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Abstract.  We report results of transplant experiments that examined direct interactions
between red mangrove (Rhizophora mangle) roots and two common root-fouling sponges
(Tedania ignis and Haliclona implexiformis) on carbonate-based, oligotrophic mangrove
cays in Belize, Central America. On these cays, subtidal prop roots of mangroves at water’s
edge often extend 1-2 m below lowest low water before anchoring in the substrate and
host a community of algal and invertebrate epibionts dominated by massive sponges. Live
sponges transplanted onto otherwise bare roots increased root growth rate two- to fourfold
relative to controls. Roots fouled naturally by these and other massive sponges produce
adventitious fine rootlets that ramify throughout sponge tissue; these rootlets structurally
resemble underground rootlets that function in nutrient uptake. Sponges transplanted onto
bare mangrove roots induced rootlet proliferation within 4 wk. Only live sponges elicited
this response, indicating that adventitious rootlet production is not simply a by-product of
anoxia or darkness. Sponges transplanted onto bare roots grew 1.4-10 times faster than
did sponges grown on polyvinyl chloride {PVC) tubes at identical depths and locations.
Relative abundances of "N (expressed as 8'"N%o) and '*C (8'3C%o) in Tedania, Haliclona,
an additional sponge, Ulosa ruetzleri, and rootlets, roots, stems, twigs, and leaves of man-
grove hosts suggest that mangrove roots obtain dissolved inorganic nitrogen from sponges,
and that sponges obtain carbon from mangrove roots. No transfer of N or C was observed
in similar analyses of roots fouled by the red alga Acanthophora spicifera. We conclude
that where they co-occur, massive sponges and mangroves are facultative mutualists. In
mangrove forests, as in other marginal habitats, facilitations may enable increased growth

and production of component species.
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INTRODUCTION

Positive interactions among species are predicted to
be most prevalent and to play a significant role in con-
trolling community structure and ecosystem dynamics
in species-poor, marginal, or stressed habitats (re-
viewed by Bertness and Callaway 1994). In such hab-
itats, groups of species can positively affect each oth-
er’s growth and production, either directly (e.g., Bert-
ness 1984, McKinney et al. 1990, Carlsson and Cal-
laghan 1991, Bertness and Hacker 1994) or as
intermediaries controlling nutrient transfer between ap-
parent competitors (e.g., Newman and Ritz 1986). In
addition, dominant species in marginal habitats can
buffer associates from limiting stresses, such as low
levels of nutrients, soil oxygen, or soil moisture (e.g.,
Williams 1990, Frank and McNaughton 1991, Smith
et al. 1991, Callaway 1992, Tilman and Downing
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1994). Because species-poor ecosystems often are
characterized by relatively low spatial heterogeneity,
these ecosystems also can provide experimentally trac-
table environments in which to determine the impor-
tance of particular species and interspecific interactions
in regulating energy and nutrient flow (Naeem et al.
1994).

Tidal ecosystems are just such model marginal en-
vironments. Temperate zone salt marshes and tropical
mangrove forests are the most productive ecosystems
on the planet (Lugo and Snedaker 1974, Clough 1992),
yet they are characterized by comparatively low plant
and animal species richness, and exhibit far less spatial
heterogeneity than upland environments (e.g., Odum
et al. 1982, 1984, Zedler 1982, Josselyn 1983). These
land-margin ecosystems are nutrient limited (e.g.,
Alongi et al. 1992, Vernberg 1993), and their water-
logged, anoxic soils similarly limit plant growth and
distribution (e.g., Mendelssohn et al. 1982, Naidoo
1985, Mendelssohn and McKee 1988). However, the
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historical emphasis in studies of salt marsh and man-
grove ecosystems on estimates of nutrient and carbon
flux on net primary production of single dominant plant
species (e.g., Spartina alterniflora in salt marshes; Rhi-
zophora mangle in mangrove forests) and detritus-
based trophic webs has obscured the presence and im-
portance of direct interactions, positive or negative,
among plants and animals living in these forests (but
see Bertness 1984, 1985, Smith et al. 1989, Robertson
1991, Twilley et al. 1993).

Species richness of animals is 1-2 orders of mag-
nitude greater than plant species richness in mangrove
forests (e.g., Macnae 1968, Riitzler 1969, Simberloff
1976, Farnsworth and Ellison 1991, 1996b, Alongi and
Sasekumar 1992), and recent experiments in man-
groves have illustrated that associated animals can af-
fect individual plant growth rates, population dynam-
ics, community structure, and patterns of primary pro-
duction. For example, root-boring isopods reduce root
growth rate by >50% (Perry 1988, Ellison and Farns-
worth 1990, 1992), although root-fouling sponges and
ascidians ameliorate this negative effect indirectly by
preventing isopods from colonizing fouled roots (EI-
lison and Farnsworth 1990). Herbivorous insects re-
duce seedling and sapling growth rates (Farnsworth and
Ellison 1991, 1993, Feller 1995). Stem-boring cer-
ambycid beetles girdle branches and create gaps nec-
essary for successful seedling establishment (I. C. Fel-
ler, personal communication). Pre- and postdispersal
predation of mangrove seedlings (propagules) by sco-
lytid beetles and other insects (Rabinowitz 1977, Rob-
ertson et al. 1990, Farnsworth and Ellison 1996a) and
grapsid crabs (e.g., Smith et al. 1989, McKee 1995)
limit seedling recruitment and contribute to the estab-
lishment and maintenance of mangrove species zona-
tion patterns. These effects of associated fauna on man-
grove growth and production suggest that nondecom-
poser animal-plant interactions could significantly im-
pact carbon flux in mangrove ecosystems, yet even the
most complex mangrove carbon budgets do not account
for these interactions (Robertson et al. 1992, Twilley
et al. 1992).

The contribution of animals to nitrogen and phos-
phorus dynamics in mangrove forests likewise has been
overlooked. Mangrove primary production is limited
by available N and P, and it has been suggested that N
is the primary limiting nutrient at the seaward margin
of mangal, while P is limiting in higher intertidal zones
(Boto and Wellington 1983, 1984, Boto 1992, Feller
1995). In salt marshes, the temperate analogue of trop-
ical mangrove forests, Bertness (1984) demonstrated
that inorganic nitrogen (ammonium) deposited by epi-
benthic mussels (Geukensia demissa) increased growth
of marsh grasses. Although birds nesting in mangroves
are a significant source of inorganic nitrogen for Rhi-
zophora (Onuf et al. 1977}, the importance to nutrient
fluxes of invertebrates associated with mangroves has
not been demonstrated previously. Based on Bertness
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and Callaway’s (1994) review of positive interactions
in marginal habitats, we hypothesized that some pro-
portion of nutrient flux in mangrove ecosystems could
be mediated by interspecific positive interactions.

In the experimental study reported here, we assessed
the effects of pairwise interactions between root-foul-
ing sponges (Porifera) on growth of red mangrove (Rhi-
zophora mangle) roots, an interaction that merits at-
tention in models of nutrient flux in mangrove eco-
systems. We provide evidence from manipulative ex-
periments and analysis of stable isotope composition
(8N and 8'3C) that mangrove root-fouling sponges
facilitate growth of mangrove roots, while mangroves
facilitate sponge growth. This result adds to a growing
list of documented animal-plant interactions that may
have important controlling effects on mangrove com-
munity structure, and supports the hypothesis that pos-
itive interactions ought to be relatively common in
stressful and marginal ecosystems.

STUDY SITE AND STUDY SPECIES

The field experiments described here were conducted
at Twin Cays (16°48" N, 88°05' W; referred to as Water
Range by Stoddart et al. 1982), an ~1-km? group of
mangrove cays 4 km west of the Carrie Bow Cay ma-
rine station (Fig. 1; Riitzler and Macintyre 1982). Tides
in Belize are microtidal; mean tidal amplitude at Carrie
Bow Cay is =30 cm (Kjerfve et al. 1982), mean annual
temperature is 25°C, and mean annual rainfall is =1500
mm (Hartshorn et al. 1984, Hagerman and Smith 1993).
Rhizophora mangle is the dominant mangrove species
at Twin Cays, occurring from lowest low water (LLW)
to the highest points on the islands (<1 m above mean
sea level). The mangrove forest at Twin Cays is clas-
sified as a “‘fringing mangrove forest”’ (sensu Lugo and
Snedaker 1974) or a ““mangrove forest fringing oli-
gotrophic waters of carbonate platforms’ (sensu Twil-
ley 1995).

All mangroves, including Rhizophora mangle, pro-
duce aerial roots that function primarily in gas ex-
change (Scholander et al. 1955, Gill and Tomlinson
1969, 1971, 1977, Tomlinson 1986). In Rhizophora,
aerial ““cable” roots originate from lateral meristems
of the trunk and branches. These cable roots grow 0.5~
1.5 mm/d toward the ground, and their diameter (nor-
mally 10-20 mm) changes little during this elongation
phase (Gill and Tomlinson 1977). When the root tip
reaches the ground, a series of pronounced morpho-
logical changes occur: the root tip loses its pigmen-
tation, the cable root begins to thicken and lignify (sec-
ondary cambial growth), and numerous adventitious
and fine rootlets begin to grow from the root tip into
the substrate (Gill and Tomlinson 1977). These rootlets
anchor the plant and take up nutrients from benthic
sediments.

At the seaward edge of a mangrove forest, cable roots
normally grow through water before reaching solid
ground. Because of the relatively low tidal amplitude
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Fic. 1. Map of the Caribbean region illustrating localities
from which sponges have been reported on mangrove roots.
The four areas where sponge addition experiments were per-
formed are indicated by stars on the Twin Cays enlargement.
Sites are (clockwise from left): Twin Bays; Lair Channel
North; Lair Channel South; Boston Bay. The two islands are
separated by the Main Channel, where we examined the
growth of sponges on different substrates.

(<1 m) in the Caribbean basin, the cable roots of red
mangroves growing at the water’s edge are continu-
ously submerged (Fig. 2). These cable roots often are
the onily local hard substrate in an otherwise soft-bot-
tom habitat; consequently, a diverse fouling commu-
nity often develops on these subtidal roots (e.g., Riitzler
1969, Farnsworth and Ellison 1996b). While many of
the root-fouling organisms are epibenthic, others, such
as isopods and shipworms excavate galleries into the
cable roots, allowing marine fungi and other decom-
posers to colonize and degrade the root (e.g., Kohl-
meyer 1984, Hyde and Jones 1988). Roots that grow
quickly through the water and anchor into the substrate
can avoid this attack, as the secondary lignification that
occurs after anchoring limits direct herbivory on roots
(Ellison and Farnsworth 1992).

Percent cover of epibionts on mangrove roots at Twin
Cays is normally >90% (Farnsworth and Ellison
1996b). There, massive sponges (Porifera with lobes,
“fingers,”” or other tertiary structures that extend above
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the substrate into the water column) dominate this foul-
ing community both in terms of numbers of roots oc-
cupied (=35%) and percent of space (=30%) covered
on a single root (Ellison and Farnsworth 1992, Farns-
worth and Ellison 19965). Similar, primarily qualitative
patterns have been noted for mangrove—root epibiont
community structure elsewhere in the Caribbean (Riit-
zler 1969, Sutherland 1980, Alcolado 1986, Alvarez 1.
1989, de Weerdt et al. 1991, Bingham 1992, Garrity
and Levings 1992, Thomas et al. 1992, Levings et al.
1994). Successful colonization of roots appears to be
controlled primarily by larval supply (Farnsworth and
Ellison 199654), Short-term (intraseasonal) abundance
of epibionts on roots likely is determined by interspe-
cific competitive interactions and predation, while lon-
ger-term abundance is limited by seasonal environ-
mental changes, notably freshwater inputs during win-
ter rains (A. M. Ellison and E. J. Farnsworth, unpub-
lished data).

In these experiments, we focused on the effects of
two species of massive sponges on growth of Rhizo-
phora roots: Tedania ignis (Tedaniidae) and Haliclona

FiG. 2.

IMlustration of a fringing red mangrove tree at Twin
Cays, showing relationship of cable roots to mean water
(MW) and lowest low water (LLW) tidal levels. Aerial roots
(AR) originate from the main stem well above the ground
surface, and can grow through the water before anchoring
(grounding) in the substrate (GR). Such roots are fouled by
a number of marine epibionts (SP: sponge). Length (LR) of
cable roots was measured from point of origin on the main
stern to root tip, while root diameter (DR) was measured 10
cm basipetal of the root tip. Illustration by Elizabeth J. Farns-
worth.
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implexiformis (Chalinidae) (nomenclature follows Wie-
denmayer 1977, de Weerdt et al. 1991). At Twin Cays,
Tedania and Haliclona are the most common (in terms
of number of roots occupied) and abundant (in terms
of percent cover) sponge species that occur on sub-
merged mangrove roois (Farnsworth and Ellison
1996b).

METHODS

Effects of sponges on root growth:
addition experiments

Our previous experiments had demonstrated that re-
moving sponges from mangrove roots resulted in a 55%
decrease in root growth rate as isopods (primarily Phy-
colimnoria clarkae [Limnoriidae]) attacked roots lack-
ing sponge cover (Ellison and Farnsworth 1990). In
order to determine if sponges had direct effects on root
growth in addition to these indirect effects, we trans-
planted living and artificial sponges onto newly sub-
merged, bare, unattacked roots. In August 1991, ateach
of four sites within Twin Cays (Fig. 1), 24 hanging
roots were selected for manipulation and marked with
permanent numbered plastic bands (National Band and
Tag Company, Newport, Kentucky, USA). Water depth
(at low tide) below mangrove roots at these four sites
ranged from 0.5 to 1.5 m, and at least the terminal 15
cm of each root was below LLW. In each location, roots
were randomly assigned to one of four treatments: con-
trol (no manipulation); foam (artificial sponges); Hal-
iclona implexiformis transplants; Tedania ignis trans-
plants. For the foam treatment, roots were lifted gently
out of the water and coated with an =2 cm thick jacket
of liquid polyurethane insulating foam (Macklanburg-
Duncan, Oklahoma City, Oklahoma, USA) to create a
seamless, inert, massive sponge-like encrustation on
the root. We established living sponge transplants by
cutting small pieces (=50 mL. volume by displacement)
from nearby sponges and tying them onto bare roots
with plastic cable ties. Fragmentation is the normal
mode of asexual reproduction in many Caribbean
sponges (e.g., Wulff 1985, 1991), and we observed no
ill effects of this technique on growth of the trans-
planted sponges. Living sponge transplants normally
attached to the roots within 72 h, as new pinacoderm
(basal attachment epithelial tissue; Bergquist 1978)
grows over the root surface. The few sponge transplants
that died within the Ist wk of the experiment were
replaced. Root growth rates were determined from mea-
surements of root length (=1 mm) and diameter (£0.1
mm, measured 10 cm from point of attachment; Fig.
2) taken on 13 August 1991 (the day before all trans-
plants were done), 30 December 1991, 18 March, 1
June, and 15 July 1992. Root volume was estimated at
each sampling date by considering the root as a cyl-
inder; estimated volume = 7 X (diameter/2)? X length.
This experiment was treated as a randomized block
design, where each of the four sites was treated as a
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“block.” Untransformed growth rate data (in milli-
metres per day for length and diameter; cubic milli-
metres per day for volume) were analyzed using anal-
ysis of variance (SYSTAT release 5.03; Wilkinson' et
al. 1992). A priori pairwise contrasts (Tedania..vs.
foam; Tedania vs. control; Haliclona vs. foam; Hali-
clona vs. control; foam vs. control) were used to assess
treatment effects.

Relationship between sponges and
adventitious root production

While inspecting the roots used in the transplant ex-
periments, we observed adventitious fine rootlets pro-
duced from the cable root well above the ground sur-
face, and ramifying throughout the sponge transplants.
Such rootlets are known to function in nutrient uptake
in mangroves, but are found rarely above ground (Gill
and Tomlinson 1977, Ellmore et al. 1983). We tabulated
the frequency of rootlet production among our four
transplant groups to determine if rootlet production was
associated significantly with treatment. In order to as-
certain whether or not rootlets occurred on other fouled
roots at Twin Cays (not just those covered with massive
sponges), we inspected an additional 150 haphazardly
selected subtidal mangrove roots that were covered by
a diversity of epibiont taxa. These sampled roots were
growing in the same four sites where we conducted the
sponge transplant experiments. Roots examined each
had at least 50% cover of a single common epibenthic
species. These epibionts represented the common high-
er taxonomic groups (cyanobacteria [one sp.], algae
[two spp.]. sponges [eight spp.], ascidians [three spp.],
cnidaria [one sp.]) that occurred most frequently on
submerged roots (Farnsworth and Ellison 1996b), and
which form dense tissue masses on roots. We removed
the epibionts from 10 replicate roots per epibenthic
species and observed the presence or absence of ad-
ventitious rootlets on each root, Strength of association
between epibionts and rootlet production was assessed
using a G-test.

Growth of sponges on different substrates

To characterize the reciprocal half of the sponge—
root interaction, we sought to determine whether car-
bon derived from mangrove roots could “‘leak” into
sponges, enhancing sponge growth rate on roots rela-
tive to nonliving substrate. To examine this potential
interaction, in June 1992 we grew Tedania and Hali-
clona on otherwise bare roots (10 replicates per spe-
cies), and on 20 cm long 1.25 cm diameter polyvinyl
chloride (PVC) tubes (10 replicates per species) on the
western side of the Main Channel separating the east
and west islands of Twin Cays (Fig. 1). Cut mangrove
roots were not used for this experiment, because they
rot rapidly in seawater. PVC tubes were ‘“‘seasoned”
in seawater for 2 wk prior to use to minimize degassing
during the experiment and to allow for the development
of a bacterial film that could facilitate attachment of
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sponges. We have observed (E. J. Farnsworth and A.
M. Ellison, unpublished data) sponge larvae colonizing
unseasoned PVC tubes that have been immersed for
<2 wk, and we are confident that there were no effects
of PVC on sponge growth. A 28-g fishing weight was
suspended from the bottom of each PVC tube to prevent
it from floating. The PVC tube was then suspended in
the water by tying it to a mangrove branch within 0.5
m of a paired living root with a sponge transplant.
Sponge fragments were transplanted (as in the sponge-
root growth addition experiments) onto the roots and
PVC tubes, and all transplants attached to both roots
and PVC tubes within 3 d. Prior to transplantation, the
volume of each sponge fragment was estimated based
on its displacement of seawater in a graduated cylinder
(1 mL). After 1 mo, we completely removed all
sponge transplants from the roots and tubes, remea-
sured their volume, and calculated their relative change
in volume ([volumeg,, volume;,;i, /volume, ;.-
These data were analyzed using a Mann—-Whitney U
test (Tedania on roots vs. Tedania on PVC; Haliclona
on roots vs. Haliclona on PVC), since standard trans-
formations did not eliminate heteroscedasticity in the
data.

Stable isotope analysis

Stable isotope analyses have been used extensively
to trace carbon and nitrogen movement among and be-
tween many ecosystems (e.g., Peterson et al. 1985, Pe-
terson and Fry 1987, Rundel et al. 1988), including
mangrove forests and adjacent seagrasses (e.g., Fry and
Sherr 1984, Torgensen and Chivas 1985, Fry et al.
1987, Rezende et al. 1990, Hemminga et al. 1994,
1995). Organisms that derive nitrogen from organic
materials and decomposition are enriched in N rela-
tive to N (referred to as 8'°N), while organisms that
obtain most of their nitrogen from biological fixation
of atmospheric nitrogen have 85N =~ 0%.. As C, spe-
cies, mangroves show a relatively strong depletion of
13C; their normal ratio of 3C/"?C (referred to as 8'3C)
=~ —27 10 —30 %o. The §'3C value of consumers’ tissues
will reflect the 83C value of their source carbon (Pe-
terson and Fry 1987); relatively low (large negative)
values of 8'*C in animals living in a mangrove eco-
system indicate that some of their carbon intake is de-
rived from mangrove trees (Ambler et al. 1994), while
relatively high (small negative) 8'*C values would re-
flect a diet low in mangrove carbon.

To determine potential amounts of nitrogen trans-
ferred from sponges to roots through adventitious roots,
and carbon leaking from rootlets into sponges, we ex-
amined the natural isotopic composition of N and C
(3N and 8*C values) of root-fouling sponges, their
associated fine rootlets, the roots they fouled, and
branches, twigs, and leaves of the associated trees.
Samples of root-fouling sponges and plant tissue for
stable isotope analysis were collected from Twin Bays
(Fig. 1). Six 50-mL samples each of Tedania and Hal-
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iclona were gently removed from cable roots (each
sponge species from a different tree). Of these, three
samples of each sponge species were collected from
roots with fine rootlets penetrating the sponge, and
three samples of each sponge species were collected
from roots that had not yet produced fine rootlets. We
then removed and saved all the fine rootlets from within
the sponge; cut 2-cm sections of the belowwater and
abovewater portion of the cable root on which the
sponges were growing; and similarly sized samples of
a randomly chosen branch on that tree, its terminal
twig, and all leaves on that twig. The sponge sampling
thus included 12 trees: 6 for each sponge species, of
which 3 had fine rootlets and 3 did not. For comparative
purposes, we also collected similar samples from plants
with roots covered with the encrusting (rarely massive)
sponge, Ulosa ruetzleri (Mycalidae), into which root-
lets are produced only occasionally, and from plants
with roots fouled by the red alga Acanthophora spi-
cifera, into which rootlets are never produced. The alga
also provided a control for our measurements of "*C
and “N, which are known to be very different in algae
relative to both angiosperms and heterotrophs. Epibiont
and mangrove tissue samples from these trees were
collected in the same way as those on which Tedania
and Haliclona were growing.

All samples were individually packaged and la-
belled, air-dried for 7 d in Belize (=30°C), and then
oven-dried in Louisiana (70°C) to constant mass. Dried
samples were ground in a Wiley mill with 80-mesh
stainless steel screen, and stored in a vacuum desic-
cator. Samples were treated with 1 mol/L HC1 and dried
at 60°C for 48 h to remove contamination from car-
bonate deposits. Sample material for total carbon and
nitrogen determinations were combusted at >900°C in
a LECO elemental analyzer (LECO Corporation, St.
Joseph, Michigan). The isotopic compositions of C and
N were determined with an isotopic ratio mass spec-
trometer at the Woods Hole Ecosystems Center’s stable
isotope laboratory, from samples cryogenically puri-
fied in a custom-built stainless steel manifold (Fry et
al. 1992).

We compared the rate of diminution in the 3'°N sig-
nal between roots with rootlets penetrating the sponges
and roots without rootlets using nonlinear regression.
Because samples on different trees were taken from
different positions relative to the sponge, we assigned
dummy values to sampling location (sponge = 0, root-
lets = 1, ..., leaf = 6); these values were used as
independent variables in the nonlinear regression. We
then fit the following equation separately to each set
of data points:

815N = a X exp(bVlocation),

where a and b were estimated parameters. The param-
eter b is the shape parameter for the curve; a large
negative value for b indicates a rapid diminution of
9'°N, while a less negative value for b indicates slower
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TABLE 1. ANOVA table summarizing effects of transplant
type on root growth rate, and results of planned pairwise
contrasts between treatments. Location was considered as
a block effect in the design. In the matrix of pairwise con-
trasts between treatments, the location X transplant mean
square was used as the error term. N = 4 locations and 24
roots per transplant treatment at each location.

Source Sss df  wms F P
Location 0.686 3 0230 1.014 0.393
Transplantf 2943 3 0.981 4.334 0.008
Location X Transplant 1.044 9 0.116 0.512 0.859

Error 12.674 56 0.226

T A priori contrasts: foam vs. Tedania, P = 0.105; foam
vs. Haliclona, P = 0.284; control vs. Tedania, P = 0.002;
control vs. Haliclona, P = 0.003; control vs. foam, P = 0.014.

diminution of the 3N signal. To determine if trees
with and without rootlets differed in 8N diminution
rate, we conirasted our separate nonlinear models to a
common model fit to all the data points:

85N = g X exp[(b + cX)Vlocation],

where X identifies whether or not the observation came
from a tree with rootlets (X = 0 if no rootlets, X = 1
if rootlets), and a, b, and ¢ were estimated parameters.
We then used an F-test to compare the residual sums
of squares (rRss) of the common model to the sum of
the rSS of the two models fit separately to trees with
and without rootlets (Draper and Smith 1981).

RESULTS
Transplant experiments

Transplanting live sponges onto otherwise bare roots
significantly increased root elongation rate relative to
bare root controls (Table 1; Fig. 3). Changes in esti-
mated root volume showed identical qualitative and
statistical patierns (mean * 1 sb, Tedania: 797 £ 182
mm?*/d; Haliclona: 522 = 95 mm?¥d; foam: 410 = 74
mm?*/d; control: 355 = 87 mm?d). There were no dif-
ferences (P > 0.2, all a priori contrasts) among treat-
ments in root diameters at the beginning (15.1 *+ 0.35
mm, N = 96) or end (21.7 = 0.74 mm; N = 72) of the
experiment, and no differences among treatments in
daily change in root diameter (overall mean = 0.02 =
0.002 mm/d). Hence, we conclude that the elongation
response was not an etiolation response; rather, change
in cable root length was a good measure of change in
root biomass (which is directly proportional to cable
root volume, and well correlated with cable root length:
root dry mass = [0.007 X cable root length + 0.616]7;
r = 0.94; P < 0.001 [Ellison and Farnsworth 1996]).
Changes in root length also are correlated significantly
with leaf production, shoot extension, and total above-
ground production in saplings (leaf production: r =
0.83, P < 0.001; shoot growth: r = 0.82, P = 0.001;
total annual aboveground biomass: r = 0.79, P =
0.002; data from Ellison and Farnsworth 1996), al-
though no comparable data exist for mature trees.
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Fig. 3. Effects of epibiont transplants on root elongation

rate and isopod colonization. Top: mean elongation rates
(with 95% confidence intervals about the mean) of roots with
no sponges, artificial sponges, or living sponges. See Table
1 for statistics and sample sizes. Bottom: a dit plot showing
all data from the same transplant experiment illustrating the
joint effects of the manipulations on isopod colonization and
root growth.

While roots elongated and sponges grew concur-
rently, inert foam did not grow along with the root.
Hence, as time increased, there was an increasing
amount of tissue on control and foam-covered roots
exposed to isopod colonization. When isopods did at-
tack foam-covered roots, they burrowed into the root
tip that had elongated beyond the foam jacket, not
through the foam itself. Thus, comparing the growth
rates across treatments of subsets of roots attacked by,
or unattacked by isopods, allowed us to distinguish
between changes in growth rates due to isopod attack
and changes in root growth rate due directly to sponges.

Consistent with our previously published study of
indirect effects of sponges on mangrove root growth
(Ellison and Farnsworth 1990), limnoriid isopods (Phy-
colimnoria clarkae) attacked significantly fewer roots
covered with living sponges than either control or
foam-covered roots (x> = 19.345, df = 3, P < 0.001,
G test; Fig. 3). Of roots unattacked by isopods, roots
covered by live sponges grew 2-3 times faster (mean
* 1 sD, Tedania: 0.92 = 0.14 mm/d; Haliclona: 0.73
* 0.12 mm/d) than bare root controls (0.49 mm/d) or
foam-covered roots (0.35 £ 0.10 mm/d). Since only
one control root was unattacked, and only three foam
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TABLE 2. Observed association between epibionts and ad-
ventitious fine rootlets is shown. The number of roots pro-
ducing adventitious fine rootlets into each species is given
in lightface type. The total number of roots producing fine
rootlets into members of each higher taxon is given in
boldface type.

With Without
Taxon rootlets rootlets
Cyanobacteria 0 10
Scytonema polycystum 0 10
Algae 1 19
Caulerpa racemosa 1 9
Lithophyllum sp. 0 10
Tunicata 2 28
Didemnum concyhliatum 2 8
Diplosoma glandulosum 0 10
Perophora formosana 0 10
Porifera 33 47
Amphimedon viridis 0 10
Geodia papyracea 1 9
Haliclona curacaoensis 0 10
Haliclona implexiformis 8 2
Lissodendoryx sp. 8 2
Mycale magnirhaphidifera 0 10
Tedania ignis 9 1
Ulosa ruetzleri 7 3
Cnidaria 0 10
Aiptasia pallida 0 10

roots were unattacked, statistical analyses of these con-
trasts were not possible. Considering only those roots
in the four treatments that were attacked by isopods
(normally one isopod per root), there was still a sig-
nificant treatment effect on root growth rate (F = 4.113,
MSs = 1.058, P = 0.011, ANOVA; Fig. 3); attacked
roots with sponge transplants grew significantly faster
than either control roots or foam-covered roots (Te-
dania vs. control: P = 0.006; Haliclona vs. control: P
= 0.023; Tedania vs. foam: P = 0.007; Haliclona vs.
foam: P = 0.027), while control and foam-covered
roots that were attacked by isopods grew at equivalent
rates (P = 0.077). Thus, live sponges ameliorate neg-
ative effects on growth of isopods and had significant
direct positive effects on root growth.

Relationship between sponges and
adventitious root production

Adventitious rootlets were produced commonly by
cable roots fouled by massive sponges and rarely by
roots fouled by other common epibionts (x> = 59.88,
df = 4, P < 0.001, G test; Table 2). These rootlets
proliferated throughout the sponge body and had sim-
ilar structure to belowground nutrient-absorbing root-
lets (Gill and Tomlinson 1977, Ellmore et al. 1983).
Adventitious rootlets were produced by 58% of the
roots with live transplants, but by none of the roots
with foam or bare roots (x? = 28.356, df = 3, P <
0.001, G test). In two cases, Haliclona colonized ex-
posed tips of foam-covered roots, and these roots also
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developed fine rootlets. Fig. 4 illustrates rootlet pro-
liferation into a Haliclona transplant, and morpholog-
ical differences between these rootlets and above-
ground lateral cable roots. Like belowground fine root-
lets (Fig. 4D), sponge-rootlets have an unpigmented
periderm, a well-developed cortex, and a less-pro-
nounced stele. In contrast, lateral cable roots have a
highly pigmented periderm, a narrower cortex, and a
pronounced stele.

Growth of sponges on different substrates

Haliclona transplants on mangrove roots grew sig-
nificantly faster than sponges transplanted onto PVC
tubes (Fig. 5; Mann-Whitney U = 2.50, P = 0.001).
After 1 mo, Haliclona transplanted onto mangrove
roots had increased in volume by 51 * 24.1% (mean
+ 1 sp) (N = 9 surviving transplants of the original
10), while Haliclona on PVC tubes increased in volume
by only 6 = 11.4% (N = 9). Tedania also grew more
rapidly on mangrove roots (52 = 35.3%, N = 7) than
on PVC tubes (34 = 19.3%, N = 9), but this difference
was not significant (U = 25.0, P = 0.486) because of
the high variance in observed growth rates (Fig. 3).
Although this experiment only ran for 1 mo, fine rootlet
initiation was observed in three of the surviving Hal-
iclona transplants and two of the Tedania transplants.

Stable isotope analyses

8!5N values for the three sponge species ranged from
4.5 to 7.5%0, consistent with these species being het-
erotrophic filter-feeders (Fry et al. 1987; Fig. 6). The
relative abundance of *N declined along the root with
increasing distance from the sponge (Fig. 6), indicating
that the importance of inorganic nitrogen relative to
fixed atmospheric nitrogen (8"°N = 0%o) in plant tissues
diminished with distance from the sponge. We ob-
served that values of 8'°"N were higher in cable root
sections when rootlets were present than when rootlets
were absent for roots fouled by all sponge species (Fig.
6). Diminution rate (the coefficient b in the nonlinear
regression model described in Methods: Stable isotope
analysis) of 8°N in roots was significantly slower when
rootlets were present than when rootlets were absent
(Table 3; Fig. 6), indicating that inorganic nitrogen was
being transferred from these sponges into rootlets and
cable roots. Fitting separate nonlinear models to 3'°N
data from trees with and without rootlets explained
significantly more of the variance in the data than a
common nonlinear regression model (Haliclona: F| s
= 161.893, P < 0.0001; Tedania: F, ;s = 50.479, P
< 0.0001; Ulosa: F, 5 = 42.120, P < 0.0001). By way
of comparison, the 8N value of the red alga Acan-
thophora ranged from 2.9 to 4.1%o, and the shape pa-
rameter b was similar to that found for sponge-covered
roots that lacked rootlets (Table 3; Fig. 6).

313C values for all plant tissues (Table 4) were within
the range expected for a C, plant like Rhizophora (=25
to 29%0). 8'3C values for sponges with associated root-
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Lines are derived from nonlinear regressions described in Table 3.

lison and Farnsworth 1990, 1992) and Australian man-
gal (Smith et al. 1991). Similarly, the abundance of
benthic and epibenthic invertebrates in Caribbean (Riit-
zler 1969, Farnsworth and Ellison 1996b) and Indo-
Pacific mangal (Macnae 1968, Alongi and Sasekumar
1992) have yet to be included in comprehensive con-
ceptual or quantitative models focusing on the fate of
carbon and nutrients in mangrove ecosystems (e.g.,

TABLE 3. Estimated shape parameter (b) for the nonlinear
regressions (Fig. 6) of 3'°N on sampled location within a
plant.

Root-
Epibiont lets b SE r P
Haliclona No -0.983 0.134 0919 <0.001
Yes —0.673 0.059 0.958 <0.001
Tedania No -0979 0.159 0.883 <0.001
Yes —0.909 0.138 0.875 0.001
Ulosa No -0982 0.238 0.789 0.082
Yes —0.806 0.142 0.810 <0.001
Acanthophora  No —0.940 0.319 0.669 0.226

Alongi et al. 1992, Robertson et al. 1992). The general
absence of animal-plant interactions in mangrove car-
bon and nutrient budgets may reflect the fact that the
majority of early studies (e.g., Pool et al. 1977, Twilley
1985, Twilley et al. 1986) were done in a small set of
mangrove habitats where the abundance of animals was
relatively low due to high sedimentation rates and other
prevailing geomorphological conditions. Current avail-
able evidence, derived from a broader range of man-
grove forest types, indicates that invertebrates can sig-
nificantly affect plant growth and productivity in the
Caribbean (Ellison and Farnsworth 1990, 1992, 1993,
Farnsworth and Ellison 1991, 1993, Feller 1995) the
eastern Pacific (Perry 1988), and Australia (Robertson
et al. 1990, Smith et al. 1991).

The results presented in this paper demonstrate that
two common massive sponges directly and signifi-
cantly enhance growth rate of red mangrove roots (Ta-
ble 1; Fig. 3). The mechanism for this facilitation ap-
pears to be transfer of inorganic nitrogen from sponges
to roots via adventitious fine rootlets (Figs. 4 and 6).
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TABLE 4. Values of 8"°C (%0) for epibionts and associated plant tissues. Values given are means * 1 sp. N = 3 for all
values.
Haliclona Tedania
Rootlets No rootlets Rootlets No rootlets

Epibiont —14.7 = 0.47 * —-14.0 = 0.00 —-14.2 = 0.15 * —14.1 £ 0.06
Rootlet —-25.1 = 0.38 -246 = 1.76

Cable root below water —25.5 = 0.56 NS —259 * 0.63 —-26.0 * —1.04 NS —25.5 £ 0.56
Cable root above water -26.5 = 0.76 NS —-27.0 £ 0.95 -27.0 = 1.13 NS —-27.8 £ 0.20
Branch =291 * 1.34 NS —28.7 £ 0.50 ~29.2 + 1.32 NS —28.5 + 0.83
Twig -29.0 = 1.10 NS —28.7 £ 0.25 —-29.1 =+ 1.39 NS —28.6 = 0.87
Leaf -29.1 = 1.29 NS —-28.8 = 0.30 —-28.8 = 1.27 NS —-28.6 = 1.01

* Indicates significant differences between §'*C values from plants with and without rootlets (from trees with

sponges) (P < 0.05, Mann-Whitney U test).

Similar transfer of nutrients from epiphytes to their host
plants through aboveground adventitious roots has
been observed in temperate and tropical upland forests
worldwide (Nadkarni 1981, 1994; reviewed recently by
Davies and Hartmann 1988). In other marginal, nutri-
ent-poor habitats there are parallel examples of inter-
specific interactions facilitating nutrient uptake. For ex-
ample, bacterial N fixation has been observed to in-
crease plant growth in seagrass beds (e.g., Capone et
al. 1977) and affect successional processes on newly
colonized lava flows (Vitousek et al. 1987, Vitousek
and Walker 1989). Sheridan (1991, 1992) has measured
significant N fixation by cyanobacteria growing epi-
phytically on roots and trunks of the mangrove Avi-
cennia germinans, but whether or not this fixed nitro-
gen is used by the tree is unknown. Ectomycorrhizae
increase rates of litter decomposition and thereby in-
crease available nutrients for trees growing in nutrient-
poor habitats (e.g., Malloch et al. 1980). Analogously,
mussels facilitate plant growth in New England salt
marshes through deposition of ammonium-rich waste
products (Bertness 1984).

Nadkarni (1994) demonstrated experimentally that
epiphytes intercepting and retaining nutrients triggered
formation of aboveground adventitious roots (AARs)
in Senecio cooperi. Production of AARs in other ter-
restrial plants has been attributed to low oxygen levels
and/or hormonal changes brought on by permanent or
seasonal flooding (e.g., Haissig 1974, Gill 1975, Pe-
reira and Kozlowski 1977, Kozlowski 1984, Davies and
Hartmann 1988). However, mangroves, which live in
anoxic, flooded conditions, do not routinely make
AARs; the aerial roots characteristic of mangroves are
morphologically distinct from underground roots and
rootlets (Gill and Tomlinson 1969, 1971, 1977).

The rootlets we observed in sponges (Fig. 4), like
AARs in terrestrial forests, closely resemble subter-
ranean rootlets (Nadkarni 1981). Our transplant ex-
periments indicated that we could reliably induce fine
rootlet production by placing live sponges onto roots,
but that rootlet induction was not observed under the
dark, anoxic foam controls. This result, together with
the observation that rootlets rarely are associated with
other epibiont taxa (Table 2), implies that it is the

fouling

sponge itself, nutrients flowing from the sponge, or
plant hormone analogues present in sponge tissue that
cause rootlet formation on submerged aerial roots of
Rhizophora mangle.

The significantly slower diminution rate of 85N in
roots with rootlets penetrating sponges, relative to roots
lacking fine rootlets, indicates that these rootlets do
function in nutrient uptake (Table 3; Fig. 6). This pro-
vides inferential support for the notion that some in-
organic nitrogen is transferred from sponges to rootlets
and adjacent cable roots. It has been estimated that
nearly 18% of the nitrogen input into mangrove forests
is derived from biological nitrogen fixation (Alongi et
al. 1992); hence most mangrove tissues would be ex-
pected to have a relatively low 8'°N value (—50%o).
Relatively low values of 8N observed in all above-
ground plant tissues provide additional support for the
overall importance of nitrogen fixation (presumably on
the soil or tree surface, or within the benthic sediments:
Mann and Steinke 1989, Sheridan 1991, 1992, Alongi
et al. 1992, Nedwell et al. 1994) to the total plant’s
nitrogen budget. Nitrogen fixation likely contributes
much more to whole plant growth than does ammonium
transferred to roots by sponges. However, determining
the relative importance of sponges, nitrogen-fixers, and
other nitrogen sources to the overall nitrogen budget
of this mangal will require additional detailed data on
fluxes of nitrogen attributable to soil bacteria, litter
decomposition, and birds, among others.

Sponges also grow better on living roots than they
do on plastic substrate at identical depths. Sponges
growing on mangrove roots with rootlets have an =1-
3% lower 8'3C value than sponges growing on roots
without rootlets (Table 4). This implies that there is
some transfer of plant carbon into these sponges. While
other micronutrients important to sponge metabolism
also may leak from roots, we lack information on the
chemistry of root exudates and nutritional requirements
of sponges. Thus, we did not try to measure substances
other than carbon that could be transferred from roots
to sponges. Although there are no other data on leakage
of carbon or micronutrients by mangrove roots (or other
noncrop plants), the rhizosphere is thought to be a
source of carbon in mangrove ecosystems (Robertson
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TaBLE 4. Continued.

Ulosa Acanthophora
Rootlets No rootlets No rootlets

-15.5 = 0.21 * -15.2 + 0.21 —15.3 = 0.88
—-25.3 £ 0.46
-256 = 0.12 Ns —256 = 0.61 —264 + 132
-26.1 033 Ns —26.0*0.17 —26.1 = 0.56
—-289 +1.63 n~Ns —288 * 090 —279 + 1.06
-293 *+ 158 Ns —287 * 129 —27.7 * 0.46
-294 209 Ns —288 *1.25 =27.1 £ 0.61

et al. 1992). The relative decrease in 8'*C seen in spong-
es associated with rootlets is within the range expected
if, as has been found for crop plants, =5% of plant-
derived carbon is lost through rootlets (Martin 1977,
McCulley and Canny 1985, Goss 1991). Further work
on carbon fluxes in these mangrove cays that focuses
on ecosystem processes other than litter export is need-
ed to determine the relative importance of this and other
animal—plant interactions in the overall carbon budget
of this ecosystem.

Based on the results presented here, we conclude that
mangroves and these abundant massive sponges are
facultative mutualists. Mangroves provide the only
habitat (hard substrate) for sponges in this ecosystem,
and passively leak carbon from their roots that is as-
similated by sponges. In addition to protecting roots
from isopod attack that substantially reduces root
growth rate (Ellison and Farnsworth 1990), sponges
directly enhance cable root growth by inducing adven-
titious rootlet formation and by transfer of ammonium
through these rootlets into cable roots. Demonstration
that sponges facilitate mangrove tree growth, as op-
posed to only root growth, requires evidence of a strong
relationship between cable root growth and whole tree
growth. This relationship has been documented only
for R. mangle saplings on Belizean mangrove cays (El-
lison and Farnsworth 1996). In that study, we found
strong correlations (P = 0.001) among cable root
growth rate and leaf production, shoot extension, and
annual aboveground net primary production. While we
recognize that ontogenetic differences in patterns of
growth and reproduction exist between saplings and
mature trees (Farnsworth and Ellison 1996c¢), we are
confident that the average twofold increase in cable
root growth observed when sponges are present on
roots would translate into a measurable growth re-
sponse by the fringing trees themselves. Additional
study of whole-plant responses to sponge—mangrove
interactions is needed to test the validity of this asser-
tion.

The occurrence of similar facilitative interactions be-
tween plants and animals in mangal, especially in the
Indo-Pacific where mangrove species richness is high-
est, remains unknown. Further comparative studies in
mangroves around the globe could also test the hy-
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pothesis of Bertness and Callaway (1994) that facili-
tations should be common in marginal, stressed, or spe-
cies-poor ecosystems. New conceptual models are re-
quired that explicitly account for animals, the dominant
component of species diversity in mangal.
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