.67, 0.55, and 0.11 respectively.
Applying a constant detection single-season occupancy
model to the data from each study area separately, we
obtain occupancy estimates of 0.86 and 0.60 for the
two areas with adequate data. Only one gaur was de-
tected at a single site in the third data set, leaving us
uncomfortable with attempting to estimate occupancy
separately for this area. In order to improve the esti-
mates of occupancy and obtain some inference about
the third study area, here we model the data from the
three study areas within a single framework by sharing
information about the probability of detecting gaur
among the areas. We consider two models for these
data: (1) detection probability is the same at all sites,
or (2) detection probability at the third area is the av-
erage (on the logistic scale) of the other two areas.
Note that a third model in which detection probabilities
are different at each site is equivalent to fitting the
occupancy model to each data set independently, which
is the model that does not permit reasonable inference
about the third area. For all models we wish to obtain
area specific estimates of occupancy.

Table 2 presents a summary of the model selection
procedure for each of these models. For the purpose of
determining model weights and model averaged esti-
mates of occupancy (Burnham and Anderson 2002),
the third model has not been considered due to the
concerns of estimator reliability. Note that the model
averaged estimates of occupancy for study areas 1 and
2 are reasonably similar to those obtained when each
data set is analyzed separately, however the estimate
for area 3 appears much more realistic.

Blue-ridge salamander

The Blue-ridge salamander (Eurycea wilderae) is
one of more than 75 salamander species found in the
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TABLE 3. Parameter estimates and summary of model selection procedure according to AIC for the Blue-ridge salamander
(Eurycea wilderae) example.

Model DAIC w 98ĉ 98ĝ 99ĝ 00ĝ 98«̂ 99«̂ 00«̂ p̂98 p̂99 p̂00 p̂01

c(98)g(·)«(·)p(yr) 0.00 0.68 0.87 0.16 0.16 0.16 0.22 0.22 0.22 0.52 0.41 0.28 0.28
c(98)g(·)«(yr)p(yr) 2.95 0.16 0.87 0.17 0.17 0.17 0.24 0.26 0.06 0.52 0.41 0.29 0.26
c(98)g(yr)«(·)p(yr) 3.75 0.10 0.85 0.32 0.16 0.13 0.22 0.22 0.22 0.54 0.41 0.28 0.28
c(98)g(yr)«(yr)p(yr) 6.70 0.02 0.84 0.33 0.17 0.14 0.24 0.25 0.06 0.54 0.41 0.29 0.26
c(98)g(·)«(·)p(·) 6.98 0.02 0.94 0.17 0.17 0.17 0.27 0.27 0.27 0.38 0.38 0.38 0.38
c(98)g(·)«(yr)p(·) 10.18 0.00 0.93 0.19 0.19 0.19 0.26 0.35 0.21 0.39 0.39 0.39 0.39
c(98)g(yr)«(·)p(·) 10.51 0.00 0.94 0.00 0.12 0.21 0.27 0.27 0.27 0.38 0.38 0.38 0.38
c(98)g(yr)«(yr)p(·) 13.59 0.00 0.94 0.00 0.13 0.23 0.25 0.36 0.21 0.39 0.39 0.39 0.39

Model averaged estimates 0.87 0.18 0.16 0.16 0.22 0.23 0.19 0.52 0.41 0.29 0.28
Standard errors 0.08 0.14 0.11 0.11 0.07 0.08 0.09 0.06 0.05 0.05 0.05

Naı̈ve estimates 0.76 0.44 0.21 0.27 0.28 0.44 0.29 1.00 1.00 1.00 1.00

Note: DAIC is the relative difference in AIC values from the top ranked model; w is the AIC model weight. Bold values
are referred to in the text. Subscripts in column heads represent years 1998–2001.

southeastern United States. E. wilderae has a dual life
phase, with a larvae period lasting 1–2 years in the
southern Appalachians (Bruce 1988). Usually consid-
ered a stream-side salamander, E. wilderae is believed
to undergo seasonal migration away from streams dur-
ing warmer months and can often be found far from
running water (Petranka 1998). Because E. wilderae
potentially uses both aquatic (stream) and terrestrial
habitats, it was proposed as a management indicator
species (MIS) for National Forests in North Carolina
(FY2002 Monitoring and Evaluation Report: National
Forests in North Carolina; available online).8 Recently,
many proposed amphibian and reptile species have
been removed from MIS lists by the Forests Service
because count-based statistics for these species show
high temporal and spatial variability, thus making in-
ferences about relationships between population and
habitat changes unreliable and difficult. E. wilderae
shares this characteristic and may be considered ‘‘rare’’
because it occurs at low densities in terrestrial habitats.
For example, in a capture–recapture study in Great
Smoky Mountains National Park (GSMNP), Bailey et
al. (2004a) sampled 15 3 15 m forest plots 14–16 times
each of three spring sampling seasons. E. wilderae was
detected on more plots than any other salamander spe-
cies (16 out of 20 plots), but the average number of
captured individuals per sampling occasion was less
than 1. Abundance estimates are impossible for E. wild-
erae without borrowing information from other spe-
cies, times or locations (see Bailey et al. 2004a). Al-
ternatively, occupancy has been proposed as a more
appropriate state variable for large-scale salamander
monitoring programs in the southeastern United States
(Bailey et al. 2004b).

We used the multiple season model presented above
to estimate occupancy dynamics (vital rates) for E.
wilderae populations found within a single watershed
within GSMNP. In 1998, Hyde and Simons (2001) ini-

8 ^http://www.cs.unca.edu/nfsnc/me2002/fy2002 me
report.pdf&

tiated a salamander study within the Roaring Fork Wa-
tershed (Mt. LeConte USGS Quadrangle) and Bailey
et al. (2004b) continued to sample a subset of 39 sites
for a total of four years (1998–2001); only these 39 sites
are used in this analysis. Each sample site was sampled
with both a natural cover transect (50 m long 3 3 m
wide) and a parallel coverboard transect consisting of
five stations placed 10 m apart (see Hyde and Simons
[2001] for details). Sites were located near trails and
spaced approximately 250 m apart, beginning at a ran-
dom point at least 250 m from each trail head. Sites
were sampled once per month in 1998 (June–August),
then once every two weeks from early April to late June
for the remaining three years of the study. Relative abun-
dance information was collected on all salamander spe-
cies, but we use only detection/nondetection information
for E. wilderae in this analysis.

We used MacKenzie et al.’s (2003) initial parame-
terization to estimate initial occupancy (1998), vital
rates (colonization and extinction), and detection prob-
abilities. A number of covariates were measured at each
site (e.g., elevation and stream proximity) but here we
only consider a suite of simple models where vital rates
and detection probabilities are year specific or constant
across time. We expected yearly differences in all mul-
ti-season parameters as rainfall levels varied consid-
erably among years, with total April–June precipitation
declining over the last three years of the study. Again
for brevity, we assume the probability of detecting E.
wilderae in a single survey of a site was constant within
each year.

Table 3 presents the parameter estimates and sum-
mary of the model selection procedure for the eight
simple models considered. Note that the models with
constant detection probability among years (which is
an implicit assumption when comparing naı̈ve counts)
constitute ,3% of the total AIC model weights. That
is, from this analysis there is very strong support for
the hypothesis that detection probabilities vary over
time suggesting reliable conclusions about the popu-
lation can only be made if these detection probabilities
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differences are explicitly accounted for. Considering
the model averaged estimates, the proportion of sites
occupied by E. wilderae in 1998 was 0.87, the prob-
ability of a site being colonized between years is ø0.16,
and the probability of E. wilderae going local-extinct
from a site was ø0.20. By using the fact that sites
occupied in the next year are a combination of occupied
sites this year where the species did not go locally
extinct, and unoccupied sites that the species colonizes
(i.e., ct11 5 ct (1 2 «t) 1 (1 2 ct)gt), we can determine
the proportion of sites occupied in years 1999–2001.
Using the model averaged parameters estimates we ob-
tain the values 0.70, 0.59, and 0.54 respectively, sug-
gesting a downward trend in occupancy over this time
frame for E. wilderae that is consistent with our a priori
expectations based on seasonal rainfall records. It is
worth noting that estimated vital rates are lower than
naı̈ve estimates, suggesting that some of the apparent
turnover is likely the result of nondetection rather than
true colonization and extinction events.

DISCUSSION

It is particularly unfortunate that rare species are
simultaneously the species for which strong inferences
about state variables and vital rates are most needed
and the species for which such information is most
difficult to obtain. These dual concerns provide a for-
midable challenge to conservation biologists and wild-
life biologists to obtain useful information on which
to base management decisions in the face of substantial
sampling difficulties. We are pleased at recent efforts
to meet this challenge, including this Special Feature
and the new edited volume by W. L. Thompson (2004).

We began this paper with a brief summary of sta-
tistical principles important in estimating abundance
and related parameters of animal populations. The re-
sponse of many biologists and managers to the poor
sample sizes achieved in studies of rare species is to
abandon these principles and simply base inference on
raw count statistics. We do not believe that this re-
sponse is satisfactory, so we discussed two general ap-
proaches to inference that we hope might be useful for
rare species.

The borrowing of information is nothing new and
indeed underlies all inferential statistics. Our sugges-
tion is simply to extend the basic idea beyond the units
of aggregation typically used in statistics (e.g., indi-
viduals, replicate locations) to possibly disparate times
and locations, to different data sources, and even to
different species. In the case of rare species, such ag-
gregation may permit reasonable inference in situations
where it would not be possible with more typical dis-
aggregated treatments.

The use of state variables other than abundance is
also not new. In particular, other investigators have
used occupancy as a state variable of interest for rare
species. However, until the last year or so, these past
uses have ignored the issue of detection probability.

We described a framework for drawing inferences
about occupancy, changes in occupancy, and the vital
rates responsible for such changes using models that
properly incorporate detection probability. As illus-
trated by our examples, we believe that these methods
hold great promise for use in studies of rare species.

In summary, we recognize that rare species present
problems to biologists and managers who wish to study
their populations. However, we do not believe that the
appropriate response to such problems is to abandon
reasonable inference methods. Instead, we recommend
consideration of the methods provided in this Special
Feature. In particular, we recommend consideration of
borrowing information and using state variables such
as occupancy as means of dealing with detection prob-
ability when studying rare species.
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IMPROVING THE PRECISION OF ESTIMATES OF THE FREQUENCY
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Abstract. The probability of a rare event is usually estimated directly as the number
of times the event occurs divided by the total sample size. Unfortunately, the precision of
this estimate is low. For typical sample sizes of N , 100 in ecological studies, the coefficient
of variation (CV) of this estimate of the probability of a rare event can exceed 300%. Sample
sizes on the order of 103–104 observations are needed to reduce the CV to below 10%. If
it is impractical or impossible to increase the sample size, auxiliary data can be used to
improve the precision of the estimate. We describe four approaches for using auxiliary data
to improve the precision of estimates of the probability of a rare event: (1) Bayesian analysis
that includes prior information about the probability; (2) stratification that incorporates
information on the heterogeneity in the population; (3) regression models that account for
information correlated with the probability; and (4) inclusion of aggregated data collected
at larger spatial or temporal scales. These approaches are illustrated using data on the
probability of capture of vespulid wasps by the insectivorous plant Darlingtonia californica.
All four methods increase the precision of the estimate relative to the simple frequency-
based estimate (absolute precision 5 1.26, relative precision [CV] 5 70%): stratification
(absolute precision 5 1.10, CV 5 62%); regression models (absolute precision 5 1.59, CV

5 55%); Bayesian analysis with an informative prior probability distribution (absolute
precision 5 4.28, CV 5 47%); and using temporally aggregated data (absolute precision
5 6.75, CV 5 36%). When informative auxiliary data is available, we recommend including
it when estimating the probability of rare events.

Key words: aggregation; Bayesian inference, coefficient of variation; estimators; precision; rare
events; regression; sampling, stratification.

INTRODUCTION

Rare events are important in ecology and evolution.
Familiar examples include genetic drift in founding
populations (Mayr 1963), seedling establishment in
plant populations with low growth rates (Harper 1977),
successful establishment of seedlings following long-
distance dispersal (Clark et al. 2001), species extinction
(Roberts and Solow 2003), and extreme meteorological
events such as ice storms, wildfires, or hurricanes
(Whelan 1995, Foster and Aber 2003). The ecology
(Rabinowitz 1981) and biogeography (Jetz and Rahbek
2002) of rare species may be very different from that
of common species, and the statistical distribution of
rare species is a key prediction that distinguishes many
models of community structure (Williams 1964, Hub-
bell 2001, Magurran 2003, Chave 2004).

Precisely estimating the probability of rare events is
a statistical challenge. If the true probability of a dis-
crete rare event is p, the standard frequentist estimate
of this probability, p̂, is calculated as the number of

Manuscript received 31 March 2004; revised 16 June 2004;
accepted 12 July 2004; final version received 20 September 2004.
Corresponding Editor: A. A. Agrawal. For reprints of this Special
Feature, see footnote 1, p. 1079.

4 E-mail: pdixon@iastate.edu

observations n of the rare event divided by the total
number of observations (or trials) N (Gotelli and El-
lison 2004): p̂ 5 n/N. The standard error of this estimate
SEp̂ 5 , and its coefficient of variation CVp̂Ïp̂(1 2 p̂)/N
5 SEp̂ /p̂.

If an event is truly rare (p , 0.01), its frequentist
estimate p̂ has reasonable precision (CVp̂ # 10%) only
when the sample size N exceeds 1000 total observa-
tions or trials. For N , 100 total observations, typical
for many ecological studies, CVp̂ may exceed 300%.
When the precision is low, it can be difficult to detect
trends in the frequency or differences between groups.
Increasing the precision provides better estimates and
higher power for statistical tests of trends and differ-
ences. The precision of an estimate can also be im-
portant for policy decisions (e.g., Lewison et al. 2004).
In this article, we describe four methods that can pro-
vide more precise estimates of the probability of a rare
event. All of these methods require auxiliary data, but
obtaining this auxiliary data usually requires less effort
or cost than obtaining larger samples of the rare event
itself.

EXAMPLE DATA

We use data on the capture efficiency of wasps by
the insectivorous pitcher plant, Darlingtonia califor-
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PLATE. 1. Darlingtonia californica, a rare carnivorous plant species endemic to the Siskiyou Mountains of Oregon and
northern California, which grows in a threatened plant community type—serpentine fen. Photo credit: A. M. Ellison.

nica (Sarraceniaceae), to illustrate methods by which
the precision of estimates of the probability of rare
events can be increased (see Plate 1). Although prey
capture by carnivorous plants provides nutrients re-
quired for successful sexual reproduction (reviewed in
Ellison and Gotelli 2001), prey capture may be infre-
quent or rare (Zamora 1995, Zamora et al. 1998); most
insects that enter pitcher-plant traps are not captured
(Newell and Nastase 1998).

Like other pitcher plants in this family, Darlingtonia
grows as a rosette of leaves that are modified to form
pitcher-shaped traps (Arber 1941). These pitchers se-
crete copious nectar that attracts foraging insects, es-
pecially vespulid wasps (Vespula atropilosa) and ants
(Tapinoma sessile). As part of a long-term study of the
demography of Darlingtonia, we recorded the frequency
with which Darlingtonia captures wasps and estimated
the conditional probability of a successful capture: p 5
P(capture z visit). During July 2002, Ellison, Gotelli and
their colleagues observed 753 Darlingtonia plants for
one-half hour each, for a total of 376.5 plant-hours of
observation (A. M. Ellison, R. J. Emerson, E. J. Farns-
worth, N. J. Gotelli, C. M. Hart, H. R. Steinhoff, and
S. E. Wittman, unpublished data). During this time, N
5 157 wasps were seen to visit the pitchers, and n 5 2
of these wasps were captured. For each visit, we also
recorded the time a wasp spent in each pitcher, and we
measured the orientation of the pitcher’s opening (as
degrees east of north). Assuming that the observed visits
are a simple random sample of visits, the frequentist

estimate of p is p̂ 5 n/N 5 2 captures/157 visits 5
0.0127. The estimated standard error for p̂ is SEp̂ 5

5 0.0089. These estimates do not assumeÏp̂(1 2 p̂)/N
that the per-visit probability of capture is the same for
all visits. When the sample is a simple random sample,
heterogeneity in the population is irrelevant (Thompson
2002). Because the probability of capturing a wasp is
very low and the total sample size is small, the precision
of this frequentist estimate (p̂) of capture probability by
Darlingtonia is poor: CVp̂ 5 70.2% and precision (de-
fined below) 5 1.26.

MEASURES OF PRECISION OF A PROBABILITY

Precision ‘‘refers to the dispersion of the observa-
tions’’ (Marriott 1990). It can be quantified by at least
four different, but related, measures (Table 1). The most
familiar are measures of absolute precision, the stan-
dard error (SE) and variance (s2). Because more precise
estimates have smaller SEs, it is also common to define
precision as 1/s2, especially in the Bayesian literature
(Gelman et al. 1995:43).

When used to compare events that have different
probabilities, absolute measures of precision have the
counter-intuitive property that rarer events are more
precisely measured. To illustrate this, consider an event
(such as a visit of a wasp to a Darlingtonia pitcher)
that occurs as an independent Poisson process over time
with a constant rate of 0.1 visits/hour. If a plant is
watched for a one-hour period, the probability of a visit
during that hour is P(visit) 5 1 2 e20.1 5 0.095. If 100
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TABLE 1. Measures of absolute and relative precision when a proportion, p, is estimated from
a simple random sample of n observations.

Measure Absolute measures Relative measures

Variability Standard error (SE): Coefficient of variation:
Ïp(1 2 p)/n Ï(1 2 p)/(pn)

Precision 1/s2 5 (1/SE)2 (1/CV)2 5 p2/s2

plants are watched, each for one hour, the SE of the
visit probability is 0.029. If a plant is watched for a
one-minute period, the probability of a visit during that
one minute is P(visit) 5 1 2 e20.1/60 5 0.00167. If 100
plants are watched, each for one minute, the SE of the
one-minute-visit probability is much smaller, 0.00408.
This apparent increase in precision is an artifact of a
rarer event.

Measures of relative precision, including the CV or
relative variance (Table 1), avoid this counterintuitive
behavior by expressing the precision relative to the
probability of the event. Rarer events are less precisely
estimated, on a relative scale, than are more common
events. Measures of relative precision are also unitless,
unlike absolute measures of precision. To continue the
example from the previous paragraph, when 100 plants
are watched for an hour each, the CV is 0.029/0.095 5
32%. When 100 plants are watched for a minute each,
the CV is much larger, 0.00408/0.00167 5 244%. The
estimate from the shorter observation period is less
precise, when measured using relative precision. The
CV is one of many possible measures of relative pre-
cision. Others include the reciprocal of the CV, which
is larger for more precise estimates, or the reciprocal
of the CV2, which is the relative analog of the Bayesian
measure of precision (1/s2).

HOW CAN THE PRECISION BE INCREASED?

Imprecise estimates of a probability are not unique
to the Darlingtonia example. They are common when-
ever events are rare. When an event has a probability
of occurring less than five times in a hundred trials
(P(event) 5 p 5 0.05), the coefficient of variation (CV)
of estimates of this probability from samples of N 5
100 are larger than 50%. The CV can exceed 300%
when the event is very rare (p , 0.01; Fig. 1). On the
other hand, when events are common, p can be esti-
mated with high precision even with moderate sample
sizes. If p 5 0.5, a CV of 10% can be obtained with a
sample size of N 5 100.

Increasing the total sample size N increases the pre-
cision of the estimate of the probability of a rare event.
For example, increasing N from 100 to 500 independent
observations decreases the CV by a factor of .Ï1/5
However, if an event is rare, a precise estimate (CV #
10%) requires very large sample sizes. For example,
if p 5 0.01, a sample size of N 5 9900 is required to
achieve CV 5 10%. Such large sample sizes may be
expensive, difficult, or impossible to obtain.

Alternatively, the precision of the estimate of a rare
event can be increased by combining the primary data
(e.g., the observed numbers of visits and captures in
the Darlingtonia dataset) with auxiliary data that pro-
vides additional information about the probability of
the rare event. Auxiliary data may come from many
different sources, of which we discuss four: prior in-
formation, stratified sampling, covariates, and aggre-
gated data. We use the Darlingtonia data set to illustrate
the methods by which auxiliary data can be used to
improve the precision of point estimates of probability.
We will compare methods using relative precision (CV)
and absolute precision (0.0001/s2). We use 0.0001/s2

instead of 1/s2 as a measure of absolute precision be-
cause the factor of 0.0001 converts the variance of a
proportion to the variance of a percentage, which pro-
vides a more intuitive scale for interpreting absolute
precision.

Incorporating prior information
using Bayesian methods

Prior information about the probability p of a rare
event can be derived from other studies of the same or
related species, in the same or in different locations.
Bayesian inference can be used to combine this prior
information with the observed data (Ellison 1996). If
probability estimates from the primary data are similar
to those provided by the prior information, the com-
bined estimate will have greater precision than the es-
timate based on the primary data alone.

Bayesian inference treats parameters, such as the
probability p that Darlingtonia captures a wasp, as
random variables described by statistical distributions
(Barnett 1999, Ellison 2004). The distribution of each
parameter summarizes both the expected value of the
parameter and its variance. Bayesian inference uses the
data (observations), along with information known
about the parameter(s) before the data are analyzed (the
prior probability distribution, or simply the prior) to
construct a new distribution (the posterior probability
distribution, or simply the posterior) that expresses
what is known about the parameter after the data are
analyzed.

The posterior is computed from the data and the prior
using Bayes’ Theorem (Ellison 2004):

f (C z V, p) f (p)
f (p z C, V ) 5 . (1)

f (C z V, p) f (p) dpE
In Eq. 1, f (p) is the prior, f (C z V, p) is the likelihood
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FIG. 1. The relationship between four measures of precision (Table 1) and the probability of an event when an event is
rare (probability p , 5%). (A) standard error (SE), (B) coefficient of variation (CV), (C) absolute precision (presented as a
log value), (D) relative precision, (1/ CV)2. Each measure of precision is calculated for sample sizes of N 5 100 (solid line)
and N 5 500 (dashed line).

of the observations, and f (p z C, V) is the posterior.
The vertical bars indicate which quantities are consid-
ered fixed. That is, f (C z V, p) is the probability dis-
tribution of C (the number of captures), conditional on
the fixed values of V (the number of visits) and p (the
capture probability). The integral in the denominator
is a normalizing constant that ensures that the posterior
distribution is a valid probability distribution (i.e., 0
# f (p z C, V) # 1). Using Bayes’ Theorem requires
that the distributions of both the data and the prior be
specified.

In the Darlingtonia data set, the data ( f (C z V, p))
are the number of captures observed in a certain num-
ber of visits. A binomial distribution is commonly used
to model count data when the outcomes (capture or
not) are independent, the probability of success (cap-
ture) is the same for all visits, and where the number
of success (captures) cannot exceed the number of vis-
its (Gotelli and Ellison 2004).

When the data follow a binomial distribution, a Beta
distribution,

p ; Beta(a, b) (2)

is a convenient choice for the prior because the integral
in the denominator of Eq. 1 can be evaluated analyti-
cally (Gelman et al. 1995). The values of the parameters
a and b in the beta distribution (Eq. 2) summarize our

knowledge of the capture probability before the data
are analyzed. When a . 1 and b . 1, the mean m of
the Beta(a, b) distribution equals a/(a 1 b) and the
mode equals (a 2 1)/(a 1 b 2 2). Because the Beta
distribution is skewed, the mode is the more appro-
priate measure of location. The variance s2 of a Beta(a,
b) distribution is m(1 2 m)/(a 1 b 1 1). The posterior
distribution given by Eq. 1 is also a Beta distribution
(Gelman et al. 1995), and simulation of the posterior
(e.g., with Markov chain Monte Carlo methods; Gilks
et al. 1996) is not required. The parameters of the pos-
terior depend on the parameters of the prior distribution
(a, b) and the data (C, V):

p z C, V; Beta(a 1 C, b 1 V 2 C) . (3)

The mode of the posterior is an updated estimate of
the capture probability, and the standard deviation is
an updated estimate of the variability:

a 1 C 2 1
mode 5 (4)

a 1 b 1 V 2 2

(a 1 C)(b 1 V 2 C)
SD 5 . (5)

2!(a 1 b 1 V ) (a 1 b 1 V 1 1)

The choice of prior distribution (i.e., of a and b) in-
fluences the posterior distribution, although the influ-
ence of the prior is small when V and C are large.
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TABLE 2. Parameters of Beta distributions used as prior distributions in the Bayesian analysis of the Darlingtonia data,
along with the resulting posterior distributions of the capture probability.

Parameter

Prior

Mode SD a b

Posterior

Mode SD CV (%) Precision

Data 0.0127 0.0089 70 12.5
Prior A 0.00931 0.0018 28 2873 0.0095 0.0018 19 31.5
Prior B 0.00931 0.0056 4.335 355.8 0.0104 0.0048 47 4.28
Prior C 0.00931 0.018 1.622 67.24 0.0117 0.0083 71 1.44
Prior D 0.00931 0.056 1.145 16.38 0.0124 0.010 80 0.99
Prior E 0.50 0.0833 1 1 0.0127 0.0108 85 0.86

Notes: All distributions except the uninformative prior (prior E) have a mode at the capture probability estimated by Newell
and Nastase (1998) for the confamilial species Sarracenia purpurea. Prior A has a standard deviation (SD) equal to the
sampling uncertainty reported by Newell and Nastase (1998). Priors B, C, and D have larger standard deviations to reflect
uncertainty in the extrapolation across species and study sites. Prior E is the uninformative prior. The mode, SD, and CV

reported in the first line (‘‘Data’’) of the table are the frequentist estimates for these parameters.

The prior distribution can be determined in many
ways (Berger 1985). One is to use an uninformative
prior: a prior for which any value of capture probability
is equally likely. For a probability between 0 and 1,
the uninformative prior is a uniform(0, 1) distribution
which is equivalent to a Beta(1, 1).

Another approach is to use previous research to de-
termine a prior distribution. Newell and Nastase (1998)
estimated the per-visit probability of insect capture by
a related pitcher plant, Sarracenia purpurea, to be
0.0093 (27 captures in 2899 visits with observed out-
comes). If S. purpurea and Darlingtonia are assumed
to have similar per-visit probabilities of insect capture,
these data can be used to specify the prior distribution
for the analysis of the Darlingtonia data. One approach
is to do a Bayesian analysis of Newell and Nastase’s
data, using a noninformative hyperprior (a 5 1, b 5
1) and the data (C 5 27, V 5 2899) in Eq. 3. The
resulting posterior distribution, Beta(28, 2873) can be
used as the prior for the Darlingtonia analysis. This
distribution has a mode 5 0.0093 and SD 5 0.0018.
There is some uncertainty introduced by extrapolating
between species and between studies. This uncertainty
can be expressed by increasing the standard deviation
of the prior. Accordingly, we used three additional prior
distributions with the same mode but with increasingly
larger standard deviations (Table 2). If multiple prior
data sets are available, the variability among the data
sets can be used to estimate the parameters of the prior
distribution (Birkes and Dodge 1993).

The posterior modes for the five choices of prior are
given in Table 2. The posterior mode lies between the
mode of the prior distribution and the capture proba-
bility estimated solely from the data. When the prior
distribution has a small standard deviation (e.g., Newell
and Nastase’s prior [A] in Table 2), the posterior mode
is very close to the prior mode (Fig. 2). As uncertainty
in the prior increases, the posterior mode approaches
the estimate based on the data (Table 2, Fig. 2).

The SD, CV, and precision (0.0001/s2) of the posterior
distribution summarize the uncertainty in the estimated
capture probability. The improvement in precision

gained by incorporating prior information depends on
the SD of the prior and on the difference between the
expectation of the prior (the probability of prey capture
by Sarracenia) and the expectation of the primary data
(the probability of prey capture by Darlingtonia). If
the two species are very similar (priors A or B in Table
1) the Bayesian estimate is considerably more precise.
When the two species are less similar (priors C or D
in Table 1) or if the prior information is uninformative
(prior E in Table 1), the Bayesian estimate is less pre-
cise than the estimate based on the primary data alone.

Stratified sampling

Stratification, dividing the population into more ho-
mogeneous strata, can lead to a more precise estimate
of a proportion when heterogeneity in p is associated
with identifiable characteristics of the events (Thomp-
son 2002). Stratification can be used to estimate the
probability of a rare event by dividing the population
(e.g., all possible visits by wasps to Darlingtonia) into
subgroups that have different capture probabilities. For
example, one stratum may have a very small capture
probability, another may have a slightly larger capture
probability, and a third stratum may have a large cap-
ture probability. Stratification increases the precision
of the estimated probability by removing the variability
between strata. In this example we assume a simple
random sample of observations within each stratum,
but many other sampling designs could be used
(Thompson 2002).

Strata cannot be defined on the basis of the response
variable itself. In other words, it is not appropriate to
define one stratum as those plants that captured a wasp
(N1 5 2) and the other as those plants that did not (N2

5 155). Instead, strata should be defined a priori based
on knowledge specific to the system. For example, the
size of the plant or the orientation of the pitcher might
be associated with the capture probability. As an il-
lustration, we will use strata defined by the orientation
of the pitcher. Two different definitions of strata will
be used to illustrate the importance of between-strata
heterogeneity in capture probabilities (Table 3). One
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FIG. 2. Plots of the likelihood and prior (solid lines in density plots) and posterior (dashed lines in density plots)
distributions for the five choices of prior distribution in Table 2. Note the different y-axis scales.

TABLE 3. Precision of the estimate of the probability of
capture using two different stratifications of the data.

Parameter

Stratum

A B Total

Stratification 1†
Sample size (visits V) 9 148 157

Number of captures (C) 2 0 2

Capture probability (p̂) 0.222 0 0.0127
SEp̂ 0.138 0 0.00792
CVp̂ 62.1%

Precision 1.59

Stratification 2‡
Sample size (visits V) 19 138 157

Number of captures (C) 2 0 2

Capture probability (p̂) 0.105 0 0.0127
SEp̂ 0.0070 0 0.00852
CVp̂ 66.9%

Precision 1.38

† Stratum A, plants with orientations of 208 or 308; stratum
B, all other plants.

‡ Stratum A, plants with orientations from 108 to 408; stra-
tum B, all other plants.

strata definition separates pitchers facing either 208 or
308 east of north from plants with all other orientations.
The second strata definition separates those plants with
orientations between 108 and 408 east of north from all
other plants.

The estimated capture probability for the entire pop-
ulation from a stratified random sample is

N p̂ 1 N p̂A A B Bp̂ 5 (6)
N 1 NA B

where NA and NB are the population sizes in the two
strata, and p̂A and p̂B are the within-stratum estimates
of the capture probability (Thompson 2002). When the
event of interest only occurs in one stratum, the vari-
ance of the estimated probability is

2N p̂ (1 2 p̂ )A A A2ŝ ( p̂) 5 (7)1 2 [ ]N 1 N nA B A

where stratum A is the stratum including all the events
and nA is the sample size of that stratum. This variance
estimator assumes that the population size is large rel-
ative to the sample size. If this assumption is not ap-
propriate, a finite population correction factor should
be included in the variance estimate (see Thompson
2002 for details).
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FIG. 3. (A) Probability density of visit length, estimated
using a kernel smoother. The two modes are at 4 s and 50 s.
The trough between the two peaks is centered at 13.5 s. (B)
A log-normal quantile-quantile plot of the 86 visit lengths in
the upper peak (visit lengths . 13.5 s). The theoretical quan-
tiles were calculated after accounting for truncation (no value
less than 13.5 s) and censoring (two captures with lengths .
307 s).

Estimating either p̂ (Eq. 6) or its variance s2(p̂) (Eq.
7) requires knowledge of the relative sizes of the strata:
NA/(NA 1 NB). The relative size of the strata may be
estimated by independent criteria, such as stratum cov-
erage or frequency in GIS databases. Because such in-
formation is lacking for the Darlingtonia population,
we assume that the size of each stratum in the popu-
lation is proportional to the size of each stratum in the
sample: NA/(NA 1 NB) 5 9/157 for the first stratum
(pitchers oriented either 208 or 308), and 19/157 for the
second (pitchers oriented between 108 and 408).

Because stratum sizes were estimated from the sam-
ple itself, the capture probability p̂ from either stratified
sample (0.0127) is exactly the same as the estimate
from the entire sample (Table 3). However, stratified
sampling provides slightly more precise estimates of
p (CV 5 62.1% and 66.9% and absolute precision 5
1.59 and 1.38 for the two definitions, respectively; Ta-
ble 3) than do estimates based on the unstratified data
(CV 5 70.2%, absolute precision 5 1.26). The first
stratification (pitchers oriented either 208 or 308 vs. all
others) is more precise than the second (Table 3) be-
cause the former has a larger between-strata difference
in capture probability.

Stratification is especially useful when the proba-
bility of a rare event varies greatly among a small num-
ber of strata. However, if there are many strata, the
number of observations per stratum is likely to be small
and the stratum-specific probability will be poorly es-
timated.

Models incorporating covariates

Additional characteristics of the individuals may be
measured. If these characteristics are associated with
the rare event, they could be used either to stratify the
observations (as in the previous approach) or to con-
struct a model, e.g., a logistic regression model (Hos-
mer and Lemeshow 1989), to predict p for a specified
set of covariates. The overall capture probability can
be estimated by combining the model with information
about the distribution of covariates in the population.
The distribution can be enumerated when covariate in-
formation is available for all elements of the population
or estimated from a simple random sample of the pop-
ulation. If the event is very rare (,10 events per co-
variate incorporated in the logistic regression; Van
Belle 2002), logistic regression may not be useful for
modeling the probability of very rare events.

In some cases, the event of interest is determined by
an underlying continuous random variable. One ex-
ample of this approach is the analysis of flood fre-
quencies (Haan 2002). Floods are defined when water
level exceeds a critical height for a specific patch of
ground. The probability of flooding is the probability
that the water level exceeds the critical height. Flood-
frequency analysis uses a model for the distribution of
water levels to estimate the probability of flooding
(Hahn 2002).

We used this last approach to estimate the probability
that a wasp is captured by modeling the distribution of
the length of time (visit lengths) that a wasp spends in
a single pitcher. Visit lengths for noncaptured wasps
ranged from a minimum of 1 s to a maximum of 307
s, with a median of 17 s. The empirical distribution of
logarithmically transformed visit lengths is bimodal,
with peaks at 4 and 50 s (Fig. 3A). The distribution of
the logarithmically transformed values in the upper
peak is very close to a normal distribution, as shown
by a quantile-quantile plot (Fig. 3B). A two-component
normal mixture model was fit to the log-transformed
visit lengths by maximum likelihood. The two ob-
served captures were considered censored observa-
tions, i.e., visit length .307 s. The upper peak was
estimated to contain p 5 59.0% of the visit lengths
and have a normal distribution with x̄ 5 3.9 and SD 5
0.94.

The probability that a visit length exceeds s seconds
is estimated using the normal cumulative distribution
function, F(z):

log s 2 x̄
P̂(visit length . s) 5 y 1 2 F (8)1 2[ ]SD

where y is the probability that a visit is in the upper
peak. Eq. (8) only applies to long visits where the con-
tribution from the lower peak can be ignored.

Calculating the capture probability from this distri-
bution requires specifying a critical visit length; any
visit longer than that critical length is assumed to be
a capture. This critical value could be determined from
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knowledge of wasp behavior and energetics. Lacking
that information, we used a critical visit length of 307
s, the longest observed visit that did not result in a
capture. The estimated capture probability p̂ is the
probability that a visit exceeds 307 s: p̂ 5 0.59[1 2
F(1.99)] 5 0.0137. The estimate p̂ of p is very sen-
sitive to the choice of critical visit length. For example,
if the critical length is 360 s, the estimate p̂ decreases
to 0.0090.

Bootstrap resampling can be used to estimate the
precision of p̂ (Efron 1981, Dixon 2001). The boot-
strapped standard error of the capture probability is
estimated to be 0.0095, corresponding to a CV of 66%
and precision of 1.10. The estimate from the threshold
model is less precise than the frequentist estimate if
precision is measured using an absolute measure
(0.0001/s2) and more precise if precision is measured
by a relative measure (CV).

Using aggregated data from larger scales

The primary data used to estimate the probability of
a rare event come from observations of individuals,
such as detailed observations of 753 individual Dar-
lingtonia plants. Such data provide information about
both the number of events (e.g., captures) and the num-
ber of trials (e.g., visits). At larger spatial or temporal
scales, we can obtain samples of entire populations and
observe the total number of rare events over a given
interval of time or space (e.g., Lawson and Williams
1994, Plummer and Clayton 1996). This sample yields
the product of the rate of occurrence of the event 3
the number of trials (e.g., capture rate 3 visitation rate),
We can glean indirect information about the rate at
which the rare event occurs from this product. Com-
bining the direct and indirect information using a sta-
tistical model provides a more precise estimate of the
capture probability.

We collected aggregate data on the total number of
wasps captured by Darlingtonia individuals at several
nearby sites over one-hour and two-day periods (A. M.
Ellison, R. J. Emerson, E. J. Farnsworth, N. J. Gotelli,
C. M. Hart, H. R. Steinhoff, and S. E. Wittman, un-
published data). These aggregate data were much easier
to collect; we simply counted the number of wasps
trapped in each pitcher after one hour or two days,
rather than collecting direct behavioral observations.
However in the aggregate data, we only recorded the
number of wasps successfully captured per pitcher; the
number of visits to each pitcher by wasps was not re-
corded.

Direct observations of wasp behavior suggests that
wasps are actively foraging at Darlingtonia pitchers
only for a 4-h period (10:00–14:00 hours) each day,
so the 2-d aggregate data were assumed to reflect all
captures made during 8 h of wasp activity. In the ag-
gregate data, a total of six wasps were captured in a
total of 1416 plant-hours (162 plants in the 2-d sample
5 1296 plant-hours 1 120 plants in the 1-h sample).

This aggregate information can be combined with the
detailed data using a model that relates captures, visits
and aggregated data to capture efficiency and visitation
rate.

We again use a binomial random variable to model
C as a function of p and V:

C z V ; Bin(V, p). (9)

If visits are rare and independent of each other, the num-
ber of visits in the primary data (direct observation of
visits and captures) follows a Poisson distribution:

V ; Poiss(mD) (10)

where m is the mean number of visits per plant hour
and D is the total number of plant-hours of detailed
observations.

The same model (Eqs. 9 and 10) applies to the ag-
gregate data, except that we did not observe the number
of visits V. A capture in the aggregated data represents
two events: a wasp visits a plant, and then the wasp is
captured. If the probabilities of visitation and capture
are constant, W, the total number of captured wasps in
the aggregate data also has a Poisson distribution:

W ; Poiss(pmA) (11)

where A is the total number of plant hours of aggregated
observations. Because the aggregated information, V,
and W follow Poisson distributions, it is also conve-
nient to use a Poisson distribution for the number of
captures (cf. Eq. 9):

C z V ; Poiss(pV). (12)

Note that the Poisson distribution approximates a bi-
nomial distribution when the counts of rare events (e.g.,
captures) are small (Gotelli and Ellison 2004).

The parameters p and m in Eqs. 9–12 can be esti-
mated using maximum likelihood (Appendix A). When
captures are modeled using a Poisson distribution (Eq.
12), p and m can be estimated using standard software
for Poisson regression (Appendix B).

The estimated capture probability is p̂ 5 0.0107, only
slightly smaller than the estimate from using the de-
tailed observational data alone (Table 4). However, in-
corporating the aggregate data increases the precision
of this estimate; the CV is reduced to 36%, nearly 50%
smaller than the CV of the estimate from only the de-
tailed observational data (Table 4). The absolute pre-
cision is increased to 6.75, slightly more than five times
the precision of the estimate from only the detailed
observational data. To achieve an equally precise es-
timate using only direct observations of wasp foraging
behavior would require just over 2000 plant-hours of
continuous observation.

DISCUSSION

Auxiliary data come in many forms. We have illus-
trated four different methods of using auxiliary data to
increase the precision of the estimate of the probability
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TABLE 4. Summary of estimated capture probabilities and their coeffients of variation for
five estimators of capture probability, ranked from least to most precise.

Estimator Estimate (p̂) CV Precision

Frequentist (proportion of captures) 0.0127 70% 1.26
Threshold model (visit . 307 s 5 capture) 0.0137 66% 1.10
Stratification (best) 0.0127 62% 1.59
Bayesian (using Prior B, Table 1) 0.0104 47% 4.28
Aggregated data 0.0107 36% 6.75

of a rare event (Table 4). For the Darlingtonia data,
the most precise and appropriate estimate of capture
probability was estimated from pooling direct obser-
vations with temporally aggregated data. This method
led to an estimate that was about twice as precise as
the estimate derived from the direct observations alone
(Table 4). Bayesian inference using informative, nar-
row priors yielded slightly less precise estimates. Strat-
ification increased the precision only slightly, whereas
modeling the distribution of visit lengths or Bayesian
inference using informative priors with very large var-
iance or uninformative priors decreased the precision
of the estimate (see also Ellison 2004).

Which method is best? The appropriateness of a par-
ticular method can be judged by examining the as-
sumptions and the choices that each requires. Bayesian
inference assumes that information from previous stud-
ies is available and is relevant to the problem at hand.
The relevance can be quantified by choosing the stan-
dard deviation of the prior distribution; a small standard
deviation (i.e., high precision) implies that the prior is
strongly informative, whereas a large standard devia-
tion (i.e., low precision) implies little prior information
or prior ignorance. If there is more than one previous
study, the between-study standard deviation can be
used as an estimate of the prior standard deviation, but
if only one previous study is available, more care is
needed in setting the precision of the prior, and the
value may appear to be arbitrary. In the Darlingtonia
example, as in many studies of rare events, the pre-
cision of the prior was important because when the
sample size is small, the posterior will reflect more of
the prior. In typical Bayesian analyses reported in the
literature, data are more abundant, and the posterior
reflects the likelihood of the data more strongly than
the prior (Gelman et al. 1995, Ellison 1996, 2004).

Stratification requires strata that can be defined by
characteristics other than the response variable. Strat-
ification is most effective when event probabilities dif-
fer markedly between the strata. Correct use of strat-
ification also requires that the sizes of each stratum in
the sampled population are known. In the Darlingtonia
example, we chose strata and estimated the sizes of the
strata from the sample data. Realistic criteria and sup-
porting information should be used to justify whatever
strata are chosen.

Similarly, the modeling approach that incorporates
covariates depends on a choice of a threshold value at

which a rare event is said to have occurred. In some
situations, such as analysis of flood frequencies (Haan
2002) or the probability of structural failure (Heffernan
and Tawn 2004), the threshold can be identified clearly
and objectively supported. In other situations, such as
the Darlingtonia example, the threshold must be de-
rived from the data (e.g., the length of a wasp visit
designated as a capture was determined from the dis-
tribution of visit lengths). Deriving thresholds from the
data must be done cautiously, and should be justified
whenever possible using independent observations or
methods.

Finally, pooling of direct observations and aggre-
gated data assumes that probability of the rare event
is the same in both sets of data. Using Poisson distri-
butions for both assumes that there is no between-year
or between-site heterogeneity in the rate at which the
rare events occur. This assumption of heterogeneity is
almost impossible to test when the total number of
events is small. In the Darlingtonia example, this as-
sumption was reasonable because the two data sets
were collected over the same years in the same general
area, and each dataset (direct observations and tem-
porally aggregated data) included observations col-
lected from various sites and multiple years.

Estimating the probability p of an event from a series
of independent observations is a very common activity
in ecology and environmental science. The standard
frequentist estimator of p, p̂ 5 number of events n/
number of observations N, is unbiased and straight-
forward to calculate. However, if the event is rare, the
estimate is very imprecise if N , 1000. By incorpo-
rating other kinds of information, some of which may
be from other studies, ecologists can increase the pre-
cision and the usefulness of these estimates. Ecologists
should be alert for ways to incorporate auxiliary data
to improve the precision of conventional statistical es-
timates.
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APPENDIX A

A description of the likelihood function for combining detailed and temporally aggregated data is presented in ESA’s
Electronic Data Archive: Ecological Archives E086-059-A1.

APPENDIX B

The SAS code used to fit a Poison regression to detailed and aggregate data is presented in ESA’s Electronic Data Archive:
Ecological Archives E086-059-A2.
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STATISTICS OF EXTREMES: MODELING ECOLOGICAL DISTURBANCES
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Abstract. The potential advantage of extreme value theory in modeling ecological
disturbances is the central theme of this paper. The statistics of extremes have played only
a very limited role in ecological modeling, despite the disproportionate influence of unusual
disturbances on ecosystems. An overview of this theory is provided, with emphasis on
recent developments that both make more efficient use of the available data on extremes
and enable applications that are more ecologically realistic. Consistent with the emphasis
on scale in ecology, scaling properties of extremes are emphasized. It is argued that the
existence of distributions whose extreme upper tail is ‘‘heavy’’ (i.e., decreases at a relatively
slow rate) implies that ecological disturbances are sometimes regarded as more ‘‘surprising’’
than they ought to be.

The application focuses on modeling disturbances in paleoecology. Two examples are
considered: the first, a sediment yield time series for Nicolay Lake in the high Arctic,
reflects only the influence of hydrologic disturbances; the second, a sediment rate time
series in the Chesapeake Bay, includes both climatic and anthropogenic influences. Strong
evidence supports a heavy-tailed distribution for the Nicolay Lake sediment yield, but not
necessarily for the Chesapeake Bay sediment rates. For each example, it is demonstrated
how the statistics of extremes can readily incorporate information about covariates, such
as large-scale atmospheric–oceanic circulation patterns or land use.

Key words: generalized extreme value distribution; generalized Pareto distribution; paleoecol-
ogy; peaks over threshold; return level; return period; sediment accumulation.

INTRODUCTION

It seems that the rivers know the theory. It only re-
mains to convince the engineers of the validity of this
analysis.

—Emil J. Gumbel, 1891–1966

In this quote by Emil Gumbel, ‘‘theory’’ refers to
the statistical theory of extreme values. Gumbel was a
pioneer in the application of this theory, particularly
in fields such as climatology and hydrology (Gumbel
1958). Now, several decades after this quote appeared,
the engineers are indeed convinced of the theory’s util-
ity in water resources management, building design,
etc. (e.g., Katz et al. 2002). Yet perhaps this quote
would remain apt if the word ‘‘engineers’’ was replaced
with ‘‘ecologists.’’

Extreme events, rare but not necessarily unprece-
dented, play an important role in ecology (Gutschick
and BassiriRad 2003). Ecological disturbances are
commonly associated with the occurrence of extreme
events, such as an excursion of a climate variable like
temperature outside of some range (e.g., above a rel-
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responding Editor: A. M. Ellison. For reprints of this Special
Feature, see footnote 1, p. 1079.
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atively high, or below a relatively low, threshold).
Compounding the problem is the specter of global cli-
mate change, with anticipated increases in the fre-
quency of extreme events such as hot spells or intense
precipitation (Folland and Karl 2001).

Given that their occurrence is by definition unusual,
it has been a challenge for statisticians to devise ap-
propriate methods for quantifying the likelihood and
intensity of extreme events. Yet ecologists are largely
unaware that, akin to the central limit theorem for av-
erages, a specialized statistical theory is now available
for extremes (e.g., Coles 2001). This lack of awareness
exists despite at least one review article that has ap-
peared in the ecological literature advocating the use
of the statistical theory of extremes (Gaines and Denny
1993; see also Denny and Gaines 2000). This theory
can model not just the frequency of rare ecological
events (e.g., Dixon et al. 2005), but also their severity.

In the present paper, we build upon the review by
Gaines and Denny (1993). An ecologically relevant
example is provided with a compelling need for the
application of extreme value theory; namely, an in-
stance in which the distribution has a heavy tail (i.e.,
decreases at a relatively slow rate). Recent develop-
ments in the application of this theory, either beyond
the scope of or too recent to be taken into account in
Gaines and Denny (1993), are surveyed. Among other
things, annual or diurnal cycles and trends, as well as
more physically based variables such as El Niño events,
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can be readily incorporated into the theory as covari-
ates. The peaks over threshold (or point process ap-
proach), an alternative to block (e.g., annual) maxima,
is introduced to exploit more of the information avail-
able about the upper tail of the distribution.

The paper begins with a background section covering
the origin and early applications of the statistics of
extremes, ecological extremes, and the previous use of
the statistics of extremes in ecology. An overview of
the statistical theory of extreme values with emphasis
on recent developments is then provided, followed by
the results from a paleoecological application of mod-
eling disturbances using sediment accumulation. The
paper concludes with a discussion of the benefits of
extreme value theory in modeling ecological distur-
bances, as well as the unresolved issue of how to model
spatial extremes.

BACKGROUND

Historical origins of statistics of extremes

In the 1920s, a number of individuals simultaneously
began deriving the statistical theory of extreme values.
An early theoretical breakthrough was produced by the
British statisticians R. A. Fisher and L. H . C. Tippett,
who derived the limiting form of the distribution of the
maximum or minimum value in a random sample (Fish-
er and Tippett 1928). Tippett immediately applied this
theory to the strength of cotton yard, a situation in
which the ‘‘weakest link’’ (i.e., a minimum value) gov-
erns failure (Box 1978). This application could be
viewed as a precursor to the field of engineering reli-
ability, in which structural failure is modeled statisti-
cally. That ecological stresses reflect statistical ex-
tremes, not averages or even variances, was aptly de-
scribed in Gaines and Denny (1993).

In subsequent decades, extreme value theory found
application in other areas in which extreme events nat-
urally play an important role. The first book-length
treatment on the statistics of extremes covered a num-
ber of applications, many related to engineering design
(Gumbel 1958). Applications directly relevant to ecol-
ogy have included environmental variables such as
those in climate (e.g., temperature, precipitation, wind
speed), hydrology (e.g., stream flow), and oceanogra-
phy (e.g., sea level, wave height), with several of these
variables being included in the examples in Gaines and
Denny (1993).

Ecological extremes

From a scientific perspective, the importance of ex-
treme events in ecology is well recognized. Focusing
on plants, Gutschick and BassiriRad (2003) developed
the thesis that extreme events ‘‘play a disproportionate
role in shaping the physiology, ecology and evolution
of organisms.’’ Despite fire being an integral compo-
nent of ecosystems, large fire is a graphic example of
a disturbance that can disrupt ecosystem-level pro-

cesses (Moritz 1997). Perhaps the ultimate extreme
event results in the extinction of a population, with
extinction probabilities receiving much attention in the
ecological literature (Ludwig 1996). Another topic with
ecological implications is longevity, particularly the
variation in life spans among different species of plants
and animals (Carey 2003).

Paleoecology focuses on the reconstruction of the
long-term history of ecosystems through the analysis
of information, such as the pollen and seeds contained
in sediment cores (Brush 1989). This approach is par-
ticularly effective at uncovering the influence of dis-
turbances on ecosystems, such as those attributable to
changes in land use (e.g., deforestation) or to heavy
rains. For instance, sediments have been used to re-
construct temporal and spatial histories of fire regimes
in ecosystems (Lynch et al. 2003). The closely related
field of paleohydrology focuses on the use of fluvial
features that reflect the hydrologic cycle, generally ex-
treme hydrologic events such as paleofloods (Gregory
and Benito 2003). Extreme value theory is routinely
used to estimate flood frequency and intensity on the
basis of measurements of precipitation or stream flow,
occasionally in combination with other historical in-
formation (Stedinger and Cohn 1986). Yet this statis-
tical theory has rarely ever been applied to the corre-
sponding paleohydrologic or paleoecologic data (an ex-
ception is Lamoureux [2000]).

Statistics of extremes in ecology

Despite the review article by Gaines and Denny
(1993), it remains difficult to find examples of the ex-
plicit application of the statistical theory of extreme
values to ecology. Instead, assumptions about tail be-
havior are typically made which are more restrictive
and difficult to verify. The conventional approach ef-
fectively assumes that the form of distribution, chosen
on the basis of a fit dominated by the majority of the
observations in the center of the distribution, neces-
sarily fits the upper and lower tails of the distribution
satisfactorily as well.

All the examples of the application of the statistics
of extremes presented in Gaines and Denny (1993) hap-
pen to involve variables (i.e., minimum and maximum
sea surface temperature, maximum wind speed, max-
imum ocean wave force, and maximum human life
span) whose upper (or lower) tail is either unbounded,
but ‘‘light’’ (i.e., decreases at a relatively rapid rate)
or bounded (the shape of the tail of a distribution will
be more formally characterized in the next section).
For variables such as temperature (e.g., Brown and
Katz 1995) and wind speed (e.g., Palutikof et al. 1999),
this characteristic of a light or bounded upper tail is
known to hold more generally. Nearly all the contin-
uous statistical distributions (e.g., normal, exponential,
gamma, lognormal) commonly used to model ecolog-
ical and related variables have light upper tails.
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FIG. 1. Plots of the GEV (generalized extreme value)
probability density function with m 5 0, s 5 1, j 5 20.2
(Weibull type), j 5 0 (Gumbel), and j 5 0.2 (Fréchet).

Although the statistics of extremes certainly can be
useful in applications involving light or bounded tails,
its need is more compelling for variables which instead
possess a heavy-tailed distribution (e.g., Katz et al.
2002). One such ecological example concerns fire dis-
turbance, in which the distribution of the largest fire
within a region is heavy-tailed (Moritz 1997), work
evidently inspired by Gaines and Denny (1993). Sim-
ilarly, Schoenberg et al. (2003) reviewed the use of a
power law (or Pareto) distribution (i.e., a form of
heavy-tailed distribution [Arnold 1983]) to fit wildfire
size. Rates of population spread have also been de-
scribed by distributions which are heavy tailed (Clark
et al. 2001). Although not necessarily synonymous with
damage to ecosystems, the distribution of economic
damage from disturbances such as hurricanes can be
heavy-tailed as well (Katz 2002a, b).

The search for universal scaling laws in ecology typ-
ically involves assuming a form of power-law distri-
bution. For example, Ferriere and Cazelles (1999)
showed how a power law relationship can arise in pop-
ulation dynamics, and Keitt and Stanley (1998) fitted
a power law relationship in analyzing the dynamics of
bird populations. The connection between such scaling
laws and extreme value theory will be treated in a
subsequent section.

STATISTICAL THEORY OF EXTREME VALUES

Overview of theory

We provide only a relatively short overview of the
essential features of the statistical theory of extreme
values (for more details, see Leadbetter et al. 1983,
Coles 2001, Reiss and Thomas 2001). For convenience,
extremes are discussed solely in terms of maxima (or
upper tails) of distributions. Nevertheless, minima (or
lower tails) are effectively encompassed through the
relationship

min(x , x , . . . , x ) 5 2max(2x , 2x , . . . , 2x ) (1)1 2 T 1 2 T

for a sample of data, x1, x2, . . . , xT.
A heuristic scaling argument provides some moti-

vation for how the basic extreme value theory arises.
It involves thinking about different ways to determine
the maximum value in a sample of length 2T, say data
x1, x2, . . . , x2T. This highest value could be determined
indirectly through separately taking the maximum of
the first half and of the second half of the sample and
then combining these two maxima; that is,

max(x , x , . . . , x )1 2 2T

5 max[max(x , x , . . . , x ), max(x , x , . . . , x )].1 2 T T11 T12 2T

(2)

This relationship constrains the possible form of the
limiting distribution of the maximum, suitably nor-
malized, of a sequence of random variables, say X1, X2,
. . . , XT (for the moment, assumed to be independent

and identically distributed). Such a limiting distribution
must satisfy the ‘‘max-stability property’’ (Leadbetter
et al. 1983); namely, distributions for which the op-
eration of taking the maximum of a finite sequence of
independent and identically distributed random vari-
ables leads to an identical distribution, except for dif-
fering location and scale parameters (the concepts of
‘‘location’’ and ‘‘scale’’ will be explained shortly). This
property is akin to the reason why the normal distri-
bution arises in the central limit theorem; that is, the
mean of normally distributed observations has exactly
a normal distribution.

The max-stability property gives rise to a form of
distribution known as the generalized extreme value
(GEV), with cumulative distribution function

21/jexp{2[1 1 j (x 2 m)/s] },


1 1 j (x 2 m)/s . 0 j ± 0F(x; m, s, j ) 5


exp{2exp[2(x 2 m)/s]} j 5 0.
(3)

Here m is termed a location, s . 0 a scale, and j a
shape parameter. If the random variable X has a GEV
distribution (Eq. 3), then the standardized variable (X
2 m)/s has a distribution that does not depend on either
m or s, only on j. Like the mean and standard deviation
of the more familiar normal distribution, the location
parameter specifies where the distribution is ‘‘cen-
tered,’’ the scale parameter its ‘‘spread.’’ It should be
noted that Gaines and Denny (1993) used a somewhat
different, but equivalent parameterization.

The shape of the GEV distribution assumes three
possible types (Fig. 1), depending on the value of j:

j 5 0, a light-tailed (or Gumbel) distribution;(i)

j . 0, a heavy-tailed (or Fréchet) distribution;(ii)

j , 0, a bounded (or Weibull) distribution.(iii)

The type (i) distribution has an unbounded upper tail
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which decreases at a relatively rapid (i.e., exponential)
rate. Although the type (ii) distribution also has an
unbounded upper tail, it decreases at such a slow (i.e.,
power law) rate that its moments are infinite for all
orders greater than 1/j (e.g., the variance is infinite if
j . 0.5; the mean is infinite if j . 1). The type (iii)
distribution has a finite upper bound at x 5 m 2 (s/j).

It is natural to focus on the extreme upper quantiles
of the GEV distribution. Specifically, the ‘‘return
level’’ associated with a ‘‘return period’’ of 1/p is the
(1 2 p)th quantile of the GEV distribution (e.g., when
modeling annual maxima, p 5 0.01 would correspond
to a 100-yr return period), a concept used extensively
in hydrology (e.g., Katz et al. 2002). This quantity can
be obtained by inverting the distribution function of
the GEV (Eq. 3), giving

21F (1 2 p; m, s, j )

2jm 2 (s/j ){1 2 [2ln(1 2 p)] } j ± 0
5 (4)5m 2 s ln[2ln(1 2 p)] j 5 0

with 0 , p , 1 (Coles 2001). The return level is linear
in m and s, but highly nonlinear in j.

It is not actually necessary to assume that the ob-
servations be independent, with the limiting distribu-
tion of the maximum still being the GEV under a wide
range of dependence conditions (e.g., for an autore-
gressive process) and the only effect being on the val-
ues of the location and scale parameters, m and s (Lead-
better et al. 1983). The assumption of identically dis-
tributed observations can also be relaxed, with non-
stationarity being introduced through covariates. The
parameters of the GEV distribution could be dependent
on the time t; say,

m(t) 5 m 1 m t, ln[s (t)] 5 s 1 s t, j (t) 5 j,0 1 0 1

t 5 1, . . . , T (5)

the location parameter and the logarithm of the scale
parameter (applying the logarithm to impose the con-
straint of s . 0) being linear functions of time and the
shape parameter being independent of time. More gen-
erally, a covariate zt (e.g., the state of the El Niño
phenomenon at time t) could be used instead of time
t in Eq. 5.

As did Gaines and Denny (1993), we estimate the
parameters of the GEV distribution by the method of
maximum likelihood (see the Supplement). Although
other types of parameter estimation techniques are
sometimes used in fields such as hydrology, one ad-
vantage of the maximum likelihood approach is that
covariates (as in Eq. 5) can be readily incorporated
(Coles and Dixon 1999). In this way, annual or diurnal
cycles and trends need not be removed before fitting
the GEV distribution (as did Gaines and Denny [1993]).
This approach has the advantage of allowing for cycles
or trends in the upper tail not necessarily of the same
form as in the center of the distribution (Smith 1989).

Recent developments

The GEV distribution (Eq. 3) is typically fitted to
‘‘block maxima,’’ such as the highest daily precipita-
tion amount over an entire year. Although this approach
is sometimes viewed as advantageous because it re-
quires only a simplified data summary (Gaines and
Denny 1993), it is disadvantageous because it does not
make use of all of the information available about the
upper tail of the distribution (e.g., the two highest daily
precipitation amounts over the entire record might oc-
cur in the same year). An alternative approach whose
idea originated in hydrology, called ‘‘peaks over
threshold’’ (POT), attempts to exploit more of this in-
formation (Todorovic and Zelenhasic 1970).

We start by envisioning the process by which ex-
tremes occur, defining an extreme event in terms of
exceeding a relatively high threshold, say X . u. Re-
calling that the Poisson distribution arises as an ap-
proximation to the binomial for rare events, it is rea-
sonable to assume that the sequence of times the event
occurs is governed by a Poisson process, say with rate
parameter l . 0. In this case, the number of occur-
rences in a time interval of length T, NT say, has a
Poisson distribution with mean lT; that is,

k 2lTPr{N 5 k} 5 [(lT) e ]/k!, k 5 0, 1, . . . .T (6)

The other aspect of an extreme event is its intensity,
termed the ‘‘excess’’ over the threshold, say Y 5 X 2
u. Consistent with the theory about the limiting dis-
tribution of the maximum being GEV, the distribution
of the excess should have an approximate generalized
Pareto (GP) distribution for a sufficiently high thresh-
old (Pickands 1975). The GP has cumulative distri-
bution function

21/j1 2 [1 1 j (y /s*)] ,


1 1 j (y /s*) . 0 j ± 0F(y; s*, j ) 5 (7)


2y/s*1 2 e j 5 0.

Here y . 0, with s* . 0 being a scale and j a shape
parameter. If the random variable Y has a GP distri-
bution, then the rescaled random variable Y/s* has a
distribution which does not depend on s*, only on j.
As for the GEV, the scale parameter governs the spread
of the distribution.

The shape parameter of the GP distribution has pre-
cisely the same interpretation as for GEV distribution.
In this case, the three possible types (Fig. 2) are:

j 5 0, a light-tailed (or exponential)(i)

distribution;

j . 0, a heavy-tailed (or Pareto) distribution;(ii)

j , 0, a bounded (or beta) distribution.(iii)

The type (i) or exponential distribution has a ‘‘me-
moryless’’ (or lack of aging) property (e.g., Ross
1970); that is,
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FIG. 2. Plots of the GP (generalized Pareto) probability
density function with s* 5 1, j 5 20.2 (Beta type), j 5 0
(exponential), and j 5 0.2 (Pareto).

Pr{Y . y 1 y9 z Y . y9} 5 Pr{Y . y}

2y/s*5 e y9 . 0. (8)

In other words, if Y represents life span and has an
exponential distribution, then the conditional distri-
bution of future survival is still exponential with the
same scale parameter, no matter how long the individ-
ual has already survived. This type of distribution
would be reasonable for the life expectancy of many
species of adult birds in which mortality is primarily
the result of accidents, not aging (Ehrlich et al. 1988).

As the exponential is the only memoryless distri-
bution (Ross 1970), the GP distribution necessarily
cannot retain this property for a nonzero shape param-
eter. Suppose the distribution of the excess Y is exactly,
instead of only approximately, GP for some threshold
u. As the threshold is increased, say to some value u9
. u, then the distribution of the excess over the higher
threshold would remain the GP with the identical shape
parameter j. Only the scale parameter needs to be ad-
justed; that is,

s*(u9) 5 s*(u) 1 j(u9 2 u) (9)

where the dependence of the scale parameter on the
threshold u is made explicit by writing s*(u) (Coles
2001).

The (1 2 p)th quantile of the GP distribution can be
obtained by inverting Eq. 7, giving

2j(s*/j )(p 2 1), j ± 0,
21F (1 2 p; s*, j ) 5 (10)5s*ln(1/p), j 5 0

(Coles 2001). Like the GEV, a GP quantile is linear in
s*, but highly nonlinear in j. In practice, to obtain a
return level (analogous to that for the GEV in Eq. 4),
the probability p that enters into Eq. 10 would need to
be adjusted to take into account the probability of an
exceedance of the threshold (Coles 2001).

The fact that the upper tail of essentially any distri-
bution must be approximately of the GP form (Eq. 7)
has implications concerning the search for ecological
scaling laws. In particular, any distribution must ap-
proximately satisfy a scaling law beyond a high thresh-
old if one permits a generalized Pareto, instead of an
ordinary Pareto, form. So, at least for the upper tail of
a distribution, the only issue which would remain to
be addressed in practice is how large a threshold suf-
fices for a good approximation.

A close correspondence exists between the block
maxima and POT approaches to the statistical modeling
of extremes, with the maximum of a sequence of ob-
servations falling below a threshold if and only if there
are no exceedances of the threshold. Thus, the POT
approach can be used to indirectly fit the GEV distri-
bution, potentially making use of more information
about extremes than just block maxima.

A point process representation provides a formal the-
oretical justification for the POT approach to fitting the
GEV distribution. It consists of a two-dimensional,
non-homogeneous Poisson process, combining the
Poisson process (parameter l) for the times of exceed-
ance of the high threshold and the GP distribution (pa-
rameters s* and j) for the excesses over the threshold
(Leadbetter et al. 1983, Smith 1989, Davison and Smith
1990). The parameters, l and s*, of the point process
are related to the parameters of the GEV distribution,
m, s, and j, by

ln l 5 2(1/j )ln[1 1 j (u 2 m)/s]

s* 5 s 1 j (u 2 m) (11)

with the shape parameter being identical (Coles 2001).
The block maxima and POT approaches can involve

a difference in time scales; for example, with time scale
parameter h ø 1/365 if the observations are daily and
annual maxima are modeled. To convert the parameters
of the GEV distribution, m, s, and j for time scale h
(e.g., annual maxima of daily data), to the correspond-
ing parameters of the GEV, m9, s9, and j for time scale
h9 (e.g., monthly maxima of daily data), it can be shown
that

j 2js9 5 sd m9 5 m 1 [s9(1 2 d )]/j (12)

where d 5 h/h9 and the shape parameter is unchanged
(Coles 2001). Taking logarithms, ln(s) varies linearly
with ln(h), but ln(m) does not.

In practice, the POT approach requires the choice of
a high threshold. No reliable automatic techniques for
threshold selection are yet available, but some helpful
diagnostics do exist (Coles 2001). The difficulty arises
because of the trade-off between making the threshold
high enough to ensure that the GP approximation is
valid, but not so high that the number of exceedances
is too small for accurate estimation of the parameters.

Another issue concerns the possible clustering of
high levels, because parameter estimation techniques
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FIG. 3. Time series of annual sediment yield at Nicolay
Bay, Nunavut, Canada, 1493–1987 (Source: Lamoureux
2000).

such as maximum likelihood assume that the time se-
ries of excesses over the threshold be independent. For
simple forms of dependence such as an autoregressive
process, any apparent clustering should gradually dis-
appear as the threshold increases. But there is some
evidence that variables such as temperature do exhibit
clustering that does not vanish for high thresholds
(Coles 2001). To deal with this problem, the chief op-
tion is ‘‘declustering.’’ Originally developed by hy-
drologists, this somewhat ad hoc and inefficient pro-
cedure requires defining clusters of high levels and
using only the single highest value within a cluster
(Todorovic and Zelenhasic 1970). Rather than simply
being viewed as a nuisance to be eliminated, clusters
might well be ecologically relevant for their own sake
(e.g., reflecting a persistent hot or wet spell).

Like the block maxima approach, covariates can be
incorporated into the POT approach (Eq. 5). By this
means, features such as annual or diurnal cycles that
are necessarily ignored in the block maxima approach
can be modeled as well. Any such cycles need not be
removed before analyzing extremes as did Gaines and
Denny (1993). For instance, Katz et al. (2002) treated
an example of daily precipitation extremes in which
annual cycles in both the location and scale parameters
of the GEV distribution are permitted.

But how could heavy tails arise in ecological appli-
cations? To explain such behavior, at least one chance
mechanism exists that is quite plausible ecologically.
Suppose that a variable Y has a distribution with an
exponential (i.e., light) upper tail (Eq. 7), but that the
inverse of the scale parameter (i.e., rate parameter n 5
1/s*) of the exponential is itself a random variable with
a gamma distribution (say with probability density
function fn). That is, the conditional distribution of Y
is given by

2vyPr{Y . y z v} 5 e

21 a21 2v/bf (v; a, b) 5 [bG(a)] (v /b) e a, b . 0.v

(13)

Then the unconditional distribution of Y would have a
heavy tail (e.g., Arnold 1983). That is,

2aPr{Y . y} 5 (1 1 b y) (14)

the type (ii) (or Pareto) form under a different param-
eterization than that in Eq. 7 (i.e., with shape parameter
j 5 1/a . 0). This chance mechanism, by which an
unconditional heavy tail is generated from a conditional
light tail, is similar to other mathematical modeling
with a long tradition of use in ecology (Pielou 1977).
For instance, the gamma distribution for the rate pa-
rameter could reflect some additional source of random
variation in an ecological variable (e.g., associated with
an unobserved covariate).

APPLICATION TO PALEOECOLOGICAL DISTURBANCES

Nicolay Lake sediment yield

The first example consists of a nearly 500-yr annual
time series of sediment yield in a pristine environment

in the high Arctic, with presumably minimal anthro-
pogenic influence (Fig. 3). These sediment yields were
reconstructed from varved sediments at Nicolay Lake
on Cornwall Island, Nunavut, Canada (Lamoureux
2000). Any disturbances in the time series are predom-
inantly of a hydrologic origin, with high sediment
yields being associated with summers in which intense
rainfall occurs.

Lamoureux (2000) fitted a GEV distribution directly
to the annual sediment yield time series (i.e., without
taking block maxima). We repeat this analysis along
with the alternative POT modeling approach. Table 1
summarizes the results of fitting a GEV distribution to
this data by maximum likelihood. Consistent with La-
moureux (2000), the evidence of a heavy tail (i.e., j .
0) is very strong. A 95% confidence interval for the
shape parameter j (all intervals based on the method
of profile likelihood, Coles 2001) has a lower bound
of about 0.3 or well above zero. As a diagnostic check,
a quantile–quantile (Q–Q) plot for the fitted GEV dis-
tribution (Fig. 4a) is approximately linear, indicating
that the assumed form of distribution is reasonable.

A more traditional approach in paleoclimatology or
paleohydrology would be to assume a lognormal dis-
tribution; that is, the logarithmically transformed sed-
iment yields are normally distributed (Rittenour et al.
2000). Like the GEV (or GP), a lognormal distribution
is positively skewed; but unlike the GEV (or GP), it
has a light upper tail (Leadbetter et al. 1983). The es-
timated 500-yr return level for the fitted lognormal dis-
tribution is 523.9 Mg/km2, well below the highest and
second highest observed values in the ;500-yr record
of 1620.3 in 1820 and 663.7 in 1698. For the fitted
GEV distribution, the estimated 500-yr return level is
just under 1000 Mg/km2 (i.e., p 5 0.002 in Eq. 4), with
the corresponding 95% confidence interval having an
upper limit a bit smaller than the highest observed val-
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TABLE 1. Parameter and return level estimates with standard
errors (or confidence intervals) for GEV and GP distribu-
tions (as well as GEV via point process approach) fitted to
time series of annual sediment yield (Mg/km2) at Nicolay
Bay, Nunavut, Canada, 1493–1987.

Parameter Estimate
1 SE

(or 95% CI)

GEV distribution
Location m 67.54 1.85
Scale s 35.86 1.64
Shape j 0.384 (0.305, 0.470)
500-yr return level 987.6 (724.9, 1435.1)

GP distribution†
Scale s* 47.82 5.98
Shape j 0.462 (0.277, 0.700)
500-yr return level 1168.9 (732.3, 2451.2)

GEV/POT†
Location m 62.84 6.28
Scale s 30.64 6.33
Shape j 0.462 0.107

Notes: Data are from Lamoureux (2000). Abbreviations:
GEV, generalized extreme value; GP, generalized Pareto;
POT, peaks over threshold.

† Threshold u 5 100 Mg/km2.

FIG. 4. Quantile–quantile plots for fit of (a) GEV and (b)
GP distribution (threshold 5 100 Mg/km2) to time series of
sediment yield at Nicolay Bay.

ue and a lower limit somewhat greater than the second
highest observation (Table 1). In other words, the GEV
distribution fits the extreme upper tail of the data rea-
sonably well, whereas the lognormal substantially un-
derestimates the likelihood of the most extreme events.

Lamoureux (2000) made a convincing argument for
why the Nicolay Lake sediment yield is a proxy for
extreme hydrologic events, particularly for short spells
of heavy rainfall (i.e., at most a few days in duration).
Nevertheless, the fact that the GEV distribution appears
to fit the annual sediment yield (without taking block
maxima) well could be fortuitous. So the alternative
POT approach, focusing only on the upper tail of the
distribution of sediment yield, will be applied for com-
parison.

Table 1 includes the results of fitting the GP distri-
bution to the excesses in annual sediment yield over a
threshold of u 5 100 Mg/km2 (after a range of possible
thresholds was examined). This threshold was exceed-
ed in nearly 40% of the years (i.e., 189 out of 495).
The estimated shape parameter is a bit higher than for
the original GEV fit, with the 95% confidence interval
being somewhat wider primarily due to the decreased
sample size. Because of the heavier fitted tail, the es-
timated 500-yr return level (Eq. 10) is higher than for
the original GEV fit, with a 95% confidence interval
having a much higher upper limit well exceeding the
highest observed value. The Q–Q plot for the fitted GP
distribution (Fig. 4b) appears similar to that for the
upper tail in the corresponding Q–Q plot for the GEV
(Fig. 4a). In fitting the GP distribution, any clustering
of the excesses over the threshold, a possibility sug-
gested for the Nicolay sediment yield by Lamoureux
(2002), has been ignored.

The point process approach can produce the equiv-
alent fitted model in terms of the GEV parameteriza-
tion, using the same threshold of u 5 100 Mg/km2 and
a time scale parameter of h 5 1. These parameter es-
timates and standard errors are also included in Table
1. They could also have been obtained indirectly from
the fitted GP distribution and Poisson rate parameter l
for exceedance occurrence (estimated as 189/495 ø
0.382) using Eq. 11. As previously noted, the shape
parameter estimates are necessarily identical. Because
only the upper tail of the distribution is modeled, the
GEV parameter estimates differ somewhat from those
obtained by fitting the entire range of data.

It would be tempting to consider the North Atlantic
Oscillation (NAO) as a covariate. This large-scale fea-
ture of the atmospheric circulation reflects a ‘‘see-saw’’
in pressure between the Azores High and the Icelandic
Low (Hurrell et al. 2003). However, the NAO is well
known to be ‘‘teleconnected’’ with climate in the upper
latitudes of the Northern Hemisphere during the winter,
but not necessarily in the summer as would be required
for the Nicolay sediment yield. We use as a covariate,
instead, an index of the Icelandic Low alone, the sum-
mer (i.e., June–August) mean sea level pressure at Rey-
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TABLE 2. Parameter estimates and standard errors for GEV
distribution (along with negative log likelihood), fitted to
time series of sediment yield (Mg/km2) at Nicolay Bay,
1822–1987, with and without June–August mean pressure
(in hPa, minus 1000) at Reykjavik, Iceland, as covariate.

Parameter Estimate 1 SE

GEV distribution†
Location m 73.44 3.36
Scale s 37.71 2.86
Shape j 0.322 0.071

GEV (covariate)‡
Intercept m0 84.18 10.67
Slope m1 21.10 1.04
Scale s 37.44 2.85
Shape j 0.329 0.071

Note: Data are from Jones et al. (1997).
† Negative log likelihood 5 895.054.
‡ Negative log likelihood 5 894.494.

FIG. 5. Time series of sediment rate at Furnace Bay,
Maryland, USA, 1804–1980.

TABLE 3. Parameter estimates with standard errors for GEV
and GP distributions (as well as GEV via point process
approach) fitted to time series of sediment rate (cm/yr) at
Furnace Bay, Maryland, USA, 1804–1980.

Parameter Estimate 1 SE

GEV distribution
Location m 0.567 0.042
Scale s 0.264 0.033
Shape j 0.164 0.131

GP distribution†
Scale s* 0.497 0.117
Shape j 20.181 0.173

GEV/POT†
Location m 0.330 0.096
Scale s 0.528 0.151
Shape j 20.181 0.173

† Threshold u 5 0.5 cm/yr.

kjavik, Iceland. Because long time series indices of the
NAO are reconstructed from proxy information such
as sediment yield (Cook et al. 2002), we restrict the
analysis to the period starting in 1822 for which pres-
sure measurements are available (Jones et al. 1997).

For this considerably shorter time series of sediment
yield (i.e., 166 yr), Table 2 compares the fitted GEV
distribution with and without the Icelandic pressure
covariate, say a random variable denoted by Z. Given
a value of the pressure covariate, Z 5 z, the conditional
distribution of sediment yield is assumed GEV with a
location parameter depending linearly on z; that is, m(z)
5 m0 1 m1z. As anticipated, the incorporation of the
pressure covariate does not significantly improve the
fit. Specifically, comparing the minimized negative log
likelihood function with and without the constraint of
the slope parameter m1 5 0, a P value ø 0.290 is ob-
tained for likelihood ratio test. If it was important to
focus on the upper tail of the distribution of sediment
yield, then the pressure covariate could be introduced
via the point process approach instead.

Chesapeake Bay sediment rate

The second example consists of a shorter time series
of sediment rates for an estuary in which the influences
of climatic and anthropogenic factors are confounded
(Fig. 5). These sediment rates were derived from a core
at Furnace Bay in the upper Chesapeake Bay, Mary-
land, USA (Brush 1989). To obtain average sediment
rates, the core was divided into 2 cm-wide layers and
dated on the basis of pollen profiles. Because of lower
temporal resolution before 1800, we only analyze the
sediment rates during 1804–1980, a total of 53 mea-
surements with temporal resolution ranging from 2 to
8 yr. Ecologically related disturbances include heavy
rainfall, sometimes associated with hurricanes, as well
as land use activities such as deforestation associated
with agricultural practices.

The interpretation of the Furnace Bay sediment rates
is more difficult than for Nicolay Lake, because they

do not reflect exclusively extreme hydrologic events.
In addition, even if extreme disturbances do play an
important role, their influence is attenuated by the lim-
ited temporal resolution. Notwithstanding these com-
plications, we repeat the analysis approach used in the
Nicolay Lake example.

First, a GEV distribution is fitted to the sediment
yield time series without taking block maxima. Table
3 includes the parameter estimates and standard errors,
with the estimated shape parameter being positive but
barely larger than its standard error. The Q–Q plot for
the fitted GEV distribution (not shown) looks adequate.
Unlike the Nicolay Lake example, a lognormal distri-
bution would have produced reasonable extreme upper
quantile estimates for the Furnace Bay data.

Table 3 also includes the results of fitting the GP
distribution to the excesses in sediment rate over a
threshold of u 5 0.5 cm/yr, reducing the effective sam-
ple size from 53 to 38. Now the estimated shape pa-
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TABLE 4. Parameter estimates and standard errors for GEV distribution (along with negative
log likelihood and BIC statistic), with possible shifts in parameters after 1880, fitted to time
series of sediment rate (cm/yr) at Furnace Bay, 1804–1980.

Parameter shift m(1) m(2) s(1) s(2) j(1) j(2) –ln(L) BIC

None 0.567 0.567 0.264 0.264 0.164 0.164 18.165 48.241
m 0.406 0.693 0.215 0.215 0.145 0.145 6.725 29.332
m and s 0.360 0.745 0.100 0.276 0.022 0.022 0.011 19.873†
m, s, and j 0.374 0.733 0.105 0.267 20.239 0.110 20.894 22.034

† Denotes minimum.

rameter is reversed in sign, but still about the same
magnitude as its standard error. Despite only a fairly
small proportion of the measurements being excluded,
even weak evidence for a heavy upper tail has vanished.
Again a Q–Q plot (not shown) appears satisfactory.
The parameter estimates for the equivalent GEV dis-
tribution, based on the point process approach, differ
quite a bit from those for the GEV directly fitted to the
entire range of data.

An apparent shift in the level of sediment rates oc-
curred around 1880 (Fig. 5), roughly the time of a
transition from developing to commercial agriculture
(Brush 1989). We incorporate this possible shift by
allowing the parameters of the GEV distribution to
change after 1880; that is, dealing with two sets of
parameters, m(i), s(i), j(i), for the ith time period (i 5
1, 2). By dividing the data set into two subsets, such
a model could be fitted a single GEV distribution at a
time. However, a more flexible approach involves fit-
ting a GEV distribution with covariates. It is straight-
forward to allow only some of the parameters to vary,
and other forms of trend in the parameters can be mod-
eled as well.

Table 4 shows the results of fitting GEV distributions
with various constraints on the parameter shifts, rang-
ing from no change in any parameter (i.e., a single GEV
distribution) to shifts in all three parameters (i.e., two
completely different GEV distributions). Because sev-
eral candidate models are considered, the Bayesian in-
formation criterion (BIC) is used to identify the best
model (Schwarz 1978). We define the quantity

BIC(k) 5 22 ln L(k) 1 k ln(T) (15)

where L(k) denotes the maximized likelihood function
for a candidate model, requiring the estimation of k
parameters, and T the sample size. This quantity is
evaluated for each candidate model, the one with the
smallest BIC value being selected.

For this example, the preferred model is the one in
which both the location and scale parameters, but not
the shape parameter, shift between the two time periods
(Table 4). If tests of significance were employed in-
stead, the same conclusions would have been reached
(e.g., a likelihood ratio test, comparing the model in
which no parameters are varied with the one in which
only m is varied gives a P value , 1 3 1027; comparing
the one in which only m is varied with the one varying

both m and s, a P value ø 0.00025). The optimal model
has an estimated shape parameter of virtually zero, sug-
gesting the apparent positive shape parameter with no
parameter shifts might be an artifact of neglecting the
shift in land-use practice. Whether the lack of evidence
in favor of a heavy tail reflects a real difference between
Furnace Bay and Nicolay Bay in the processes which
influence sedimentation or is just an artifact of the mea-
surement process at Furnace Bay cannot be readily as-
certained.

In this example, an extreme value model has been
adjusted by using time as a surrogate for land use prac-
tice. Covariates other than time could be introduced
into the model as well. Some of the heaviest rainfall
events in the Chesapeake Bay region are associated
with remnants of tropical storms (Brush 1989). The
frequency of hurricanes in the North Atlantic is well
known to be modulated by the El Niño phenomenon
(Gray 1984), with the preference for landfall along the
Atlantic Coast, as opposed to the Gulf of Mexico, being
influenced by the NAO (Elsner et al. 2000). But the
very low frequency of hurricane-induced precipitation
events within a single water basin, along with the
coarse time resolution of the sediment rate time series,
would mitigate against such covariates actually im-
proving the fit in practice.

DISCUSSION

Some potential advantages of extreme value theory
in modeling ecological disturbances have been pointed
out. The reliance on more conventional statistical meth-
ods can result in labeling ecological disturbances as
more ‘‘surprising’’ than they ought to be. As one ex-
ample, strong evidence has been presented in support
of a heavy-tailed distribution (i.e., decreasing at a pow-
er law rate) for the Nicolay Lake sediment yield. Al-
though not identifiable, the origin of this heavy tail is
consistent with the heavy tail that precipitation amount
tends to possess (Katz et al. 2002), as well as with
sediment yield being an integrator over a catchment.
By not exaggerating how unusual they are, the proper
treatment of extreme events (e.g., large fire) as an in-
tegral part of ecosystems would be facilitated.

It has been demonstrated how the statistics of ex-
tremes can readily incorporate information about co-
variates, such as patterns in large-scale atmospheric–
oceanic circulation or shifts in land use associated with
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agricultural practices. For instance, the Furnace Bay
sediment rate was shown to be better fitted by an ex-
tremal model whose parameters shift corresponding to
the transition from developing to commercial agricul-
ture. More generally, through adjustment to reflect the
dynamic nature of ecosystems, the degree of ecological
realism of extreme value models can be enhanced.

The issue of scale, both temporal and spatial, can be
paramount in ecology. We have only focused on the
temporal component in our treatment of extremes. In
particular, an apparently unappreciated connection be-
tween the existence of power laws in ecology and sta-
tistical extreme value theory has been identified. Re-
garding spatial patterns in extremes, Gaines and Denny
(1993) observed consistency in the parameter estimates
of extreme value distributions for certain variables at
different spatial locations. They postulated the ‘‘pos-
sible existence of underlying principles governing
these phenomena.’’ While it may be difficult in practice
to determine whether such consistency is attributable
to a bona fide ecological invariance principle or just
to the statistical theory of extreme values, it would
certainly be useful to examine more systematically how
ecological extremes vary spatially. In hydrology, ‘‘re-
gional analysis’’ has long been used to obtain more
accurate estimates of flood probabilities, exploiting the
fact that some extremal parameters only gradually vary
within a region (e.g., Hosking et al. 1985).

In principle, fully spatial-temporal modeling of ex-
tremes can be attempted through the extension of the
concept of max-stability to max-stable processes, but
applications so far are rather limited and unrealistic
(Coles 1993). Some empirical work on how extremes
scale spatially, particularly in the hydrologic context
of flood estimation, has detected apparent universal be-
havior but connections to extreme value theory have
not yet been made (Smith 1992).
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MODELING COUNT DATA OF RARE SPECIES:
SOME STATISTICAL ISSUES
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Abstract. Most species abundance data show that a small number of species contribute
the vast majority of individuals to a community. Thus, most taxa in a community are
uncommon or rare. Yet such species will frequently be of ecological, conservation, or
management interest. Data for uncommon or rare species will be presence/absence data or
counts of abundance that contain a greater number of zero observations than would be
predicted using standard, unimodal statistical distributions. Such data are generally referred
to as zero-inflated data and require specialized methods for statistical analysis. Statistical
approaches to modeling zero-inflated data include nonstandard mixture models; two-part,
conditional models; and birth process models. In this paper, we briefly summarize two of
these methods and illustrate the two-part, conditional approach to the problem of modeling
count data with extra zeros. An advantage of this approach includes separate fits and separate
interpretations of both components of count data; that is to say, the presence/absence
component and the abundance component (given presence) can be analyzed separately.
This can be valuable not only for simplicity, but also such a two-step method may assist
ecological understanding in cases where the basis for species presence might be separated
from the underlying reasons affecting the population size of that species at those sites where
it is present.

We present two case studies of the application of the two-part conditional model for
modeling count data with extra zeros. One deals with modeling relationships between counts
of the rare and endangered arboreal marsupial, Leadbeater’s possum (Gymnobelideus lead-
beateri) and habitat variables in the wet eucalypt forests of southeastern Australia. The
other is an analysis of data obtained from a monitoring study of seabird nesting from the
Coral Sea off northeastern Australia. Finally, we briefly discuss some inferential and prac-
tical issues in developing designs and models for presence/absence data (which is the first
component in the two-part conditional approach) when observed occurrences are low (e.g.,
,5%).

Key words: count data; habitat analysis; Leadbeater’s possum; monitoring; over dispersion;
rare species; sea birds; statistical modeling; zero-inflated data.

INTRODUCTION

Species occurrence can be broadly described by three
key qualitative factors: abundance of a species within
a community (common or rare), habitat specificity
(common or specialized), and geographic range (wide-
spread or restricted). The full factorial expansion of
these factors gives eight combinations (Table 1). Seven
of these describe the various types of rarity as defined
by Rabinowitz et al. (1986). Note that species in cell
1 (the top row) are widespread and common and do
not qualify as rare species.

Many of the forms of rarity in Table 1 indicate that
in most cases, a ‘‘rare species’’ will typically not be
numerically abundant in the majority of communities
in which it is a member. This proposition has some
congruence with the ideas of Preston (1962) and Mac-
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accepted 23 June 2004; final version received 21 July 2004. Cor-
responding Editor: A. M. Ellison. For reprints of this Special
Feature, see footnote 1, p. 1079.

1 E-mail: rbc@cres.anu.edu.au

Arthur and Wilson (1967) both of whom show that
within almost all ecological communities, a few species
are common and the vast majority are uncommon or
rare. This phenomenon has been known in ecology for
a long time (see Williams 1944, reviewed by Gaston
1994). Yet, rare and uncommon species will often be
those of substantial management and conservation in-
terest (Meffe and Carroll 1997, Fagan et al. 2002,
Hartley and Kunin 2003), in part because they may be
among the most extinction-prone taxa in an assem-
blage.

Frequency data arising from studies of the abundance
of rare phenomena will often have special nonstandard
features. For example, a common characteristic of
count data of rare species is that there are many more
zeros than would be expected on the basis of the non-
zero data (see Fig. 1 for an example). Indeed, depend-
ing on the scale and type of a given field study, this
could be true of all classifications in Table 1 except
those in cell 1 (i.e., common and widespread taxa that
would not be considered rare). Data with many zeros
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TABLE 1. Table of species distributions and patterns of abundance classified by abundance, habitat specificity, and geographic
range (modified from concepts outlined in Cody [1986], Rabinowitz et al. [1986], and New [2000]).

Abundance of
species within
a community

Habitat
specificity

Geographic
range Description

Common common widespread widespread, occurs in a wide range of habitats
and is abundant in those habitats (and there-
fore cannot be considered rare)

Common common restricted/localized highly localized distribution but occurs across
a range of habitats and is abundant in places
where it occurs

Common rare/specialized widespread widespread, but occurs in few habitats, and is
common in places where it occurs

Common rare/specialized restricted/localized highly localized distribution and occurs in few
habitats, but is common in places where it
occurs

Rare common widespread widespread and occurs across a range of habi-
tats but is scarce in places where it occurs

Rare common restricted/localized highly localized distribution, occurs across a
range of habitats but is scarce in places
where it occurs

Rare rare/specialized widespread widespread, but occurs in few habitats, and is
scarce in places where it occurs

Rare rare/specialized restricted/localized highly localized distribution, occurs in few
habitats, and is scarce in places where it oc-
curs

FIG. 1. Frequency graph of the abundance of Leadbeater’s
possum from 151 field survey sites, each measuring 3 ha in
size (see Lindenmayer et al. [1991] for further details).

pose statistical challenges because key distributional
assumptions (e.g., normality, homoscedasticity, and
others) are not fulfilled for standard statistical analyses.

Zero counts can arise in ecological data for two rea-
sons; either they are inevitable, (known as structural
or necessary zeros), which arise when presence is not
tenable (an example might be the occurrence of the
Lion [Panthera leo] in Australia), or they are random
or accidental zeros, which arise due to sampling (e.g.,
see Green and Young 1993), where conditions are po-

tentially suitable but absence is observed. There are
many possible reasons why absence may be observed
ranging from non-detection when present, to absent due
to several unidentifiable factors, even though all iden-
tifiable factors would suggest presence. A simple ex-
ample might be that of a target species being removed
by a predator (Elton 1927, Kavanagh 1988). In most
applications, there is usually insufficient knowledge to
distinguish the two types of zeros.

Statistical modeling provides a powerful framework
for modeling presence and/or abundance in terms of a
set of possible set of explanators or covariates (Mor-
rison et al. 1992, Welsh et al. 1996, Burgman and Lin-
denmayer 1998). Such models are commonly used to
identify important environmental variables that may
explain patterns of distribution and abundance, to pro-
vide a concise description of the data, to allow the study
of individual cases, and provide a means for construct-
ing valid prediction intervals for new cases (Guisan
and Zimmerman 2000). In recent years, there has been
considerable activity by statistical scientists and others
to develop methodologies for modeling count data with
many zeros (Lambert 1992, Ridout and Demetrio 1992,
Heilbron 1994, Welsh et al. 1996, Faddy 1998; M. S.
Ridout, C. G. B. Demetrio, and J. Hinde, unpublished
manuscript). These methods are not known or only
poorly known by the majority of ecologists. Given this,
in this paper we:

1) Briefly outline some of the current approaches to
modeling count data with extra zeros. A more detailed
review of that approach is given by Ridout et al. (M.
S. Ridout, C. G. B. Demetrio, and J. Hinde, unpublished
manuscript).
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2) Provide two illustrations of the use of one of these
methods—the two-part approach:

a) a statistical model for count data of Leadbea-
ter’s possum (Gymnobelideus leadbeateri), a species
with restricted distribution, which has limited habitat
specificity, but can be relatively common where it
does occur.

b) an analysis of data arising from a long-term
monitoring program of seabird populations (partic-
ularly Frigatebirds [Fregata minor and F. ariel] and
the Red-footed Booby [Sula sula]) in the Coral Sea
off north-eastern Australia.
3) Discuss some statistical estimation and inference

issues that arise when studying rare species and outline
some of the practical problems when attempting to
model data which exhibit a very low frequency of oc-
currence.

BRIEF OUTLINE OF APPROACHES FOR MODELING

COUNT DATA WITH EXTRA ZEROS

In the section below, we consider several approaches
to the relatively widespread problem of modeling data
characterized by extra zeros and where extra-Poisson
variation may be present. The more accessible ap-
proaches are: (1) use standard unimodal distributions
for discrete data with extra dispersion; (2) use non-
standard mixture models to account for the extra zeros;
and (3) employ two-part models. Another somewhat
different approach, not presented here, has been de-
veloped and promoted by Faddy (1997), uses ideas as-
sociated with birth process models.

Standard unimodal distributions for discrete data
with extra dispersion

The baseline model for count data is the Poisson
model. Allowing for extra-dispersion (i.e., variance .
mean) in a standard Poisson model or fitting a negative
binomial model may be a simple way of dealing with
data with moderate numbers of extra zeros. These ap-
proaches are widely known and the Poisson regression
model is a special case of the generalized linear model
(McCullagh and Nelder 1989).

For illustrative purposes, let us assume we are deal-
ing with counts of a given animal for a number of sites.
Then from the baseline Poisson model, the predicted
number of sites with no animals for a total of n sites
is ne2l(z), where l(z) is the Poisson mean for the set of
covariates z. However, the fit is usually poor because,
as is usual in studies of rare species, there are typically
many more observations with no animals than would
be expected from this model.

The negative binomial distribution can be derived as
a standard mixture of Poisson distributions. However
as it only has only has one mode, as does the Poisson,
it does not deal with the extra-zero problem even
though it allows for extra dispersion. Other distribu-
tions arising as a mixture of Poisson distributions, such
as the Neyman Type A (see Dobbie and Welsh 2001a,

b) can have more than one mode, including a mode at
zero, provide a more elegant solution to the problem.

Nonstandard mixture models to account for the
extra zeros

Another approach to the problem is to model the
response variable as a mixture of a Bernoulli distri-
bution and a Poisson or negative binomial distribution.
For the Poisson case, this mixture model, with covar-
iates, is defined as follows:

Given a response vector of counts i 5 1, . . . , ny ,i
are independent and

y 5 0 with probability 1 2 p (x)i

y ; Poisson [l(z)] with probability p (x)i

so that

2l(z)P(Y 5 0 z x, z) 5 1 2 p (x) 1 p (x)e

2l(z) rp (x)e l(z)
P(Y 5 r z x, z) 5 r 5 1, 2, . . . .

r!

Here p(x) is the probability that the number of an-
imals on a site has a Poisson distribution and, given
that the number of animals on a site has a Poisson
distribution, l(z) is the mean number of animals on the
site. Both p and l may depend on the same, or possibly
a different, set of covariates x and z, respectively. This
has become known as the zero-inflated (ZIP) Poisson
model (Lambert 1992, Welsh et al. 1996). The simplest
form of the model occurs if the covariates x and z
coincide. Modification of the standard ZIP by replacing
the Poisson distribution with a negative binomial dis-
tribution is relatively straightforward and is discussed
by Lambert (1992) and Welsh et al. (1996).

ZIPs may provide insight into processes or mecha-
nisms that may have generated the zero data i.e., dis-
tinguish between structural and random zeros. How-
ever, it will usually be unknown as to whether they
distinguish the two types correctly.

Two-part, conditional models

The previous models are based on single distribu-
tions, a mixture of distributions or, in the case of ZIPS,
an extreme form of mixture. Parameters of the resulting
distributions will usually not be independent of each
other and so interpretation will be difficult. In the most
interesting case, that is regression modeling, parame-
ters of the distribution will typically depend on co-
variates. This makes interpretation even more compli-
cated.

Here, we consider an alternative to the mixture of
distributions idea. Consider a response that has two
states: one in which no animals occur and another in
which animals occur with varying levels of abundance.
If we are only concerned about modeling state 1 (that
is, whether any animals occur at a site), then linear
logistic modeling is commonly applied. Given that an-



S
pe

c
ia
l

Fe
at

u
r
e

1138 ROSS B. CUNNINGHAM AND DAVID B. LINDENMAYER Ecology, Vol. 86, No. 5

imals are observed, the number of animals recorded
can be modeled by a truncated discrete distribution
such as the Poisson or negative binomial distribution
(Grogger and Carson 1991). We refer to the complete
model as the two-part, conditional model. In this case,
the components are orthogonal and so the model sep-
arates processes that determine whether or not an an-
imal is present from the processes determining the
number of animals, given they are present. In the Pois-
son case, this is defined as follows:

Suppose the counts i 5 1, . . . , n are independenty ,i
and

y 5 0 with probability 1 2 p(x)i

y ; truncated Poisson [l(z)]i

with probability p(x)

so that

P(Y 5 0 z x) 5 1 2 p(x)

2l(z) rp(x)e l(z)
P(Y 5 r z x, z) 5 r 5 1, 2, . . . .

2l(z)r![1 2 e ]

Here p(x) is the probability of observing at least one
animal on a site and, given that there is at least one
animal, l(z) is the parameter of the truncated Poisson
distribution which describes the number of animals ob-
served.

Note that if we substitute 1 2 p(x) 1 p(x)e2l(z) for
1 2 p(x) in the above formula we have the ZIP param-
eterization. However, in the regression context, p and
p are different parameters and so the two-part, condi-
tional model and the ZIP model are not equivalent.

A major advantage of two-part, conditional models
over ZIPs is that both model fitting and model inter-
pretation of the components can be done separately.
This also leads to computational advantages. These
models treat both structural and random zeros together.

CASE STUDIES IN MODELING OF COUNT DATA WITH

EXTRA ZEROS USING TWO-PART MODELS

Case study #1. The relationships between the
abundance of Leadbeater’s possum (G. leadbeateri)

and key habitat variables

Our first case study highlights an application of two-
part, conditional modeling for use in analysis of the
habitat requirements of a rare species. The target taxon
is Leadbeater’s possum (Gymnobelideus leadbeateri),
which is a rare and endangered species virtually re-
stricted to the montane ash forests of the Central High-
lands of Victoria, southeastern Australia (Lindenmayer
et al. 1991). As the species is of considerable man-
agement concern because of its occurrence in some of
the most valuable wood production forest in Australia
(Lindenmayer 2000), it is important for conservation
as well as ecological reasons to identify factors which
explain occurrence and/or local population sizes. G.
leadbeateri conforms to cell four (in Table 1) in terms

of the type of rarity it exhibits. The species’ distribution
is highly restricted and virtually confined to the Central
Highlands of Victoria—an area of 60 3 80 km. Within
this region, particular structural and floristic conditions
of wet montane ash eucalypt forests provide suitable
habitat for G. leadbeateri. Where such suitable habitat
does occur, it may support sets of loosely linked col-
onies of two to 12 animals (Lindenmayer 2000).

As outlined above, the study of species with rarity
characteristics like G. leadbeateri (Rabinowitz et al.
1986; see Table 1) will often lead to the collection and
analysis of data which consists of counts with a high
frequency at zero (Gaston 1994). Indeed, a histogram
of counts of G. leadbeateri from 151 survey sites
showed there are many more zeros than would be ex-
pected from standard statistical distributions for count
data (Fig. 1).

Two-part, conditional Poisson and negative binomial
models, as well as a Poisson mixture model (ZIP), were
fitted to the data gathered on G. leadbeateri (Welsh et
al. 1996). Covariates considered included forest age,
slope, aspect, tree canopy height, crown cover, a score
for degree of decorticating bark, basal area of acacia, the
number of shrubs, and the number of trees with hollows
(log transformed) (see Lindenmayer et al. 1991 for further
details). These data are given in the Appendix.

The selection of significant explanatory covariates
(P , 0.05) for each model was undertaken by assessing
the magnitude of the changes in deviance for both com-
ponents, and the magnitude of the ratio of parameter
estimates divided by their standard errors. These sta-
tistics are distributed (approximately) as chi-square and
Student’s t, respectively. Methods for model selection
are well known (e.g., see Nicholls 1989, 1991) and
have been described in detail by McCullagh and Nelder
(1989).

The two-part conditional Poisson model for data on
G. leadbeateri restricting the linear predictors to have
common covariates was:

Component 1: p 5 P{at least one animal present} and
logit (p) 5 22.178 1 0.857 lstags (SE

5 0.251)
Component 2: l 5 mean abundance of animals (given

presence) and log(l) 5 0.572 1 0.321
lstags (SE 5 0.103)

where lstags is the loge(number of trees with hollows
on the site 1 1).

As the parameters for this model are orthogonal, in-
terpretation of the components of the model can be
made separately. Thus, where animals occur, abun-
dance increases by approximately 0.32% for a 1% in-
crease in the number of trees with hollows and the odds
of recording at least one animal at a site is increased
by approximately 0.86% for a 1% increase in the num-
ber of trees with hollows.
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Fitting the conditional negative binomial model to
explore the possibility of extra-Poisson variation gave
the following results:

Component 2: l 5 mean abundance of possums and
log(l) 5 0.485 1 0.344 lstags (SE ø
0.181).

Our estimate of the extra variation parameter was
0.143, with an estimated standard error of 0.161. Thus
there was no evidence of extra-Poisson variation so the
truncated Poisson model was considered appropriate.

The ZIP model for the data on G. leadbeateri re-
stricting the linear predictors to have common covar-
iates only was:

Component 1: p 5 P{at least one animal present} and
logit (p) 5 21.912 1 0.772 lstags (SE

5 0.257)
Component 2: l 5 mean abundance of animals and

log(l) 5 0.573 1 0.320 lstags (SE 5
0.102).

The Poisson mean abundance for the state where
animals occur, increases by 0.32% for a 1% increase
in the number of trees with hollows, as for the truncated
model. In addition, the odds of a site being classified
as state 2 (the Poisson model) increase by 0.77% for
each 1% change in the number of trees with hollows.

If the case is considered where the probability of
absence does not depend on covariates (i.e., logit(p)
5 0.422), then the parameters for the Poisson mean
model are 0.453 and 0.37, respectively. This differs
from the values given above where the probability of
absence depends on the number of trees with hollows.
Thus, for the ZIP model, the parameters must to be
interpreted together, and hence interpretation can be
difficult when the covariates affect p and l differently.
Combining the two components leads to a change in
abundance, which is not simply proportional to lstags.

When the covariates are allowed to differ in the two
components of the model the significant factors include
lstags, basal area of wattle, slope, degree of decorti-
cating bark and number of shrubs (Welsh et al. 1996).
These results were similar to those obtained using the
ZIP model.

Our models showed the species was most likely to
occur on sites with numerous trees with hollows and
a high basal area of Acacia spp. Trees with hollows
contain nest sites for the species (Lindenmayer et al.
1991). Sap produced by Acacia spp. trees is an im-
portant food source for G. leadbeateri (Lindenmayer
et al. 1994). Mean abundance of G. leadbeateri was
highest on areas of flatter topography supporting nu-
merous trees with hollows, few shrubs and large quan-
tities of decorticating bark (Welsh et al. 1996). Thus,
there were some major differences in the explanatory
variables for the models for presence/absence and mod-
els for abundance, given presence.

Case study #2. Monitoring the abundance of the
Frigatebird nests on North East Herald Cay

In contrast to the previous case study on G. lead-
beateri that focused on the application of two-part con-
ditional modeling to habitat analysis, our second one
below highlights the use of the same approach, but in
the context of ecological monitoring as illustrated
through ongoing work on seabird nesting.

Australia’s Coral Sea Island Territory supports ex-
tensive seabird rookeries of great ecological signifi-
cance, with 13 seabird species recorded breeding in the
area. While some of these species such as the Red-
footed Booby (Sula sula), Lesser Frigatebird (Fregata
ariel), Great Frigatebird (Fregata minor), and Red-
tailed Tropicbird (Phaethon rubricauda) have an ex-
tensive distribution outside of Australian waters, they
are uncommon within Australia. The islands and cays
of the Coral Sea are important in that they contain a
significant proportion of the region’s breeding popu-
lations (Baker et al. 2004). The species of seabirds
conform to cell 3 in Table 1. That is, they are wide-
spread but they have very specialized nesting require-
ments. However, where they do occur, the numbers of
birds can be large.

Given the status of Frigatebirds and other seabirds
within Australian waters, a long-term monitoring pro-
gram of nesting success was established (Baker et al.
2004). One of the areas chosen for study is the Coringa-
Herald National Nature Reserve on North East Herald
Island where 11 transects set at 100-m intervals were
established in 1992. For each transect, quadrats mea-
suring 10 3 10 m were marked. A total of 415 quadrats
was established across all habitats, and vegetation
mapped for all transects and quadrats. The monitoring
program has been designed to allow detection of
‘‘shifts’’ in nesting patterns on the island, and permits
estimates of change in nest density from year to year
(see Welsh et al. 2000).

An essential step in estimating the number of nests
constructed by different species of seabirds on North
East Herald Cay in each year is to relate the nest counts
to other relevant variables such as the number of nests
in the previous year, the transect identity, and the quad-
rat number. The data on seabird nests contains a large
number of quadrats with zero counts and is possibly
also characterized by extra dispersion (Fig. 2). A two-
part, conditional model based on the truncated negative
binomial distribution accounted for both the extra zeros
and possible extra-Poisson variation was found to be
compatible with the data. The key covariate was the
number of nests in the previous year. Welsh et al. (2000)
provides a detailed account of the complete analysis.

Given that the seabird nest data were collected in a
regular spatial pattern, it is possible that counts were
spatially correlated. In the initial analysis, this problem
was dealt with in a sequential way by examining re-
siduals for spatial dependence. Since then, Dobbie and
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FIG. 2. Frequency graph of the number of Frigatebird (F.
ariel and F. minor) nests on 236 100-m2 quadrats established
in the Coringa-Herald Nature Reserve on North East Herald
Island in the Coral Sea.

FIG. 3. Relationship between the standard error of
ln(relative risk) and rarity.

Welsh (2001a) have developed direct methods for mod-
eling spatially correlated zero-inflated count data using
the conditional, two-part approach.

SOME OTHER STATISTICAL ISSUES IN THE DESIGN

AND ANALYSIS OF STUDIES OF THE OCCURRENCE

OF RARE SPECIES

It is well known that when detection probabilities of
a species are very low, the ability to be able to establish
the statistical significance of an effect tends to be low.
That is, there is low statistical power. Fig. 3 (Nicholls
and Cunningham 1995) shows the effect of increasing
rarity (i.e., low probability of detection) on the standard
error of log (relative risk) while maintaining a constant
sample size. Here relative risk is a measure of the extent
to which a site having a particular attribute is more (or
less) likely to have a species present than a site without
the attribute.

The effect is that for data on rare species, a change
in a factor of interest (e.g., a ‘‘treatment’’) may result
in a large relative change in odds of a given species
being present, but this may not translate into a statis-
tically significant effect. This is particularly evident as
occurrence falls below 5%. Nicholls and Cunningham
[1995] provide an example in the context of predicting
the distribution of the koala and give details of these
calculations.

In many instances when data are scant, particularly
in terms of a very low frequency of occurrences (e.g.,
,5%), numerical computation problems arise in model
estimation and the fitting of data. This arises because,
on scales appropriate for analysis such as the linear
logit scale, an attempt is being made to estimate pa-

rameters that are extremely large and negative, i.e.,
zero, on the natural scale. In essence, there is insuffi-
cient information for estimation and this is reflected in
large standard errors and/or computational difficulties.

DISCUSSION

Although the various types of rarity have been well
discussed in ecology (Rabinowitz et al. 1986; see Table
1), the term ‘‘rarity’’ is used very loosely in the eco-
logical literature. For example, Gaston (1994) listed
many studies where the concept of rarity was used but
its definition was different in almost all cases. From a
statistical perspective, the problems and definitions of
rarity and rare species need to be clearly formulated
and stated so that progress can be made in solving
relevant problems in ecology. This paper has discussed
some approaches to modeling data having an excess of
zeros; data that commonly arise in studies of rare and
uncommon species. Recent advances in statistical
methods, as briefly illustrated and discussed in this
paper, can assist in the modeling of data on rare and
uncommon species, thus providing a powerful, general
framework for estimation and inference. Moreover, we
believe that, depending on the scale and type of field
study in question and the biology of the taxon in ques-
tion, the modeling methods outlined in this paper would
have potentially useful application for a wide range of
the types of rare species discussed in detail by Rabi-
nowitz et al. (1986) and outlined in the various cells
in Table 1. Such flexibility is illustrated in this paper
by both the differences in type of rarity between G.
leadbeateri and F. ariel and F. minor and the different
applications of modeling to data gathered for them—
habitat analysis (i.e., comparative inference) vs. esti-
mating population size (i.e., point estimation)

The methods outlined in this paper for the study of
rare and uncommon species are increasingly important
for two reasons. First, they extend the number of spe-
cies in an assemblage which can be subject to the same
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sound, and flexible statistical analyses available for
taxa characterized by extensive presence and abun-
dance data. This is valuable because uncommon and
rare taxa can comprise a substantial proportion of the
species in most assemblages. In this context, flexible
statistical analyses may help quantify what makes some
species rare (e.g., quantifying habitat conditions that
are themselves rare; as in the case of G. leadbeateri)
which could make a valuable contribution to biodi-
versity conservation. Moreover, resource management
practices are most often concerned with the conser-
vation and persistence of rare and uncommon species.
Hence, for example, the methods outlined here may
assist in the quantification of the effects of an exper-
imental treatment or environmental impact on rare or
uncommon species.

A second reason why the statistical methods outlined
in this paper may be important is that some approaches
for modeling zero-inflated data may provide insight
into ecological processes/mechanisms, which may have
generated the data. For example, through being able to
separately model presence-only and conditional abun-
dance (given presence) components of count data, it
may (in some circumstances) be possible to identify
separate factors affecting the size of a colony of a rare
species, given presence, from those factors affecting
presence of a species. This was certainly the case for
G. leadbeateri where several explanatory variables
were important in accounting for variation in colony
size once conditions (nest trees) are suitable for the
presence of the species on a site (Lindenmayer 1996).
Indeed, recent efforts in forest management have (1)
established a zoning system to ensure that areas that
are suitable for the presence of the species are not
logged (Macfarlane et al. 1998) and, (2) aimed to har-
vest forests in new and more environmentally sensitive
ways that recreate forest structural conditions which
maximize on-site population sizes (D. B. Lindenmayer
and R. B. Cunningham, unpublished data). These new
silvicultural methods are targeted toward flat terrain
where it is more operationally feasible to do them and
also where our two-part modeling work has shown that
population sizes of G. leadbeateri will be higher if
other suitable habitat attributes can be maintained or
created.

Both ZIPs and two-part conditional models tend to
be sensitive to the choice of underlying distribution.
Gurmu (1997) has suggested some robust, semi-para-
metric alternatives. Where the nonzero part is not easily
modeled by a specific probability distribution, a stan-
dard ordinal regression model (see McCullagh 1980)
may be a suitable alternative. However, in that case,
the covariates for the zero and non-zero parts of the
model must be the same.

Our final comment relates to the importance of in-
terdisciplinary work in scientific research. We believe
the collaborative approach we have taken to our work,
whereby we have combined expertise in ecology and

statistics has resulted in outcomes (both in quality and
quantity) that exceed the sum of what could have been
achieved individually. Such collaborative approaches
are increasingly important because both the science of
ecology and the science of statistics are extensive and
complex and are changing rapidly making it impossible
for any one person to keep abreast of new innovations
in both fields. Perhaps this is neatly illustrated by the
early origins of the ZIP regression approaches applied
in the ecological case studies in this paper. The methods
were originally developed for problems in economet-
rics and manufacturing and appeared in a literature read
by few (if any) ecologists.
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Data Archive: Ecological Archives E086-061-A1.
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ESTIMATION OF SPECIES RICHNESS: MIXTURE MODELS, THE ROLE OF
RARE SPECIES, AND INFERENTIAL CHALLENGES
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Abstract. We examine the role of rare species in the problem of estimating within-
habitat species richness based on sampling data. Richness estimation can be modeled re-
alistically for abundance-based and incidence-based data using Poisson or binomial mix-
tures, respectively. The problem can be reduced to estimation of the odds of the probability
of a species remaining undetected in the sample or sample set. Within this rigorous statistical
framework, we explore existing methods of richness estimation and assess their limitations.
We do this by modeling the addition of increasing numbers of rare, undetected species to
a reference assemblage, assessing the power of different methods to distinguish the modified
species assemblages from the reference assemblage. (We use empirical example data sets
for birds, seeds, and beetles as reference assemblages.) By considering the contributions
of rare species and the role of undetected species for a fixed sampling effort, we show why
the problem of richness estimation is so difficult, and we discuss what statistical models
can provide.

Key words: conditional inference; mixture models; nonparametric maximum likelihood estima-
tion; one-sided inference; richness estimation; richness extrapolation; singleton species; species ac-
cumulation curve; transient species; zero-truncated binomial; zero-truncated Poisson.

INTRODUCTION

The concept of species rarity in ecology and bio-
geography takes many forms, depending primarily
upon spatial and temporal scale (Fisher et al. 1943,
Preston 1948, Rabinowitz 1981, Gaston 1994, Magur-
ran 2004). We will consider rarity at the habitat level,
in the context of alpha diversity (Whittaker 1972) and
the estimation of local species richness from sampling
data.

With the exception of thorough biotic surveys in
isolated, species-poor habitats, it is routine in species
inventory work to find that, even after intensive sam-
pling, some species are represented by only one or two
individuals (singletons or doubletons) or are detected
in only one or two samples in a replicated sample set
(uniques or duplicates) (Colwell and Coddington
1994). Often, enlarging the sample (or sample set)
yields additional individuals of these rare species, mov-
ing them into higher abundance or occurrence classes,
but at the same time reveals additional species that now
represent new singletons and doubletons or uniques and
duplicates. These are the workings of Preston’s demon,
the moving ‘‘veil line’’ between detected and the un-
detected species as sample size increases (Preston
1948).

For example, in a multiyear study of the insect her-
bivores of a selected set of plant species in New Guinea,

Manuscript received 9 July 2004; revised and accepted 5 Au-
gust 2004. Corresponding Editor: A. M. Ellison. For reprints of
this Special Feature, see footnote 1, p. 1079.

3 E-mail: cmao@stat.ucr.edu

Novotny and Basset (2000) found that 278 of the 1050
insect species recorded (26%) were singletons, based
on more than 80 000 individual insects. When a single
host-plant species was considered, 45% of the leaf-
chewing or sap-sucking insect species were singletons.
Recent microbial inventories, made possible by mo-
lecular tools, have revealed an astonishing richness of
species (however defined), with even more astonishing
proportions of singletons, sometimes reaching more
than 90% (Hughes et al. 2000, Falkowski and de Vargas
2004).

What do rare species mean, in inventory data? Bi-
ologists have long suspected that rare species in many
assemblages are a mix of genuinely rare, ‘‘persistent’’
or ‘‘resident’’ species and ‘‘transient’’ or ‘‘occasional’’
species that may be common elsewhere (Magurran and
Henderson 2003). In the most extensive local inventory
of tropical ants on record, Longino et al. (2002) carried
out a replicated, multimethod sampling campaign over
many years at a Costa Rican rain forest site. Fig. 1
shows the results in the form of a species accumulation
curve (a sample-based rarefaction curve [Gotelli and
Colwell 2002]). Even when all samples are pooled, the
numbers of uniques and duplicates are barely declining,
as rarer and rarer occurrence classes come to light.
Longino et al. (2002) considered the 51 uniques (12%
of the total 437 species) individually and classified
them as geographical edge species (14 species, known
to be common elsewhere but rare at the site), meth-
odological edge species (six species, probably common
at the site, but not susceptible to the survey methods
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FIG. 1. Species accumulation (sample-based rarefaction)
curve for rain forest ants. The lower curves show the number
of species detected in only one sample (uniques) and in ex-
actly two samples (duplicates). Note that rare species continue
to accumulate even after more than 8000 samples have been
pooled (Longino et al. 2002).

used), globally rare species (25 species, known else-
where but not common anywhere), or globally unique
species (known only from a single sample at the site,
and nowhere else on earth).

Whatever the explanation for their rarity, the pres-
ence of substantial numbers of rare species in sampling
data suggests that the inventory is incomplete—that
the true species richness for the study habitat includes
undetected species. What are the prospects for ac-
counting for those undetected species statistically? Can
we tell if an inventory is complete, or nearly so? In
this paper, we explore these questions in the context
of a statistically rigorous sampling model.

A FRAMEWORK OF MIXTURE MODELS

Two kinds of data

Consider an assemblage with a true richness of S
species. The ith species has a true relative abundance
fi for i 5 1, 2, . . . , S, with fi 5 1. In the estimationSSi51

of the species richness S, two general classes of sam-
pling data may be distinguished: abundance-based data
and incidence-based data. The simplest form of abun-
dance-based data is a single, multispecies sample, in
which the number of individuals from each species
found in the sample is recorded. The number of indi-
viduals from the ith species Yi will be treated as a
Poisson random variable with a mean parameter li,
called the detection rate. The detection rates li depend
on the relative abundances fi, the probability of an
individual being detected when it is present, and the
sample size (the number of individuals), which, in turn,
is a function of the sampling effort.

Incidence-based data, in the simplest case, consist
of a set of multispecies samples (from timed obser-
vations, quadrats, traps, lures, seines, dredge hauls,
mist nets, or other replicated sampling units) for which
only the detection or nondetection of species in each

sample is available. Let pi be the detection probability
of the ith species. Let Yi be the number of samples in
which the ith species is detected, which is a binomial
random variable. We will use the detection odds li 5
pi 5 (1 2 pi) for incidence-based data. The detection
odds li depend on the relative abundances fi, the prob-
ability of a species being detected when it is present,
the sampling design (e.g., quadrat size), and on non-
random, species-specific aggregation or disaggregation
or individuals among samples (Colwell et al. 2004).

The Yi will be called frequencies for both kinds of
data. If Yi 5 0, the ith species does not appear in the
sample (for abundance-based data) or sample set (for
incidence-based data). (In statistical terms, an inci-
dence-based sample set is treated as a single sample,
but we will use the term ‘‘sample set’’ for such data,
to conform to ecological terminology.) We will assume
that if the detection is imperfect, then the effect of
imperfect detection does not vary across individuals or
species. Thus, for a fixed sampling effort, the detection
rates/odds li depend only on the relative abundances
fi, in the sense that a large/small fi corresponds to a
large/small li. The homogeneous case means that the
fi and the li are identical, which is rarely, if ever, true.
The heterogeneous case, in which the fi and the li are
allowed to vary across species, will be the focus of this
article.

An empirical data set can be summarized in terms
of the counts nx, where nx is the number of frequencies
Yi that equal x. Thus n0 is the number of undetected
species, n1 is the number of singletons, and n2 is the
number of doubletons, etc. (For incidence-based data,
the n1 are often called uniques and the n2 are called
duplicates [Colwell and Coddington 1994]). The ob-
served richness n1 5 Sx$1 nx is the number of species
detected in the sample (for abundance-based data) or
sample set (for incidence-based data), from among the
S species actually present.

For example, Janzen (1973) collected an abundance-
based data set on tropic beetles; Norris and Pollock
(1998) analyzed an abundance-based avian dataset
(1995 census data for the Wisconsin route of the North
American Breeding Bird Survey); and Butler and Chaz-
don (1998) recorded the species of tropical plants
emerging from seed-bank samples, which we treat here
as a replicated, incidence-based sample set. In the bee-
tle data, n1 5 78 species were detected and the nonzero
observed counts are n1 5 59, n2 5 9, n3 5 3, n4 5 2,
n5 5 2, n6 5 2, n11 5 1; (Chao and Shen [2003] also
analyzed this classic data set). In the bird data, n1 5
72 species were detected and the nonzero observed
counts are n1 5 11, n2 5 12, n3 5 10, n4 5 6, n5 5 2,
n6 5 5, n7 5 1, n8 5 3, n9 5 2, n10 5 4, n12 5 1, n13

5 1, n14 5 1, n15 5 2, n16 5 1, n18 5 2, n25 5 1, n29 5
1, n30 5 1, n32 5 1, n39 5 1, n44 5 1, n53 5 1, n54 5 1.
In the seed-bank data, n1 5 34 species were detected
among 121 soil samples and the nonzero observed
counts are n1 5 3, n2 5 2, n3 5 3, n4 5 3, n5 5 1, n6



May 2005 1145STATISTICS OF RARITY

S
pec

ial
Featu

r
e

FIG. 2. Four homogeneous groups comprising an assem-
blage of S 5 20 species. The group detection rates/odds jk

and the group relative richness pk are indicated in the figure.

5 5, n7 5 1, n8 5 1, n9 5 3, n10 5 1, n11 5 2, n13 5
1, n17 5 1, n24 5 2, n43 5 2, n47 5 1, n52 5 1, n61 5 1.

The mixture models

In the model for abundance-based data, Yi is a Pois-
son random variable with detection rate li. In the in-
cidence-based model, Yi is a binomial random variable
with detection odds li. Let T be the number of samples
in an incidence-based data set. A Poisson/binomial den-
sity can be written as

y l
(abundance-based)

ly!e
g(y; l) 5 

ylT (incidence-based)
T1 2y (1 1 l)

where y $ 0 is a possible value of Yi. Note that we use
the term density for the probability mass function
throughout this paper. We will assume that l1, l2, . . . ,
lS arise as a sample of identically and independently
distributed random variables from a latent distribution
H(l). For incidence-based data, this is equivalent to
the assumption that the detection probabilities pi also
arise as a random sample from a latent distribution.
Such a model is called a mixture model because the
unconditional distribution of the frequencies Yi is a
mixture of Poisson or binomial distributions.

In a finite mixture model, the latent distribution H
is discrete over G values of parameter l (the support
points jk), with mixing weights pk, k 5 1, 2, . . . , G.
This means that if one selects one of the li randomly,
then the probability that it equals jk is pk. There is
another biological interpretation of a finite mixture
model. An assemblage consists of G groups of species,
called homogeneous groups. Within each group, the
species share the same detection rate/odds, called the
group detection rate/odds. The mixing weight is the
group relative richness: the number of species in group
k divided by S, the total species richness in the assem-
blage. Fig. 2 illustrates an assemblage of 20 species
with four homogeneous groups.

Thus, we treat the frequencies Yi as a sample from a
Poisson or binomial mixture, which we can specify as

g (y) 5 p g(y; j ) 1 p g(y; j ) 1 · · · 1 p g(y; j ).H 1 1 2 2 G G

where each term in the summation represents the con-
tribution to the mixture from one of the G homogeneous
species groups. The model gH(y) includes not only de-
tected (Yi . 0), but undetected (Yi 5 0) species. To
model real data, we need a density for only the detected
species. Given n1 observed species, the density of those
Yi . 0 is a zero-truncated mixture of Poisson or bi-
nomial distributions:

g (x)/[1 2 g (0)] x $ 1.H H

This can be written as a mixture fQ(x) of truncated
Poisson/binomial densities as follows:

g (x)/[1 2 g (0)] 5 f (x) x $ 1H H Q

where Q is a derived latent distribution (taking zero
truncation into account) that has the same support
points as the latent distribution H, but requires adjusted
mixing weights Ãk. To be specific, we define

f (x) 5 Ã f (x; j ) 1 Ã f (x; l ) 1 · · ·Q 1 1 2 2 (1)

1 Ã f (x; j ) x $ 1G G

g(x; l)
f (x; l) 5

1 2 g(0; l)

x l
(abundance-based)

lx!(e 2 1)
5 (2)

xlT (incidence-based)
T1 2y (1 1 l) 2 1

Sp [1 2 g(0; j )] 1 2 g(0; j )k k kÃ 5 5 p . (3)k kS[1 2 g (0)] 1 2 g (0)H H

As a probability density, f (x; l) is defined only for
x $ 1. For notational convenience, we will use f (0; l)
5 g(0; l) 5 (1 2 g(0; l)), which is not a probability,
but it is the odds of a species being undetected if this
species has detection rate/odds l. Note that f (0; l) goes
to infinity as l goes to zero at the same rate as 1/l,
because it is clear that

B 5 lim l f (0; l)
l→0

 l
lim 5 1 (abundance-based)

le 2 1 l→0

5 (4)
l 1 lim 5 (incidence-based).

T(1 1 l) 2 1 Tl→0

This fact will be used in later discussion. As seen from
the first equality in Eq. 3, the mixing weight Ãk is the
group relative expected observed richness in the sense
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TABLE 1. An example assemblage from 1995 census data for the Wisconsin route of the North
American Breeding Bird Survey.

Parameter

k

1 2 3 4 5

jk 2.1328 7.2628 13.6913 30.3418 48.7918
pk 0.5407 0.2117 0.1362 0.0646 0.0469
vk 0.5717 0.1974 0.1269 0.0602 0.0437

Notes: The total species richness in this assemblage is S 5 77. We present the support points
jk and mixing weights pk of the latent distribution H and vk of the derived latent distribution
Q. The derived latent distribution Q is the nonparametric maximum-likelihood estimate of the
bird data set. H and S are calculated from Q and the observed richness.

FIG. 3. A continuous latent distribution approximated by a discrete latent distribution. The top left panel presents a
gamma distribution H(l; 2, 3) and a discrete latent distribution. The bottom left panel presents a beta distribution with H(p;
1.5, 2) and a discrete latent distribution. The mixtures of the gamma distribution and its discrete approximation are presented
in the top right panel. The mixtures of the beta distribution and its discrete approximation are presented in the bottom right
panel. For the Poisson case, only fQ(x) with x # 20 are plotted; for the binomial case, T 5 20.

that it is the ratio of the expected number of detected
species in the kth homogeneous group over the total
expected number of detected species from the assem-
blage. We will identify latent distribution H with the
set of parameters j1, j2, . . . , jG and p1, p2, . . . , pG

and identify the derived latent distribution Q with the
set of parameters j1, j2, . . . , jG and Ã1, Ã2, . . . , ÃG.
Table 1 is an example assemblage.

The abundance structure (for abundance-based data)
or incidence structure (for incidence-based data) of an
assemblage is determined by the total species richness
S, the number of homogeneous groups G, the group
relative richness pk, or equivalently the group relative
expected observed richness Ãk, and the group detection
rates/odds jk. Because these parameters are allowed to
vary, finite mixture models can provide a good ap-
proximation to many real assemblages.

There are parametric mixture models (Fisher et al.
1947, Burnham 1972, Ord and Whitmore 1983, Sichel
1997, Dorazio and Royle 2003). For example, H can
be a gamma distribution H(l; a; s) or a beta distribution
H(p; a, b) (on the detection probability p), where

l 1
a21 2z/sH(l; a, s) 5 z e dzE as G(a)0

p G(a 1 b)
a21 b21H(p; a, b) 5 z (1 2 z) dz.E G(a)G(b)0

One can find a discrete latent distribution H that ap-
proximates a continuous gamma/beta distribution.
Most importantly, the mixture fQ(x) of zero-truncated
Poisson/binomial densities from the continuous distri-
bution and that from its discrete approximation can be
very close; see Fig. 3.
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The probability of observing a particular set of fre-
quencies Yi (a particular pattern of abundances or pres-
ences), called the joint density of the frequencies Yi, is

S
nyg (y ) 5 g (y).P PH i H

i51 y$0

There are S!/(Px$0 nx!) ways to get the same counts nx

with x $ 0 from the Yi (note that this number includes
the count for undetected species n0). Because n0 1 n1

5 S, the density of the counts, as the full likelihood of
the parameters S and H, becomes

S! nS2n x1L (S, H ) 5 g (0) g (x).P1 H H(S 2 n )! n ! x$1P1 x
x$1

The observed counts nx with x $ 1 are called sufficient
statistics because they contain all the information avail-
able for us to make statistical inference. The condi-
tional likelihood of the observed counts given the ob-
served species richness depends only on the latent dis-
tribution Q,

n !1 nxL (Q) 5 f (x)P2 Qn ! x$1P x
x$1

nx
n ! g (x)1 H5 . (6)P [ ]1 2 g (0)n ! x$1P Hx

x$1

Note that L1(S; H) 5 L2(Q)L3(S; H), where L3(S; H) is
the density of n1:

S!
S2n n1 1L (S, H ) 5 g (0)[1 2 g (0)] (7)3 H H(S 2 n )!n !1 1

which is called the marginal likelihood.

Predicting the number of undetected species

The key to estimating the true richness S from the
sample data lies in modeling the undetected species, n0.
If we knew the latent distribution H, estimation of the
species richness would be straightforward. The maxi-
mum likelihood estimator for S is the integer part of

Ŝ 5 n 1 n g (0)/[1 2 g (0)]1 1 H H (8)

which maximizes the marginal likelihood L3(S; H) in
Eq. 7 and linearly depends on H only through the odds
of a species being undetected:

a 5 g (0)/[1 2 g (0)].H H

We can write a as a(Q), because it is easy to show that

G

a(Q) 5 Ã f (0; j ). (9)O k k
k51

Note that n1a for a fixed a predicts the number of
undetected species n0. Because a is unknown, the prob-
lem is reduced to estimation of a.

Statistical estimation methods

Various statistical methods have been applied toward
estimation of the species richness S. Bunge and Fitz-
patrick (1993) presented a comprehensive review; also
see Colwell and Coddington (1994). Here we will sum-
marize various methods from the point of view of mix-
ture models, and in particular, we will include new
developments in the last ten years. Each procedure can
be thought to provide an estimator for a, the odds of
a randomly selected species being undetected. If a pro-
cedure produces an estimator Ŝ for S directly, then we
can write an estimator for a as 5 Ŝ/n1 2 1.â

Although Q is unknown, fQ(x) can be estimated by
the sample proportion f̂ (x) 5 nx/n1, where f̂ (x) is called
the empirical density. If a parameter is a function of
the fQ(x), then we can estimate it by replacing fQ(x) with
f̂ (x). To see this, consider, for example, a parameter
aML and its estimator ,âML

2f (1)Q
a 5 a (Q) 5 AML ML 2 f (2)Q

2 2f̂ (1) n1â 5 A 5 A (10)ML 2 f̂ (2) 2n n1 2

where A 5 1 (abundance-based) or A 5 1 2 1/T (in-
cidence-based).

The unfortunate fact is that the odds a cannot be
written as an explicit function of the fQ(x). There are
two general recipes toward estimation of a. The first,
termed the approximation recipe, means that one finds
some parameter a# that is an explicit function of the
fQ(x) and is assumed to be close to a under certain
situations. The estimator will be used as an estimator#â
for a. The parameter aML in Eq. 10 is such an example.
It was shown in Mao and Lindsay (2003) and Mao
(2004a) that for all assemblages, we have aML # a,
with aML 5 a for the homogeneous case. This means
that aML is a universal lower bound for a. Chao (1984)
obtained aML for the abundance-based data and Chao
(1989) applied it to the incidence-based data without
the factor A 5 1 2 1/T, which is close to one for a
large T. Many estimators for a that are well-known to
ecologists, under the name of nonparametric estima-
tors, in the sense that f̂ (x) is a nonparametric estimator
for fQ(x), can be thought to be based on the approxi-
mation recipe, although the original logic that leads to
the development of an estimator might be something
else and the development might be done in a different
model (Burnham and Overton 1978, Darroch and Rat-
cliff 1980, Smith and van Belle 1984, Zelterman 1988,
Chao and Lee 1992, Lee and Chao 1994).

The second strategy, termed the plug-in recipe,
means that one finds an estimator Q̂ for the latent dis-
tribution Q and then plugs the elements of Q̂ (Eq. 1)
into Eq. 9 to yield an estimator for a. This is also
equivalent to estimating the latent distribution H. Be-
cause estimation of the latent distribution Q or H in-
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FIG. 4. A reference assemblage and a modified assem-
blage. Each species group is put in a small box. The modified
assemblage has an additional rare species group. The group
relative richness changes for a species group in the reference
assemblage while the group detection rate/odds is kept the
same.

volves complicated iterative algorithms, the plug-in
recipe is less known and less used in ecology, although
several estimation procedures have been proposed
(Burnham 1972, Efron and Thisted 1976, Ord and
Whitmore 1986, Mingoti and Meeden 1992, Norris and
Pollock 1996, 1998, Pledger 2000, Dorazio and Royle
2003, Mao 2004a, b, Mao et al., in press).

Among various Q/H-estimation procedures, the ones
that maximize either the full likelihood L1(S, H) in Eq.
5 or the conditional likelihood L2(Q) in Eq. 6 have been
addressed thoroughly. The nonparametric maximum
likelihood procedures in Norris and Pollock (1996,
1998) used L1(S, H) in Eq. 5. The nonparametric max-
imum likelihood procedures in Mao (2004a) used L2(Q)
in Eq. 6. The parametric maximum likelihood proce-
dure for incidence-based data in Dorazio and Royle
(2003) used L1(S, H) in Eq. 5. The parametric maximum
likelihood procedure for the abundance-based data in
Efron and Thisted (1976) used a conditional likelihood
similar to L2(Q) in Eq. 6.

THE ROLE OF RARE SPECIES IN INFERENCE

Rare species are interpreted here as those with small
relative abundances fi, which in turn result in small
detection rates/odds li. To see how the existence of
rare species will affect statistical inference on the total
species richness, we will consider fixing an assem-
blage, called a reference assemblage, and compare it
with a modified assemblage, which differs from the
reference assemblage by an additional group of species
that have a small detection rate/odds. We will denote
the reference assemblage as C 5 {S, H} or C 5 {S,
Q} and the modified assemblage by C* 5 {S*, H*} or
C* 5 {S*, Q*}, where the relative species richness,
the relative expected observed richness, and the detec-
tion rate/odds of the additional rare species group are
denoted by p0, , and , respectively. For each spe-Ã* j*0 0

cies group in the reference assemblage, its group rel-
ative richness and group relative expected observed rich-
ness in the modified assemblage have been changed by
the addition of the rare species group, as specified by

j* 5 j p* 5 p (1 2 p*)k k k k 0

Ã* 5 Ã (1 2 Ã*) k 5 1, 2, . . . , G. (11)k k 0

Fig. 4 illustrates a reference assemblage and a modified
assemblage.

The expected number of species that have frequency
x from the kth homogeneous group equals the number
of species in the group, Spk, times the probability g(x;
jk) that a species has frequency x. The expected number
of species that have the frequency x from the reference
assemblage C is

G

E{n z C} 5 Sp g(x; j ) x ^ 0.Ox k k
k51

From Eqs. 2 and 3, and the fact that S{1 2 gH(0)} 5
E{n1 z C}, we can write the following:

G

E{n z C} 5 E{n z C} Ã f (x; j ) x $ 0. (12)Ox 1 k k
k51

Because going from the reference assemblage C to the
modified assemblage C*, we add a group of rare spe-
cies, we can write the difference as

E{n z C*} 2 E{n z C} 5 (S* 2 S)g(x; j*)x x 0

5 E{n z C*}Ã*f (x; j*)x 0 0

x $ 0.

Note that is the ratio of the expected number ofÃ*0
species being detected from the additional rare species
group over the total expected number of species being
detected from the modified assemblage, that is,

E{n z C*} 2 E{n z C}1 1Ã* 5 (13)0 E{n z C*}1

which can be reformulated to

E{n zC*} 2 E{n zC} 5 E{n zC}Ã*/{1 2 Ã*}.1 1 1 0 0 (14)

Due to Eq. 14, we can write Eq. 12 in terms of E{nx z C},
a quantity determined by the reference assemblage, and

and , the relative expected observed richness andÃ* j*0 0

the detection rate/odds of the rare species group, re-
spectively:

Ã*0E{n z C*} 2 E{n z C} 5 E{n z C} f (x; j*)x x 1 01 2 Ã*0
(x $ 1) (15)

Ã*0E{n z C*} 2 E{n z C} 5 E{n z C} f (0; j*).0 0 1 01 2 Ã*0
(16)

The right-hand side of each of Eqs. 14, 15, and 16
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TABLE 2. Example 1 of modified assemblages.

m 2 10 50 100 1000 2000 5000 Reference

a 0.30 0.47 0.52 0.53 0.53 0.53 0.53 0.07
En1 84.76 74.91 72.43 72.10 71.81 71.79 71.78 71.77
En0 25.24 35.09 37.57 37.90 38.19 38.21 38.22 5.23
En1 21.21 14.19 11.85 11.53 11.24 11.22 11.21 11.20
En2 14.65 12.30 12.15 12.15 12.15 12.15 12.15 12.15
En3 9.54 9.13 9.12 9.12 9.12 9.12 9.12 9.12
En4 5.80 5.75 5.75 5.75 5.75 5.75 5.75 5.75
En5 3.76 3.76 3.76 3.76 3.76 3.76 3.76 3.76

Notes: The modified assemblage C(m) is obtained by adding to the latent distribution H (the
reference assemblage) in Table 1 a support point j 5 1/m with a mixing weight p 5 0.3(m) (m)

0 0

so that S(m) 5 110. We present the odds a, the expected observed richness En, and the expected
counts Enx for x 5 0, 1, 2, 3, 4, 5.

stands for the contribution to the expected count or the
expected observed species richness from the rare spe-
cies group. From Eqs. 14 and 15, if the relative ex-
pected observed richness of the rare species group

is small enough, then the contribution from theÃ*0
added rare species group to the expected observed rich-
ness or any expected observed count can be as small
as possible, that is, for x $ 1, when ø 0,Ã*0

0 # E{n z C*} 2 E{n z C}x x

# E{n z C*} 2 E{n z C} ø 0.1 1

This means that, with the same sampling effort, em-
pirically one can not tell whether the data are generated
from the reference community C or from the modified
community C*. On the other hand, when both andÃ*0
the detection rate/odds of the rare species group arej*0
small, using Eq. 4, we can write Eq. 16 as

E{n z C*} 2 E{n z C} 5 E{n z C}[j*f (0; j*)](Ã*/j*)0 0 1 0 0 0 0

ø E{n z C}B(Ã*/j*).1 0 0

One can easily find and such that the contributionÃ* j*0 0

from the rare species group to the expected unobserved
count can be as large as possible, for example, using

and with 5 and ø 0.*Ã* j* Ã* Ïj j*0 0 0 0 0

The different contributions to the expected observed
counts and the expected unobserved counts from the
additional rare species have profound consequences in
statistical inference on the odds a and the estimation
of the species richness S. From Eqs. 1, 9, and 11, we
can also obtain

z f (x) 2 f (x)z 5 Ã* z f (x; j*) 2 f (x)zO OQ* Q 0 0 Q
x$1 x$1

# 2Ã* (17)0

a(Q*) 2 a(Q) 5 Ã*f (0; j*) 2 Ã*a(Q)0 0 0

ø BÃ*/j* (18)0 0

where the approximation in Eq. 18 holds when both
and are small.Ã* j*0 0

Eqs. 17 and 18 suggest that the estimation procedures
based on either the approximation recipe or the plug-
in recipe might have trouble producing useful results.

For a procedure based on the approximation recipe, for
example, for aML in Eq. 10, we will have aML(Q*) ø
aML(Q) as ø 0. If aML(Q) ø a(Q), then aML(Q*) øÃ*0
a(Q) and aML(Q*) can never be close to a(Q*). The
same logic applies to all estimators based on the ap-
proximation recipe. There is no such parameter a# for
a such that a# is close to a for all latent distributions.

Consider any procedure that estimates the latent dis-
tribution Q. Even if Q fits a data set well, then, because
of Eq. 17, when is small enough, Q* should alsoÃ*0
fit the same data as well as Q and numerically either
Q* or Q might provide a fit slightly better than the
other. However, the estimators for a obtained from Q*
and Q will be dramatically different so that estimation
of a by plug-in might produce extremely large values.
A theoretic consequence for confidence intervals is
that, for a confidence interval, for either the odds a or
the species richness S, to achieve its advertised con-
fidence level, the upper confidence limit must often
infinite.

As an illustration, the assemblage in Table 1 has S
5 77 species, taken to be the true, complete reference
assemblage. We will consider a sequence of modified
assemblages C(m) 5 {S(m), H(m)} with corresponding de-
rived latent distribution Q(m), that are parameterized by
m. Table 2 and Fig. 5 show two sequences of modified
assemblages. In Table 2, the last column (reference)
shows the expected counts and observed species rich-
ness for the reference assemblage. To create the mod-
ified assemblages in Table 2, we add a fixed number
of rare species (33, so that S(m) 5 110), with a fixed
mixing weight . We then vary the support point(m)p0

for the added species according to 5 1/m so(m) (m)j j0 0

that also becomes smaller as m gets larger, with(m)Ã0

m ranging from 2 to 5000, to explore the effect of
adding rarer and rarer species. (The function 5 1/m(m)j0

is just a convenient way to vary based on the(m)j0

index m.) When is large (e.g., m 5 2, 5 0.5),(m) (m)j j0 0

the added species are reflected in the expected counts
for the observed species (e.g., the expected singletons
En1 goes from 11.20 to 21.21), and thus in the expected
number of observed species En1 (which rises from
71.78 to 84.77). But as becomes smaller and smaller(m)j0
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FIG. 5. Example 2 of modified assemblages. Reference (C ) and modified (C(m)) assemblages with a variable number of
added rare species, variable mixing weight, and variable support point for the rare species group. The modified assemblage
C(m) is obtained by adding to the derived latent distribution Q in Table 1 a support point 5 m23/2 with a mixing weight(m)j0

5 m21. The expected observed richness E{n1zC(m)} and the expected counts E{nx z C(m)} for x 5 0, 1, 2, . . . , 5 are plotted.(m)Ã0

The points not on the curves are for the reference assemblage, but each is linked to a curve by dotted lines. The ordinates
are logarithmically scaled.

TABLE 3. The approximation parameter aML in Eq. 10 is compared with a in the reference
assemblage in Table 1 and modified assemblages in Table 2 (first pair of rows) and Fig. 5
(second pair of rows).

Parameter

m

2 10 50 100 1000 2000 5000 Reference

Tables 1 and 2
a 0.30 0.47 0.52 0.53 0.53 0.53 0.53 0.07
aML 0.18 0.11 0.08 0.08 0.07 0.07 0.07 0.07

Fig. 5
a 1.22 3.18 7.13 10.07 31.70 44.79 70.78 0.07
aML 0.77 0.19 0.09 0.08 0.07 0.07 0.07 0.07

(index m becomes larger and larger), the expected ob-
served counts (and thus the expected observed rich-
ness) for the modified assemblages converge on the
expected observed counts for the reference assemblage.
Meanwhile, the number of undetected species En0 rises
asymptotically to a constant, as reflected in the odds
against detection a(Q(m)), which approaches an asymp-
tote of 0.53.

This unsettling result is further illustrated in Fig. 5,
where we vary both (by the arbitrary function(m)j0

5 m23/2) and mixing weight (indirectly by the(m) (m)j p0 0

arbitrary function Ã(m)0 5 1/m) , so that the true richness
of the modified assemblages S(m) is not constant, but
increases with m. The same qualitative pattern seen in
Table 2 emerges. The expected observed counts and
the expected observed richness for the modified assem-
blages converge on the expected observed counts and

the expected observed richness for the reference as-
semblage. Meanwhile the number of undetected species
and the odds against detection continue to rise (instead
of approaching an asymptote), because we have al-
lowed the true richness of the modified assemblages to
increase with index m.

Table 3 presents aML in Eq. 10 calculated in the ref-
erence assemblage and modified assemblages that have
been considered in Table 2 and Fig. 5. While aML is
close to the true odds a in the reference assemblage,
there is a substantial difference between aML and a in
the modified assemblages. If a data set is generated
from the modified assemblage C(m), using aML will yield
a large bias. We can conclude that all nonparametric
estimators can have a large bias in the presence of rare
species because of Eqs. 17 and 18. The confidence
intervals based on the asymptotic normality of these
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TABLE 4. The two estimates Q̂ and Q̂# with rk 5 jk/(1 1 jk) (seed bank data).

Parameter

k

1 2 3 4 5 6

Q̂
rk 0 0.0292 0.0680 0.1786 0.3827 0.4885
vk 0.0545 0.3179 0.3940 0.0866 0.1138 0.0332

Q̂#

rk ··· 0.0197 0.0636 0.1774 0.3827 0.4885
vk ··· 0.2889 0.4752 0.0889 0.1138 0.0332

TABLE 5. The estimate Q̂ (beetle data).

Parameter

k

1 2 3

jk 0.2252 3.4105 9.7892
vk 0.8288 0.1553 0.0155 FIG. 6. The estimated density of log a(Q̂) based on the

resample.

nonparametric estimators usually can not achieve their
advertised confidence level.

Consider calculating the nonparametric maximum
likelihood estimators (NPMLE) for the latent distri-
bution Q in the seed-bank data and the beetles data
(Lindsay 1983a, b). The NPMLE Q̂ for Q that maxi-
mizes the conditional likelihood L2(Q) in Eq. 6 in the
seed-bank data is presented in Table 4, where we use
the detection probability instead of the detection odds,
and the group detection probability is denoted by rk 5
jk/(1 1 jk). Note that Q̂ has a support point at zero,
which means that an assemblage with infinitely many
rare species whose relative abundances are extremely
small is the most plausible one to generate such data.
Another likelihood-based estimate Q̂# is also presented
in Table 4, which is obtained by the EM algorithm
starting from the distribution that eliminates the zero
support point in Q̂. Both estimates fit the data very
well. While the log-maximized likelihoods log L2(Q̂#)
5 2113.55 and log L2(Q̂) 5 2113.24 are close to one
another, the estimates a(Q̂) 5 ` and a(Q̂#) 5 0.03 are
dramatically different: the former suggests there are
many undetected species while the latter suggests there
are few. The observed seed-bank dataset has relatively
few rare species (e.g., only three singletons and two
doubletons), suggesting that few species remain un-
detected, as indicated by Q̂#. But the NPMLE Q̂ sug-
gests that there might be many rare species, because
the likelihood can be increased slightly by allowing
many additional rare species, as in Q̂. An estimator for
the odds a calculated from an NPMLE might be se-
verely biased.

For some data sets, it is possible to have an NPMLE
for Q without a zero or tiny support point so that an
estimate for the odds a seems acceptable. However,
when one tries to construct confidence intervals for a
or S by means of bootstrap, there will usually be some
bootstrap resamples that yield an NPMLE with a tiny

or zero support point, which makes the upper confi-
dence limit extremely large. For example, the NPMLE
Q̂ for Q in the beetle data is presented in Table 5,
yielding an estimate a(Q̂) 5 3.29. We take 200 boot-
strap resamples from the estimated conditional likeli-
hood L2(Q̂). There are 14 resamples that produce the
NPMLE for Q with the smallest support point less than
1 3 1025, among which one has a zero support point.
The 95% conditional confidence interval for a is (1.71,
1 3 107). We remark that the numeric results of boot-
strap might vary across different runs if one wishes to
run the algorithm again because they are random.
Clearly the upper confidence limit is useless. Because
the NPMLE for Q based on bootstrap resamples are
different in magnitude, a smoothed density of the ran-
dom variable log a(Q̂) rather than a(Q̂) constructed
from the 199 resample estimates for a is presented in
Fig. 6. Note that the density of log a(Q̂) is still highly
skewed and has a long right tail, which means that there
is always a small but not negligible probability of ob-
taining a large value of log a(Q̂) or equivalently a large
value of a(Q̂). Note that because Ŝ 5 n1(1 1 a(Q̂)) is
simply a linear function in a(Q̂), the conclusions also
apply if we replace a(Q̂) with Ŝ.

CONCLUSION

The problem of estimating the species richness S has
long been a challenge to both statisticians and ecolo-
gists. We have attempted to provide an overview of the
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challenges inherent in estimating richness when many
rare species are known or suspected to be present. Our
conclusions may appear pessimistic, but we consider
it is important to explore the fundamental issues that
reflect on claims for estimators and confidence inter-
vals, to caution against overoptimistic conclusions
from parametric models, and warn against the blind
applications of statistical methods, although such a
warning has been issued. For example, statistician I. J.
Good, one of the first to tackle this problem (Good
1953), later stated: ‘‘I don’t believe it is usually pos-
sible to estimate the number of species . . . but only an
appropriate lower bound to that number. This is because
there is nearly always a good chance that there are a
very large number of extremely rare species.’’ (Bunge
and Fitzpatrick 1993).

Although from typical empirical data, one cannot
exclude the existence of many rare species statistically,
it is nonetheless possible to infer, with mixture models,
how many species should exist at a particular confi-
dence level, that is, to compute with rigor a lower
bound for the species richness S, other than the ob-
served richness n1. Besides mixture models, all exist-
ing methods for estimation of S can be treated as im-
provements upon n1, the number of observed species,
which is a clearly negatively biased estimator for true
species richness S.

Using mixture models, it is also possible to estimate
rigorously, with confidence intervals, the expected in-
crement in richness that would result from increasing
observed samples to two or three times their actual size,
without attempting to find a true asymptote (Colwell
et al. 2004, Mao et al., in press; see also Shen et al.
2003, for a different approach; in fact, it is not at all
clear that a true asymptote even exists, for some taxa
in some habitats, as discussed in the Introduction.)
Such an extrapolation, for many purposes in ecology
and conservation biology, will often represent a most
useful and welcome savings in time and resources. In
short, we do not counsel despair, but rather realistic
expectations and a cautious approach to inference.
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Abstract. Demographic models are an increasingly important tool in population bi-
ology. However, these models, especially stochastic matrix models, are based upon a mul-
titude of parameters that must usually be estimated with only a few years of data and limited
sample sizes within each year, calling into question the accuracy of the results of these
models. We first discuss how these data limitations create sampling uncertainty and bias
in the estimated parameters for a stochastic demography model. Next, we ask whether
limited data can favor the construction of deterministic models that ignore variation and
correlation of rates. With less than five years of data, the mean squared error of deterministic
models will sometimes be smaller than that of stochastic models, favoring the use of simple
models, even when their predictions are known to be biased. Finally, we introduce a pro-
cedure to estimate the sampling variation around population growth rate estimates made
from demographic models that are based on specified sampling durations and intensities.

Key words: covariance; demography; matrix; rarity; stochasticity; variability; viability.

INTRODUCTION

Demographic models are among the most widely
used analytical tools in life history studies, population
ecology, and, especially, conservation biology, where
they form the backbone of population viability analysis
(PVA). However, demographic analyses—including
both life tables and matrix models—are also among the
most data hungry of methods, requiring estimates of
birth, death, and other vital rates for each step of an
individual’s life. In spite of these needs, there has been
relatively little discussion in the demographic literature
of what data limitations mean for the construction and
interpretation of these models (but see Ludwig 1999,
Fieberg and Ellner 2001, Ellner et al. 2002), and in
particular, little work that would help a field biologist
understand how much demographic data must be col-
lected to have confidence in modeling results, and how
the complexity of different demographic models and
the scarcity of information with which to parameterize
them will interact to influence this confidence.

Two distinct kinds of data scarcity can effect the
accuracy of vital rate estimates and hence the accuracy
of demographic predictions: the sampling of small
numbers of individuals within each year, so that vital
rate estimates made for each transition period are un-
certain; and the collection of data over only a small
number of years, so estimates of the mean, variance,
and covariance of vital rates over time are unreliable.

Manuscript received 2 April 2004; revised 4 August 2004;
accepted 5 August 2004; final version received 17 September
2004. Corresponding Editor: A. M. Ellison. For reprints of this
Special feature, see footnote 1, p. 1079.
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We will refer to these as sampling intensity and sam-
pling duration. One or both kinds of data limitation
afflict virtually anyone who tries to develop a demo-
graphic model. Here, we discuss some of the ramifi-
cations of this data scarcity. In particular, we focus on
the problems of parameterizing stochastic demographic
models, which are increasingly advocated, but which
require even more information than do simple deter-
ministic models.

We have three goals in this paper. First, to explain
how limited data not only increase the uncertainty in
all parameter estimates needed for a demographic anal-
ysis, but also create biased estimates of the variance
and correlation parameters needed for stochastic mod-
els. While this bias is to some extent correctable, few
ecologists seem to realize that this is a key complication
in the construction of stochastic models. Second, to
analyze the trade-off of building more realistic, but
complex, stochastic models vs. simpler, but less real-
istic models that do not include variance and correla-
tion. While variance and correlation in vital rates can
strongly affect demography, there is also a great deal
of uncertainty around estimates of variance and cor-
relation with limited data. Consequently, we ask: when
is the cost of including estimates of variance and cor-
relation in a demographic model worth the benefit? The
basic idea behind this question is now well-publicized
in ecology: there is a trade-off between model realism
(i.e., complexity) and the ‘‘noise’’ created by building
predictions on the back of poorly estimated parameters
(Ludwig et al. 1988, Hilborn and Mangel 1997, Burn-
ham and Anderson 1998). However, this trade-off has
not been directly assessed for the incorporation of sto-
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chasticity into demography models. Third, we address
what may be the most widely posed question among
empirical ecologists who are initiating demographic
studies: how many data are enough to get reasonably
accurate predictions? While this is obviously impos-
sible to answer with certainty, we develop a way to get
a better answer than a simple guess or a shrug of the
shoulders—the usual responses to this question.

DEMOGRAPHIC MODELS IN A NUTSHELL

To make the following discussion of parameter es-
timation and model construction comprehendible, we
briefly review the basic form and analysis of demo-
graphic models. Demographic models generally use
age, size, or stage (e.g., juveniles and adults) to classify
individuals. For the sake of clarity, we will couch our
discussion in terms of the rates needed to construct a
size-based model, but the issues and methods are the
same when using other classifying variables. We con-
sider a simple model with four size classes and a set
structure, in which an individual can either survive and
remain in the same size class from one year to the next,
or survive and grow enough to enter the next largest
size class. We can characterize such a life history with
three types of vital rates: fecundities ( fa), growth prob-
abilities (ga), and survival rates (sa), each of which are
indexed by the size class (a) to which they apply. We
will assume that, once in the largest size class, there
is no senescence, and also that the fecundities, and
hence the model as a whole, only apply to females. We
also assume that reproduction is synchronous and that
the youngest class in the model consists of newborns,
with the census of the population occurring just after
reproduction. These assumptions yield the following
transition matrix A for four size classes:

0 0 e e 13 14

 e e 0 021 22A 5  0 e e 032 33 
0 0 e e 43 44

 0 0 f s f s3 3 4 4

 s s (1 2 g ) 0 01 2 25 . (1) 
0 s g s (1 2 g ) 02 2 3 3 
0 0 s g s3 3 4 

Here, the matrix element eab is the number of individ-
uals in class a that we expect to arise one year in the
future from each individual of size b now. For the top
row of the matrix, these elements are functions of sur-
vival and fecundity, and for the remaining rows, the
elements are functions of survival and growth proba-
bilities. The second matrix in the equation shows how
each matrix element is defined in terms of the vital
rates.

With an estimated projection matrix in hand, there
are several key predictions that are usually made. First
is the annual population growth rate, l, which sum-

marizes the long-term rate of change for a population
governed by A. If population size is shown by a column
vector, Nt, that contains the numbers of individuals in
each size class (n1, n2, n3, n4 for our example), then
Nt11 5 ANt 5 At11N0, and as t becomes large, the annual
rate of change of the population will converge to that
predicted by l. At the same time, the population will
converge to the stable stage distribution (SSD), in
which the fraction of the whole population that is in
each stage remains constant. Besides l and the SSD,
the most commonly used outputs of a simple projection
matrix are the sets of sensitivity and elasticity values.
Sensitivities estimate the rate with which l will change
with changes in each matrix element, and elasticities
are rescalings of these values that estimate the pro-
portional change in l resulting from proportional
changes in each matrix element (Caswell 2001).

In reality, a single matrix constructed from a set of
mean vital rates will often do a poor job of representing
population dynamics, because one or more of these
rates will vary substantially between years. One way
to include this environmental stochasticity is to esti-
mate a separate matrix for each year of data collected,
and then randomly choose among them in simulating
the future (Fieberg and Ellner 2001). While this ap-
proach is straightforward, it does not allow any ready
analysis of, or correction for, the problems created by
limited data. Alternatively, we can make explicit es-
timates of the mean and variance of each vital rate and
the covariance, or correlation, between all pairs of rates
across years. With these estimates, both analytical ap-
proximations or simulations of the model can provide
results analogous to those of a deterministic model, as
well as estimates of extinction risks through time (Ca-
swell 2001, Morris and Doak 2002). The stochastic
analogue to l, ls, represents the average expected rate
of population change, accounting for the effects of en-
vironmental stochasticity. Because it is more or less
normally distributed and hence easy to deal with sta-
tistically, the natural logarithm of the of ls, log ls,
forms the basis of most stochastic demography, in-
cluding our analyses here.

UNCERTAINTY AND BIAS CREATED

BY LIMITED DATA

There are three interrelated issues to consider in us-
ing limited data to estimate the parameters of a sto-
chastic matrix model. The first of these is perhaps the
most important, and is also the most widely understood.
The second two are much less appreciated, but are still
critical to understand when building estimates of de-
mographic rates.

First is the simple problem that estimates of vital
rate means are highly uncertain when data are limited.
While there are various tactics to reduce this problem
in the estimation of vital rate parameters (e.g., Easter-
ling et al. 2002, Morris and Doak 2002, Dixon et al.
2005), it will never go away. Quantifying this uncer-
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tainty in estimates of means is the grist of most basic
statistics classes.

The second issue to appreciate in making parameter
estimates for demographic models is that sampling er-
ror not only creates uncertainty but also bias in esti-
mates of variances and correlations. The emphasis in
standard statistics in estimating and testing effects on
means is undoubtedly why this basic aspect of sampling
theory is so underappreciated by ecologists. Estimated
temporal variance in a demographic rate is generally
biased high; observed variation across years is due in
part to real changes in rates across time (environmental
stochasticity) but also in part to variation caused by
estimation errors. Conversely, if vital rates that are
probabilities, such as survival and growth, have very
high variation from year to year, sampling error can
bias estimates of this variation low (Kendall 1998). In
either case, to arrive at an unbiased estimate of the
environmental variation in a demographic rate, one
must estimate and remove the portion of observed var-
iation due to sampling errors. This biasing of temporal
variance estimates has recently received considerable
attention in the technical demographic literature, with
at least three suggestions of how to make such a cor-
rection (Engen et al. 1998 [whose method is presented
for estimation of demographic stochasticity], Kendall
1998, White 2000; Morris and Doak 2002 include pro-
grams to implement these corrections). However, these
methods are all relatively new, and the vast majority
of stochastic demography studies published to date did
not use them in estimating the environmental stochas-
ticity in vital rates.

Covariances between two rates are not biased by
sampling errors, at least if we can assume that sampling
errors for the two rates do not themselves covary. How-
ever, correlation coefficients, equal to the covariance
of two rates divided by their standard deviations, are
biased, with increasing amounts of sampling error lead-
ing to estimated correlation coefficients that approach
zero even when the true correlation is substantial. This
would seem to suggest that we should use the unbiased
covariance estimates together with the corrected vari-
ance estimates to arrive at unbiased estimates of cor-
relations. However, for any limited sample of data, this
procedure will yield many correlation estimates that
are greater than one or less than 21, simply due to
random (but unbiased) variation in the estimated co-
variance values. Until some solution is found to this
problem, we are left estimating correlations directly,
realizing that they will on average be biased toward
zero.

The third parameter estimation problem involves the
entire set of correlation coefficients between all the
vital rates estimated for a population; because of sam-
pling errors or missing data, the full set of correlations
you estimate may not be able to exist. For example,
three vital rates can’t all be highly negatively correlated
with each of the others. While this is an extreme ex-

ample, more subtle forms of this problem commonly
arise. This may seem like an esoteric issue, but it be-
comes important if your goal in estimating demograph-
ic rates is to make stochastic predictions; if the set of
estimated correlations is impossible, then you can’t use
them in simulation models to predict population growth
or extinction. We describe this issue and how to deal
with it in more detail in Appendix A.

THE COSTS AND BENEFITS OF INCLUDING

STOCHASTICITY IN DEMOGRAPHIC MODELS

Even when properly accounting for bias in estimates
of vital rate variances, the uncertainty in estimated
means, variances and correlations arising from low
sampling duration and intensity mean that a PVA or
other demographic model based on limited data can
give highly misleading predictions. The extent to which
PVA results can be trusted without truly extensive sam-
pling within and across years has been vigorously de-
bated in the literature, but no clear conclusion exists
to date (Ludwig 1999, Brook et al. 2000, Ellner et al.
2002). While it is clear that even moderate amounts of
environmental stochasticity in combination with lim-
ited data can yield inaccurate results, we would still
like to know how to build the best model with the data
at hand, and in particular, whether it is worth the hassle
to estimate and simulate the variance and correlation
of vital rates in order to arrive at stochastic predictions.

Three classes of demographic models are commonly
parameterized and used: deterministic models, based
only on estimated mean rates; stochastic variance mod-
els, which ignore correlations between rates, but do use
estimated variances; and full stochastic models, which
use estimated means, variances, and correlations for all
or most vital rates. The advantage of using a deter-
ministic model is that its predictions rely on a smaller
number of parameters, and with sparse data, this means
a smaller number of badly estimated parameters. How-
ever, this benefit may be more than balanced by the
greater realism of stochastic models. Although these
use more parameter estimates, they do so to include
real features of the population—temporal variability—
and thus may give more accurate predictions. If en-
vironmental variability in vital rates is moderate or
strong, deterministic matrix models will generally give
predictions of population growth that are biased high,
predicting more rapid growth rates than will actually
occur (Tuljapurkar 1990, Caswell 2001). It is this bias
that has led to the frequent calls to include variation
and correlation in demographic PVA models (e.g.,
Burgman et al. 1993, Beissinger and Westphal 1998,
Morris and Doak 2002). Nonetheless, we usually have
only one short stretch of years with which to param-
eterize a model, and the increased bias of a simplified
model may be outweighed by less random variation in
its predictions, relative to an unbiased, but potentially
more inaccurate model built with many poor estimates
of variation and correlation. In statistical terms, there
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TABLE 1. Sets of parameter values used in the simulation models.

Parameter

Vital rate

s1 s2 s3 s4 g2 g3 f3 f4

Mean 0.1 0.3 0.8 0.9 0.5 0.75 5 10

Variances
High 0.0675 0.1575 0.1200 0.0675 0.1875 0.1400 20 20
Medium 0.0500 0.0500 0.0200 0.0200 0.0100 0.0100 7 10
Low 0.0125 0.0125 0.0050 0.0050 0.0025 0.0025 1.75 2.50

Notes: A total of nine sets of vital rate parameters were used, corresponding to combinations
of the three sets of variance values with the three sets of correlation coefficients. In the high-
correlation models, all correlation coefficients were 10.80; in the low-correlation models, all
correlation coefficients were 10.20. In the mixed correlation models, the correlation between
each fecundity ( f ) and any survival (s) or growth (g) rates was 20.80 (corr( fi,sj) 5 corr( fi,gj)
5 20.80), while all other correlations were 10.80. Mean values of vital rates were the same
in all models.

is a trade-off between the bias and sampling variation
of the estimated population growth rate.

To explore this issue, we developed a set of simu-
lation models to test the accuracy of different demo-
graphic models parameterized with differing durations
and intensities of data sampling. In all, we simulated
nine demographic scenarios, each with a different set
of vital rate means, variances, and correlations (Table 1),
but all based on the life history shown in Eq. 1. These
rates generate expected stochastic growth rates ranging
from ls 5 0.81 to 1.01. Each simulation consisted of three
basic steps (see Appendix B for details):

1) Generation of a set of ‘‘real,’’ but unobserved,
vital rate values across 20 years. For each demographic
scenario, we generated 500 sets of these real annual
rates.

2) Based on each set of real rates, simulation of an
observed data set, taken with limited sampling duration
and intensity. We varied sampling intensity from 10 to
40 individuals in each size class, and sampling duration
from three to 10 years. For any single simulation, we
assumed that the same number of individuals were fol-
lowed in each size class and each year. Using these
simulated data, we estimated means, variances, and co-
variances of vital rates, employing Kendall’s (1998)
method of variance correction for survival and growth
rates and White’s (2000) method for fecundities.

3) For each simulated data set, we predicted log ls

using the deterministic growth rate predicted from the
mean matrix and using the stochastic variance and full
stochastic versions of Tuljapurkar’s (1990) approxi-
mation, each parameterized with the estimated vital
rates. For each sampling pattern and model type, we
compared the estimated log ls values with the growth
rate predicted from the real vital rate parameters by
calculating mean squared error (MSE) and bias.

As expected, the average predictions of the deter-
ministic models were optimistically biased, with pos-
itive differences between the mean deterministic pre-
dictions and true log ls for almost all model forms and
sampling regimes (Fig. 1a–c). Differences between the
full and variance model predictions and expected log

ls values lie closer to zero, although they too are for
the most part positively biased for models with mod-
erate to high vital rate variances. This trend is largely
due to optimistic estimates of growth for models using
the high or mixed correlation structures, which both
feature strong and mostly positive correlations between
vital rates. In these situations, the tendency of estimated
correlations to be biased low is expected to result in
just such a bias in the predictions of full models. Pre-
dictions of variance models, which implicitly assume
that all correlations are zero, are only somewhat more
biased than those of full models, but also show a ten-
dency towards more variable results.

The greater average bias in deterministic model pre-
dictions would suggest that the stochastic models
should provide better estimates of future numbers.
However, while the average bias of deterministic mod-
els is larger, the variance in the deterministic predic-
tions is substantially lower than that of either stochastic
model for some sets of vital rates and sampling regimes
(Fig. 1d). In particular, deterministic models showed
lower sampling variance for all simulations using high
vital rate variances and for some sampling regimes with
medium variances. This lower variance in predictions
means that even with their biases, deterministic models
can sometimes have lower MSE than do full or variance-
only models.

To show how model form and sampling regimes in-
fluence the predictive power of these models, we sep-
arately plot MSE against sampling duration and inten-
sity for results from different vital rate scenarios. Here
and below, we only present results for the full and
deterministic models, since the full and variance mod-
els show nearly identical results for virtually all pa-
rameter combinations. Unsurprisingly, with higher
sampling intensity and higher sampling duration, the
MSE of all model predictions declines (Figs. 2 and 3;
results for low-variance models are qualitatively iden-
tical). For the most part, there is little interaction be-
tween intensity and duration of sampling. Duration has
by far the larger effect on MSE, and if duration is low,
intensive within-year sampling usually has little effect
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FIG. 1. Bias and variance in predictions of deterministic, variance-only, and full stochastic models. (A–C) Box plots
showing the distribution of mean differences between predicted and expected log ls values for 27 means, one for each
combination of correlation parameters, sampling intensity, and sampling duration: (A) low-variance models, (B) medium-
variance models, and (C) high-variance models. (D) The standard deviation in predicted log ls (stochastic lambda) values
for each combination of vital rate parameters and sampling regimes for full and deterministic models. Symbols indicate
results from models with high, medium, and low variance in vital rates (Table 1). Points falling below the diagonal line
indicate situations in which the deterministic predictions were less variable than those of the full models for the same vital
rate parameters and sampling regimes.

on MSE. The exception to this comes at the lowest
sampling durations, when higher intensity can sub-
stantially reduce MSE for some vital rate combinations
(e.g., Fig. 2b).

For parameter sets with low vital rate variances, the
difference in quality of different model predictions are
quite small, amounting to ,10% of MSE of the full
models in all cases, and usually ,5% (results not
shown). For medium and high variance models, dif-
ferences between the predictions of deterministic and
full models are more substantial and more complex.
With high correlations in vital rates (Figs. 2a and 3a),
Full models have substantially higher accuracy at all
but the lowest sampling durations. In contrast, with low
correlation and Medium variance in vital rates, the two
model forms show very similar MSEs, and with low
correlation and high variances, the deterministic mod-
els have much lower MSEs for all but the longest sam-
pling durations (Figs. 2b and 3b). Finally, with mixed
correlations in vital rates, full models are more accurate
with high duration and less so for short sampling du-
rations (Figs. 2c and 3c). Within these details, the gen-
eral pattern is that full model MSE values are quite

sensitive to data scarcity, rising sharply with decreasing
sampling duration and also increasing with lower with-
in-year sample sizes. In contrast, deterministic model
MSEs are generally less responsive, such that there is
some sampling duration at which the deterministic MSE

becomes less than the full MSE, with the exact value
depending critically on the underlying vital rate pa-
rameters.

Altogether, these results provide a rather mixed pic-
ture of the problems of predictive power of stochastic
models. For some life histories and sampling regimes
deterministic models and full stochastic models essen-
tially tie one another in accuracy, as judged by their
MSE values. In these cases, the lower bias of stochastic
models will make them preferable to the overly opti-
mistic deterministic predictions. However, when vari-
ances in vital rates are high, full stochastic models are
sometimes more accurate than simple deterministic
predictions, but are also sometimes spectacularly less
so. With real data, we can’t know the real underlying
rates, so we could also ask, averaging across all the
vital rate combinations we ran, which model form has
the lower MSE values? The answer is deterministic
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FIG. 2. Mean-squared error (MSE) of predicted population
sizes for medium-variance models for sample sizes n 5 10–
40 and 4–10 sampling years. Two surfaces are shown (drawn
with cubic interpolation), one for deterministic and one for
full stochastic models. The labels ‘‘D’’ and ‘‘F’’ indicate
which model corresponds to each surface (deterministic and
full, respectively). The model with the lower MSE provides
more accurate predictions of population size. Results are from
life histories with (A) high positive correlations, (B) low pos-
itive correlations, and (C) mixed correlations.

models for sampling durations of 3–5 yr and full mod-
els for durations of 5–10 yr (Fig. 3d), implying that if
we have few data, simpler models may provide better
predictions than will stochastic model forms. To put
this in perspective, only nine of the 29 studies listed

in Fieberg and Ellner’s (2001) review of stochastic de-
mography analyses were based on five or more years
of vital rate estimates. Depending on your love of sto-
chastic analysis, this may seem a disheartening or a
comforting conclusion. However, we reiterate that we
have only explored results for one life history pattern,
and it is conceivable that other, very different life his-
tories will show quite different patterns.

HOW MANY DATA ARE ENOUGH?

The final question we consider is how high sampling
intensity and duration must be to achieve reasonable
accuracy in demographic predictions. In particular, how
do the duration and intensity of sampling translate into
uncertainty of population growth predictions? Obvi-
ously, you can’t really answer this question without
perfect knowledge of all the rates and processes you
are trying to estimate. However, by making a few
guesses and assumptions, you can use the derivation
we give below to arrive at a good estimate of the ac-
curacy you can hope to achieve (see Caswell [2001]
for a review of other approaches, mostly for assessing
uncertainty in deterministic l after data collection is
completed).

To begin with, you must guess the form of the matrix
model and the values of the vital rate means, variances
and correlations governing your species. While you
can’t know the real values, usually natural history
knowledge or data from related species can be used to
make rough estimates of the form of the life history of
your species and the values of its vital rates. As Dixon
et al. (2005) emphasize, data on related species are a
great untapped source of information for such guesses.
We will call the guessed mean and environmental var-
iance for a vital rate i, ni and , and its correlation2si,E

with another rate j, ri,j.
Second, you must have some guess as to how the

within-year sampling intensity for a vital rate, the Mi

number of individuals measured, influences the sam-
pling variance of the estimated annual values of the
rate. For survival and growth probabilities of individ-
uals with identical mean values, this within-year sam-
pling variance is 5 ni,t(1 2 ni,t)/Mi, where ni,t is the2si,W

mean probability in year t. For fecundities, in which
each individual must give birth to an integer number
of offspring, we will assume that the variance between
individuals is Poisson, so that the variance of a mean
annual estimate is 5 ni,t/Mi. There are many other2si,W

forms of individual variation in fecundities that will
give more or less variation in annual mean values and
which can be used in place of the Poisson-distributed
variation we assume.

With guesses as to the true demography of your spe-
cies and the form of sampling variance, there are two
ways to proceed. First, simulations like those described
in the last section can directly yield estimates of the
sampling variance in estimated growth rates. However,
constructing such a simulation is not a task that most
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FIG. 3. Mean-squared error (MSE) of predicted population sizes for high-variance models and all models combined for
sample sizes n 5 10–40 and 4–10 sampling years. Two surfaces are shown (drawn with cubic interpolation), one for
deterministic models (labeled ‘‘D’’) and one for full stochastic models (labeled ‘‘F’’). The model with the lower MSE provides
more accurate predictions of population size. Results are from life histories with (A) high positive correlations, (B) low
positive correlations, and (C) mixed correlations. Results for MSE over all vital rate parameter sets are shown in (D).

empirical ecologists are likely to tackle at the onset of
their own field study. Therefore, we derived an ana-
lytical approximation for the sampling variance of
logls, based on Tuljapurkars’s (1990) ‘‘small noise’’
approximation for logls. Like the derivation of this
approximation, our further use of it relies on assump-
tions of small, normally-distributed variation in vital
rates (see Appendix C for details).

The basic result is an equation for the sampling var-
iance in estimated population growth rate as a function
of the vital rate parameters, the number of years sam-
pled, and the number of individuals sampled in each
year to estimate each rate:

2
] log lsVar(log l̂ ) ø Var(v̂ )Os i 1 2]vi i

21
1 Var(ŝ ) S S r sO Oi,E i j i, j j,E4 1 2l i j1

1
21 Var(r̂ )(S S s s ) . (2)O i, j i j i,E j,E4l i, j1

Here, Si is the sensitivity of the growth rate predicted
by the mean matrix, l1, to changes in ni, and ] log ls/
]ni is the sensitivity of the log-stochastic growth rate
to the mean vital rate ni (see Appendix C for the formula
for this sensitivity). Var( i), Var( i,E), and Var( i,j) aren̂ ŝ r̂
approximations for the sampling variation in estimated

means, variances and correlations of the vital rates, re-
spectively, and are where limited sampling has its in-
fluence. Assuming normally distributed variation and
uncorrelated errors among rates, these quantities are:

21 s i,W2Var(v̂ ) ø s 1i i,E1 2N Mi

2N 2s i,W2Var(ŝ ) ø s 1 (3)i,E i,E21 22(N 2 1) Mi

2 2N(r 2 1)i, jVar(r̂ ) ø .i, j 2(N 2 1)

In addition to these basic contributions to Var(log

s), a further source of variability comes from the cor-l̂
relations between the estimated means and variances
of vital rates that are probabilities. Because the mean
of a set of probabilities sets a cap on the possible values
of their variance (Morris and Doak 2004), there can be
substantial correlations between estimated means and
variances across sets of samples, with the sign and the
magnitude of the correlation depending on the true
mean and variance of the vital rate in question. While
Eq. 2 does a good job of approximating Var(log s),l̂
these additional terms have nontrivial effects on the
predictions, and we discuss how to estimate them in
Appendix C. With the addition of these terms, the ap-
proximation does an excellent job of predicting the
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FIG. 4. Effects of sampling regimes on uncertainty in
growth rates for Collinsia verna and the desert tortoise. (A)
Predicted sampling variance in estimates of log ls (stochastic
lambda) for different sampling intensities and durations for
C. verna. (B) Upper and lower 95% confidence limits around
estimates of ls for sampling intensities of M 5 200, 100, and
20 individuals for C. verna. The outermost two lines are for
20 individuals sampled for each vital rate in each year, while
the limits for intensities of 100 and 200 individuals are inward
and nearly identical. (C) 95% confidence limits around es-
timates of ls for the desert tortoise. In (B) and (C), dashed
lines indicate ls 5 1, a stable population.

sampling variation we could expect for a given life
history and sampling regime, with the caveat that it
will tend to give optimistic estimates of accuracy for
populations with very high real environmental vari-
ability in vital rates (Appendix C). A MATLAB pro-
gram that automates all the calculations needed to ar-
rive at Var(log s) estimates with a range of samplingl̂
regimes is available in a Supplement to this paper.

To illustrate the use of this approximation, we first
ask how sampling intensity and duration will affect
estimates of growth rates for a winter annual with high-
ly variable demographic rates, Collinsia verna. We use
the single stochastic matrix model formulated by Doak
et al. (2002) from the much more extensive results of
Kalisz (1991). For this species, we first plotted Var(log

s) for sampling intensities ranging from 10 to 200l̂
plants followed to estimate each of the four vital rates
for this matrix, and for sampling durations ranging
from three to 20 years (Fig. 4a). The results indicate
that sampling of 50 individuals or less is sufficient to
achieve good accuracy, but that uncertainty of esti-
mates will only gradually decline with increased sam-
pling duration, with no clear cut-off beyond which fur-
ther gains in accuracy are minimal. To further examine
these results, and to present them in terms of annual
growth rates, which can be easier to interpret, we es-
timated the 95% confidence limits on s as exp(log lsl̂
6 2 ) and plotted these bounds againstÏVar(log l̂ )s
sampling duration for intensities of 20, 100, and 200
individuals (Fig. 4b). This plot emphasizes the minimal
gains that result even from the ten-fold increase in sam-
pling intensity from 20 to 200 individuals. At the same
time, environmental variation is high enough for this
species that even 200 years of data would not be enough
to clearly predict whether ls is above or below one.
Luckily, this species is not endangered, so the exact
value of ls is not of critical importance.

To illustrate a contrasting situation, and one where
estimating population growth rate is of real importance,
we analyzed the duration of sampling needed to reach
narrow confidence limits on s for desert tortoise pop-l̂
ulations in the western Mojave desert. For this threat-
ened and sparse population, we assumed that sample
sizes of 30 animals for each rate in each year were the
best that are ever likely to be achieved, and used this
sampling intensity in conjunction with vital rates pre-
sented in Morris and Doak (2002) from data in Doak
et al. (1994). For the tortoise, only 10 years of data
would be sufficient to reach fairly narrow confidence
limits on population growth estimates (Fig. 4c), and
even less would be needed to have confidence that de-
cline was occurring, given the vital rates we use. Given
that considerably more years of data than this formed
the basis of these models (Doak et al. 1994), we can
thus have considerable confidence that the population
truly was declining.

As these examples show, clear and simple results are
easily generated using this approximation. Three more

points about its use should be mentioned. First, while
our examples all use the same sampling intensity for
all rates, there is no difficulty in analyzing more re-
alistic patterns of sampling intensity. Given that larger,
older, and less common individuals are frequently the
most important members of populations and are also
less intensively sampled, these inequities in sampling
intensity can have important effects on Var(log s).l̂
Second, we usually really will be guessing about the
‘‘true’’ vital rates used to make these approximations,
and it therefore behooves us to make several different
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guesses, especially about patterns of environmental
variability, about which we are likely to be least certain.
Finally, simply by leaving out the terms in Eq. 2 for
the effects of sampling variation in vital rate variances
and correlations, the approximation can also be used
to assess the variance in predictions of deterministic
models (see also Alvarez-Buylla and Slatkin 1994),
allowing a contrast between the best model form to use
in generating predictions with limited data.

CONCLUSIONS

In the ecological literature, a great deal of effort has
gone into arguing the merits of different demographic
outputs and developing elaborate forms of population
analysis. Ironically, the problems of how to use these
models with real data have received far less attention.
Our simulations of limited sampling show that inac-
curacies in estimated growth rates can be large with
even reasonable amount of sampling effort (see also
Fieberg and Ellner 2001). Still, we find that stochastic
models will generally perform better than will deter-
ministic ones with moderate to long sampling dura-
tions. However, with less than five years of data sto-
chastic models may give uncomfortably variable an-
swers. If sampling duration is low, and the variation
in vital rates is high, improved estimates of population
behavior may come from deterministic models—a
counterintuitive result. In this case, the inaccuracies
involved in estimating the effects of environmental sto-
chasticity are so large that they outweigh their own
strong effects on population dynamics. More encour-
agingly, our results suggest that unfeasibly large sam-
pling duration or intensity is not necessary in order for
stochastic models to perform reasonably well.

While these simulations provide some insights into
the interplay of model complexity and data scarcity,
this is only a first stab at the problem of when and how
to judge the right degree of complexity to build into a
demographic model, whether for use in a PVA or more
basic ecological work. Furthermore, we have addressed
only one of the many decisions that must be made in
setting up a demographic study or analyzing its results
(Caswell 2001, Easterling et al. 2000, Gross 2002, Mor-
ris and Doak 2002, Kaye and Pyke 2003). In particular,
we have emphasized only a single measure of model
performance, the variance in predicted population
growth rate. Many other outputs of demographic mod-
els are of keen interest, including elasticity values and
extinction risk, which are likely to be even more sen-
sitive to the problems of data scarcity. In addition, any
use of demographic models to forecast growth or ex-
tinction relies on measured rates remaining relatively
stable into the future, an increasingly worrisome as-
sumption.

It could be assumed that it is always better to con-
struct less biased predictions of population growth, re-
gardless of accuracy. However, we would argue against
this view. A more precise estimate of population

growth, even if biased, is far more useful than a less
reliable one. This is especially true if we know the
direction of this bias, as is the case with deterministic
growth rate predictions. Especially for PVA models, it
can be much more useful to have a prediction of the
most optimistic likely outcome than it is to have such
an uncertain, but unbiased, prediction that it can sup-
port few or no conclusions at all. This said, anyone
who is actually doing a demographic analysis should
probably perform both stochastic and deterministic
analyses, and carefully draw inferences using infor-
mation from both.

While there have been numerous calls for the pre-
sentation of demographic results to include analyzes of
their uncertainty, the practical difficulties of doing so
mean that most demographic studies still do not include
any such quality assessment. The approximation for
the sampling variance of population growth rate that
we provide should allow such an assessment to be made
far more easily. This estimator can also be used to plan
future demographic studies to better fulfill the goals of
investigators. A great deal of heartache can be ex-
pended in the decisions about how long and how in-
tensively to pursue a demographic study. To date, these
decisions have been almost always made from intui-
tions about the trade-off between crippled knees (at
least for plant demographers) and data quantity, but
with almost no analysis of the power of the study. By
providing a formula for sampling uncertainty in growth
rates, and software to easily implement it, our hope is
that these decisions can be made more carefully, im-
proving the collection and interpretation of demograph-
ic information.
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APPENDIX A

A description of problems with estimating and using correlations in vital rates is presented in ESA’s Electronic Data
Archive: Ecological Archives E086-062-A1.

APPENDIX B

A description of the simulation models used is presented in ESA’s Electronic Data Archive: Ecological Archives E086-
062-A2.

APPENDIX C

An approximation for sampling variance in stochastic growth rate estimates is presented in ESA’s Electronic Data Archive:
Ecological Archives E086-062-A3.

SUPPLEMENT

A MATLAB program to calculate the sampling variance in estimated log(stochastic lambda) values given different sampling
intensities and durations is available in ESA’s Electronic Data Archive: Ecological Archives E086-062-S1.


