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interactions
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Neighborhood (spatial) models of plant populations have assumed implicitly that
competition between adjacent individuals is the primary determinant of observed
dynamics. In contrast, non-spatial models now routinely fesr this assumption against
the null hypothesis that individual differences in intrinsic growth rate alone can explain
observed patterns. In a widely-used neighborhood model (Pacala and Silander 1990),
competition is modelled as a direct effect of neighbors on target plant biomass, which
in turn affects plant fecundity. We have developed a statistical null model for Pacala
and Silander’s (1990) neighborhood model for plant monocultures that explicitly
incorporates variation in plant growth rate, and permits a test of the hypothesis that
neighborhood competition controls plant ground area occupied (= rosette diameter) and
biomass. An additional alternative hypothesis to our model is that neighbors can affect
fecundity independently of their effects on plant diameter and biomass. We tested these
three hypotheses — (1) no effect of competition (null); (2) neighborhood competition
directly affecting plant diameter and biomass, and indirectly affecting fecundity (Pa-
cala and Silander 1990); {3) neighborhood competition directly affecting plant diame-
ter, biomass, and fecundity — by replicating, with appropriate controls, Silander and
Pacala’s (1985) experiments with the rosette-forming crucifer, Arabidopsis thaliana.
Neighborhood competition in dense stands resulted in simultaneous changes in plant
diameter, biomass, and fecundity relative to plants grown in the absence of competi-
tion. There also were apparent effects of neighbors on plant fecundity independent of
their effects on plant size alone. The null model was not supported, but Pacala and
Silander’s model did not fit the data as well as the model that incorporated direct
effects of neighbors on plant fecundity.
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Models and interpretations of population dynamics of
plant monocultures and mixtures routinely assume that
competition is the overriding determinant of observed
patterns. Such models rarely consider alternative hy-
potheses, despite theoretical and experimental evidence
that intrinsic variation in plant growth rate alone can give
rise in plant populations to hierarchical distributions of
biomass, height, or other metrics of plant size (Koyama
and Kira 1956, Koch 1966, 1969, Turner and Rabinowitz,
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1983, Uchmarniski 1985, Ellison 1987, Bonan 1988). To
date, tests of the null hypothesis that growth rate variation
alone generates size hierarchies have been performed
only with respect to non-spatial models of plant competi-
tive dynamics (Turner and Rabinowitz 1983, Ellison
1987). In non-spatial models, competitive effects are a
function of overall average plant density and the specific
location of each plant need not be known (e.g. Aikman
and Watkinson 1980, Benjamin 1988).
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Fig. 1. Schematic diagram of the effects of neighbors on plant
biomass and fecundity. (A) PS; (B) null model and (C) alterna-
tive model. The dotted line in B refers to a potentially spurious
correlation that emerges between number of neighbors and plant
fecundity due to the common dependence of both number of
neighbors and plant fecundity on two correlated metrics of plant
size (biomass and rosette diameter). See text for detailed expla-
nations.

In contrast, spatial, or neighborhood, models of plant
population dynamics incorporate competition implicitly.
These models proceed from the assumption that plants,
being sessile, are influenced directly only by near-neigh-
bors; i.e. individual (target) plant performance is some
composite function of the number of individuals and their
distance from the target plant (e.g. Mack and Harper
1977, Weiner 1982, Watkinson et al. 1983, Pacala and
Silander 1985, 1987, 1990, Silander and Pacala 1985,
Pacala 1986a,b, 1987, Firbank and Watkinson 1987,
Sutherland and Benjamin 1987, Bonan 1988; see Czdrdn
and Bartha 1992, Ford and Sorrenson 1992, and Benja-
min and Sutherland 1992 for recent reviews of spatial
models ot plant population dynamics). In these models, a
neighborhood is defined simply as a finite area in which a
number of plants compete with each other for resources.
There has been a steady improvement in the predictive
power of neighborhood models as modelling techniques
have improved and more parameters have been incorpo-
rated (Czdran and Bartha 1992, Ford and Sorrenson
1992). Pacala and Silander (1990) have extended their
neighborhood models, initially developed for plant
monocultures, to multispecies systems, with encouraging
results. However, the effects of growth-rate variation
have not yet been incorporated explicitly into spatial
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models of plant competition. In this paper, we formulate a
spatial model for plant monocultures that permits explicit
testing of the assumption that neighborhood competition
determines plant diameter, biomass, and fecundity. This
model yields three explicit, contrasting, testable hypothe-
ses concerning the role of neighbors in determining target
plant performance. We evaluated the model and tested
among the hypotheses using monocultures of Arabidop-
sis thaliana (L.) Heyn. (Brassicaceae).

Our model is derived from the neighborhood model of
Pacala and Silander (1990). Although there are many
different models of neighborhood competition (reviewed
by Benjamin and Sutherland 1992, Ford and Sorrenson
1992), Pacala and Silander’s has the fewest assumptions
and parameters that need to be estimated (Czdran and
Bartha 1992). This model (referred to throughout as PS)
also has been developed more extensively than most
other neighborhood models, and has been found to be
reasonably accurate in its predictions of dynamics of both
monocultures and mixtures. We do not mean to imply
that the PS model is the most complete, or most general
of the published spatial models of plant population dy-
namics (Czaran and Bartha 1992). However, given its
simplicity and applicability to a variety of situations (Pa-
cala and Silander 1990), the PS model presents the most
accessible starting point from which to investigate under-
lying assumptions common to all classes of spatial
models of plant population dynamics.

Models of the effects of size and
neighbors

A précis of the Pacala and Silander
neighborhood model

In PS, each plant is modelled as having a circular neigh-
borhood of fixed radius (r), with the target plant located
at the center of the circle and occupying no real area. The
biomass of any given plant is predicted from a hyperbolic
function of the number of conspecific and heterospecific
neighbors within the distance r of the target plant. PS is a
two-species model:

M,
py=—————————— 12
" (I+c;m+cyn) (1a)
M.

R J
W,

(1b)

(L4 m+ ¢ my)

where w; is the adult aboveground biomass of an indi-
vidual of species i, M; is the biomass of species i with no
neighbors, and c¢; is an interference coefficient that gives
the effect of n, individuals of species j, within a neigh-
borhood of fixed radius r, on the species i target plant
(Pacala and Silander 1990: 115). Then, fecundity S; of
plant i is predicted as a linear function of the biomass W;
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predicted from Eqs la and 1b (Pacala and Silander 1987,
1990):

S;=a; + b, W, (1¢)
where ¢; and b; are estimated (linear regression) con-
stants. Schematically, this model is represented in Fig.
1A: the number of neighbors determines individual plant
biomass, and predicted biomass determines fecundity.

In the absence of neigbors within the defined neigh-
borhood (n;=0), Eqs la or 1b reduce to w;=M,, a con-
stant that is defined as maximum possible plant biomass.
In this formulation, there is no allowance made for vari-
ance in plant biomass resulting from, for example,
genetic background, maternal effects, or environmental
variation. Instead, all of these other sources of variation
are considered part of the model’s error structure and are
ignored when predicting fecundity (Eq. Ic). That is, in
the model described by Eqs 1 and 2, all variance in
predicted plant biomass w; and predicted plant fecundity
S, results from competitive effects of neighbors, despite
extensive theoretical studies (e.g. Koch 1966, 1969,
Uchmariski 1985, Bonan 1988) and empirical data from
non-spatial studies (e.g. Koyama and Kira 1956, Turner
and Rabinowitz 1983, Ellison 1987) that maximum plant
biomass can be extremely variable, and that such varia-
tion may overshadow inter- and intraspecific competitive
effects. We contend that for spatial models of plant com-
petition, as for non-spatial models, one must first exclude
the possibility that individual variation in plant biomass
or fecundity accounts for variation in plant performance.
Only then can competition be invoked as a causal mecha-
nism for observed patterns of plant size or reproduction
among plants in dense stands.

A null model and an alternative to the PS
model of plant neighborhood interactions

We use the term “null model” to describe our model for
neighborhood plant competitive interactions, because it
explicitly accounts for individual variance in plant per-
formance independent of competition. We then contrast
our null model with the alternative hypothesis, that neigh-
boring plants affect significantly plant biomass and re-
production in dense monocultures. We here present
models for plant monocultures, although they are easily
generalizable to multispecies assemblages. These models
will be presented three ways: 1) as generalized path
diagrams, showing causal relationships among variables;
2) as quantitative models; and 3) as a formal mathemat-
ical model. The qualitative description of the model is
presented in this section, the quantitative model in the
next, and the formal mathematical model is outlined in
Appendix 1.

Restricted to one species, PS can be represented by a
generalized path diagram (Fig. 1A): fecundity is a func-
tion of biomass, which is a function of number of neigh-
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bors. Arrows in these diagrams represent functional rela-
tionships, which may be non-linear. These are not stan-
dard path diagrams (e.g. Mitchell-Olds 1987), in which
arrows represent linear relationships. Fig. 1A makes clear
an assumption of the PS model: neighbors affect target
plant fecundity only by their effect on target plant bio-
mass.

An appropriate null model (cf. Turner and Rabinowitz
1983, Ellison 1987), with no causal linkage between
neighbors and fecundity, is shown in Fig. 1B. In this
model, both fecundity and the number of neighbors are
simple functions of a single metric of plant size (e.g.
aboveground biomass, area of ground occupied). The
apparent correlation between neighbors and fecundity is
due to their common dependence on a third variable, size.
Fecundity is often biomass-dependent (e.g. Weiner
1988), but how can number of neighbors depend on
biomass or ground area occupied?

Most spatial models of plant population dynamics,
including PS, assume that plants are mathematical points
occupying no area; however, most real plants occupy
some area. A given plant mass can be distributed in space
in many ways (Miyanishi et al. 1979), so it may be
appropriate to use either a measure of ground area occu-
pied or plant biomass as a metric of plant size. Ground
area occupied can affect the ability of neighbors o obtain
resources through asymmetric uptake of light or nutrients
(e.g. Weiner and Thomas 1986). For rosette-forming
plants like Arabidopsis, plants of larger diameter will
have fewer neighbors when, as in PS, plants are con-
sidered as points lacking any area, and neighborhoods are
defined by a fixed radius. For example, a 6-cm rosette
will have 0 neighbors if the neighborhood is defined to be
of radius 3 c¢m (as in Silander and Pacala 1985). Neigh-
borhoods of smaller radii have no biological meaning for
a plant of this size, while if the neighborhood were larger
the plant could have some neighbors. While in practice
one would not expect a chosen neighborhood size to be
smaller than the radius of the largest plant in the popula-
tion, choosing neighborhood sizes by minimizing re-
sidual sums of squares (as done by Silander and Pacala
1985) can in fact result in neighborhoods smaller than the
largest plant (see Results and discussion, below). Conse-
quently, in spatial models where neighborhood radii are
defined based on distances between plant centers, the
relationship between actual ground area occupied and
plant biomass ought to be considered (cf. Simberloff
1979). In such models, the number of possible neighbors
an individual can have within a given distance of its
center, like the number of seeds it can produce, could be
dependent on plant diameter, which may show variation
independent of competitive interactions.

PS is the simplest alternative to the proposed null
model. However, other alternatives exist. For example,
relaxing the assumption in PS that neighbors affect target
plants only through their effects on plant biomass results
in the model illustrated in Fig. 1C, in which biomass is a
function of neighbors and fecundity is a function of both
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Fig. 2. Effects, alone and in concert, of number of neighbors and
plant size on plant fecundity. See text for detailed explanation.

biomass and the number of neighbors. One possible
mechanism for an additional effect of neighbors on fe-
cundity is a shift in morphology in response to crowding
(Gibson et al. 1992).

These three models conceptually form a nested hie-
rarchy: the null model (Fig. 1B) posits no effect of neigh-
bors on biomass, rosette diameter or fecundity; PS (Fig.
1A) posits a direct effect of neighbors only on biomass
(and/or rosette diameter); the second alternative (Fig. 1C)
posits direct effects of neighbors on both biomass (and/or
rosette diameter) and fecundity.

T. Hara (pers. comm.) has pointed out that because
none of these three models incorporates either size of
neighbors or their distances from the target plant (e.g.
Weiner 1982), they are appropriate to situations where
competitive interactions between plants are predomin-
antly symmetric. Yokozawa and Hara (1992) present a
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general model for the interaction between canopy photo-
synthesis and competition in monocultures. Their model
illustrates that symmetric competition will dominate the
population dynamics of plants that grow primarily in
diameter — e.g. rosettes like Arabidopsis thaliana (used
by Silander and Pacala 1985, and in the experiments
reported here), while asymmetric competition should be
more important for trees and other plants with more
vertical growth forms. In situations where competition is
known to be asymmetric (i.e. dominance and suppres-
sion, sensu Turner and Rabinowitz 1983), models analo-
gous to those of Weiner (1982), Hara (1992), and Yoko-
zawa and Hara (1992) should prove to be more useful.
However, the apparent predictive power of PS in both
monocultures and mixtures (Pacala and Silander 1990)
raises the possibility that their simple model may be
adequate in many herbaceous plant assemblages.

Quantitative distinctions between the models

Tests to compare the three models in Fig. 1 can be
developed by making the relationships among the varia-
bles more precise. The competitive effect of neighbors on
plant biomass is commonly hyperbolic (Fig. 2A). For
monocultures, Pacala and Silander’s biomass predictor
(Egs la and 1b) reduces to:

W= wu/(l+ ¢n) (2)

where W is predicted plant biomass, w,,, is biomass in the
absence of neighbors, and ¢ is a decay constant giving the
effect of n neighbors within a fixed radius r on biomass.
Similar hyperbolic equations have been used to model the
effect of neighbors on fecundity (Fig. 2A):

§= S/ (1+c,n,) 3)

where S is the predicted number of seeds produced per
plant, S, is the maximum number of seeds produced by
a plant with no neighbors (in a neighborhood of radius r),
¢, is a decay constant, and », is the number of neighbors
in a neighborhood of radius r (Silander and Pacala 1985).

The relationship between plant biomass and fecundity
may be linear or exponential (Fig. 2B) (Samson and Werk
1986, Weiner 1988, Thompson et al. 1991). In popula-
tions of Arabidopsis thaliana, not only the shape, but also
the slope and intercept of the biomass-fecundity relation-
ship has been shown to depend on plant genotype (Aars-
sen and Clauss 1992, Clauss and Aarssen 1992). The PS
fecundity predictor is a linear relationship between bio-
mass and number of seeds:

S=a+bw 4)

where S and W are the predicted fecundity and predicted
biomass, respectively, while « and b are estimated coeffi-
cients. Substituting Eq. 2 into Eq. 4, and equating it to Eq.
3 provides the model for the path diagram in Fig. 1 A:
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§=atb woa/(1+¢n) = S/ (14¢, 1) (5)

To quantify the null model (Fig. 1B), we need to specify
how plant biomass, or another correlated measure of
plant size influences the potential number of neighbors in
the absence of density-dependent mortality (Fig. 2C). If a
plant were considered to be a circle with radius p in a
neighborhood of radius r (cf. Simberloff et al. 1978,
Simberloff 1979, Cox 1987, Wu et al. 1987), then the area
that could be occupied by neighbors is w(r’—p?). The
potential number of neighbors is then dw(r’—p?), where d
is the average plant density (Upton and Fingleton 1985).
The reproductive output of a plant growing alone with n
potential neighbors should then be compared with the
reproductive output of a plant of similar biomass growing
in competition with n actual neighbors (Fig. 2D). Any
observed reduction in reproductive effort of plants with
neighbors relative to similar-sized plants growing alone
can then be attributed to neighborhood competitive ef-
fects (Fig. 2D, shaded region). If the two curves in Fig.
2D are statistically indistinguishable, then one cannot
reject the null hypothesis that plant size effects or growth
rates alone are responsible for observed declines in repro-
ductive output with plant biomass. If the two curves are
distinctly different, the null hypothesis would be rejected,
the difference being attributable to neighborhood compe-
tition.

If plant biomass and fecundity are both functions of the
number of neighbors (e.g. the path diagram in Fig. 1C),
then the coefficients a and » in Eq. 4 must be expressed
as functions of the number of neighbors, not as constants.
In this case, the relationship between biomass and fecun-
dity is one of a family of curves, depending on the
number of neighbors (Fig. 2E). A model for the relation-
ship in Fig. 1C is:

S = all+b71 w (6)

where a, and b, depend in some fashion on s, the number
of neighbors. Differences between the fits of Eqs 4 and 6
to empirical data can be assessed graphically or statisti-
cally (see Statistical analyses, below).

Hypotheses

Our model yields three testable, contrasting hypotheses
concerning the relationship between neighbors, target
plant size (expressed as ground area occupied or indi-
vidual biomass), and target plant fecundity. Like the
model, each hypothesis can be described in terms of the
path diagrams (Fig. 1), the quantitative models (Eqs 2-6
and Fig. 2), or the formal model (Appendix 1).

Null hypothesis. The observed relationship between num-
ber of neighbors and fecundity is an epiphenomenon of
the true relationship between intrinsic growth rate and
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plant fecundity. In other words, the relationship between
neighbors and fecundity for competing plants is the same
as the relationship between potential neighbors and fe-
cundity for plants grown alone (Fig. 1B). Statistically,
this null hypothesis would be supported if the two lines
illustrated in Fig. 2D were indistinguishable.

General alternative. The observed relationship between
number of neighbors and fecundity is due to a direct
causal relationship over and above effects of growth-rate
variation. To support this alternative hypothesis, we must
be able to show that the two lines illustrated in Fig. 2D
are somehow different. Such a difference may arise in
one of two ways:

Alternative hypothesis 1. The number of neighbors influ-
ences fecundity only through its effect on plant size (as in
PS). This is the path diagram in Fig. 1A. In terms of the
quantitative models, this hypothesis is given by Figs 2A
and 2B. In terms of Eqs 4 and 6, this hypothesis would be
supported if a,=a and b,=b (i.e. a and b are constants,
not functions of number of neighbors).

Alternative hypothesis II. There is an additional direct
effect of neighbors on target plant fecundity independent
of their effect on plant size. This is the contrast between
Figs 2B and 2E. Statistically, the coefficients a and b in
Eqgs 4 and 6 will not both be constants (as in Alternative
hypothesis I), but rather both a and b will vary with the
number of neighbors.

These hypotheses can be tested by comparing size and
fecundity of plants grown alone (i.e. no inter-plant com-
petition) and in dense, competitive stands (ct. Turner and
Rabinowitz 1983, Ellison 1987). We can then compare
the variance in size and fecundity of plants grown in the
absence of neighbors to plants of similar size with neigh-
bors (comparison of the null hypothesis with the general
alternative). To allow for valid statistical comparisons,
the size range of the individually grown plants should be
the same as, or exceed, the size range of plants growing in
dense stands. Previous experimental investigations of
neighborhood competition models have not included
plants growing alone as controls (e.g. Mack and Harper
1977, Waller 1981, Fowler 1984, 1988, Mithen et al.
1984, Weiner 1984, Goldberg 1987, Thomas and Weiner
1989). Alternative hypotheses I and II can be distin-
guished statistically using only the plants grown in dense
stands (see Statistical analyses, below).

Methods

Mouse-eared cress, Arabidopsis thaliana, a widespread,
temperate old-field annual, is particularly well-suited for
monoculture studies in general and neighborhood studies
in particular. It grows as a nearly circular, flat rosette, the
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area occupied by each rosette can be easily measured, and
fecundity can be estimated by counting siliques. Numer-
ous morphological and physiological mutants have been
identified and isogenic lines are available. Seed viability
is high, germination is nearly synchronous, and time to
flowering and fruiting are determined by day length, not
plant size (Karlsson et al. 1993). Finally, using Arabi-
dopsis thaliana allowed us to replicate the study of neigh-
borhood competition that led to the development of the
neighborhood models under discussion here (Silander
and Pacala 1985).

Our experimental protocol and design replicated Silan-
der and Pacala’s (1985) with the addition of solitary
control plants. Isogenic seeds of wild-type Arabidopsis
were obtained from Gyorgy Redei of the Univ. of Mis-
souri. Plants were grown in 26 x 52 c¢m plastic flats filled
with sterilized Cornell Mix, an artificial potting medium
(Boodley and Sheldrake 1977). Flats were placed in con-
trolled environment chambers, maintained at 22°C and
70% relative humidity, and flats were rotated weekly
among chambers to minimize chamber effects. Each flat
was sprayed daily with 400 ml deionized water, and
fertilized twice weekly with 1/4 strength Hoagland’s
solution.

Plants were grown in two different planting regimes:
as individual plants (non-competing ‘controls’), and in
dense, competitive monocultures. Each of the two control
flats was divided into 72 individual isolated cells by a
plastic insert, and a single seed was placed in the center
of each cell. Cells were sufficiently large to insure that
these non-competing plants were not root-bound through-
out the experiment. One flat was grown under long-day
(14 h light) and one was grown under short-day (10 h
light) conditions. Time to flowering in Arabidopsis is
dependent on day length, not genetic background (Karls-
son et al. 1993); long-day plants fruited after 4-6 wk,
while short-day plants of identical genotypes did not fruit
until 10-11 wk after germination. Because of their ex-
tended growth period, short-day plants were heavier, had
more leaves, had longer leaves, and produced more seeds
than did long-day plants. We took advantage of this
variation to ensure that the size range of individually
grown plants exceeded the size range seen in the high
density plants. Of all individually grown plants, 70% of
the seeds germinated, and 63% of the germinants sur-
vived to flowering (26 short-day and 36 long-day plants).

In the three high density flats, seeds were broadcast
haphazardly across the flats to provide a range of densi-
ties and number of neighbors (as in Silander and Pacala
1985). The overall planting density was designed to yield
the equivalent of 10* or 10* seedlings m~2. Working from
the assumption of 70% germination, we planted two flats
with 200 seeds each (to yield = 10° m~2) and one flat with
2000 seeds (to yield = 10* m™2). These three flats were
grown under long-day conditions. The location of each
plant in the high density flats was marked on acetate
sheets overlaid on the flats. Each week, the total (circular)
area occupied by each plant was marked on the overlay.
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Above-ground plant material was harvested before
plant senescence (6 wk for long-day plants and 11 wk for
short-day plants). We measured the length (=1 mm) of
the longest leaf (=rosette radius, used in an estimator for
area occupied), removed the siliques, and then dried
(70°C, 48 h) and weighed (x0.001 g) the shoot. Through-
out, we report fecundity as S', the number of siliques per
plant. The number of seeds in each silique was counted
for all of the low density plants. Plants with more siliques
produce slightly fewer seeds per silique. The relationship
between number of siliques/plant (S") and number of
seeds/plant (S) was found to be: §=34.71-(1-0.71-exp
(-0.07-8") (#*=0.57; n=62; all fitted parameters sig-
nificantly different from 0; SAS PROC NLIN). This
relationship can be used to estimate total seed production
from silique counts of plants in the high density flats.
When the high density plants were harvested, the position
of each plant in the flat (x, y coordinates of the plant’s
center) was recorded, length of longest leaf measured,
siliques counted and removed, and the shoot dried and
weighed. We also recorded the number of neighbors
whose centers fell within concentric circular neighbor-
hoods N,: r € {1, 2, 3, 4, 5, 6 cm} measured from each
plant’s center. To avoid edge effects in the high density
flats, plants whose centers fell within 6 cm of the flat
edge were excluded from all analyses.

Statistical analyses

Comparisons between the null and general alternative
hypotheses, and between the two alternative hypotheses
were examined using statistical models. Differences be-
tween statistical models were tested by comparing resid-
ual sums-of-squares (RSS). For example, we tested be-
tween the two alternative hypotheses by contrasting RSS
of the two models given by Eqs 4 and 6. Eq. 4 is a special
case of Eq. 6, because the former can be generated from
the latter by reducing the number of parameters. If the
reduced model (e.g. Eq. 4) was appropriate (as assumed
by PS), then the difference in RSS between the full and
reduced models should have been small. The hypothesis
that the two models fit equally well was tested using the
statistic:

_ (Rssmode] r RSSmodcl i)/(pf—pl)
Rssmodcl f/(n_pf)

where RSS 4 - and RSS,401 ¢ Were the residual sums-of-
squares from the reduced and full models, respectively, p;
and p; were the number of parameters in the two models,
and n was the sample size. If the reduced model was true,
the statistic F approximates an F-distribution, with
(pr—py), (n—py) degrees of freedom (Draper and Smith
1981). Calculations were done using SAS version 6.03
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(SAS Institute, Cary, NC) and S-Plus (Becker et al. 1988,
Statistical Sciences Inc. 1990) on a Sun microcomputer.
Preliminary analyses showed that the error variance
could not be assumed to be constant, and transformations
did not eliminate heteroscedasticity. Responses from
larger individuals were more variable; the trend in vari-
ance could be modelled as a linear function of maximum
leaf length. Consequently we report distribution-free
(non-parametric) summary statistics throughout the text.
We also used weighted non-linear regression, with
weights of 1/leaf length, to fit each model, because we
could use weighted regression to fit easily many different
types of models. We fitted a few models using gamma
regression models (cf. Pacala and Silander 1990). The
results of the gamma regression models were essentially
the same as those obtained using weighted regression.

OIKOS 71:2 (1994)

Results and discussion

Observed relationships between density, size,
and fecundity

High density (competing) plants had significantly longer
leaves (median = 3.0 cm, n=651) than plants grown in
the absence of competition (median = 2.16 cm, n=62)
(P=0.0001, 2-tailed Mann-Whitney test), but produced
fewer siliques for any given leaf length (Fig. 3). In con-
trast, high density plants were significantly lighter
(median mass = 0.012 g) than individually-grown ones
(median mass = 0.085 g) (P<0.0001, 2-tailed Mann-
Whitney test), but produced more siliques for any given
mass (Fig. 3). We observed some changes in leaf orien-
tation between dense and solitary plants. Solitary plants
formed flat rosettes, while leaves of dense plants were at
an approximately 30° angle relative to horizontal. Change
in leaf angle in rosette plants can affect light interception
(Niklas and Owens 1989); these allometric changes with
density (Fig. 3) were not anticipated and they suggested
that fecundity may be influenced by variation in plant
size and shape as well as by competition.

The relationship between fecundity and maximum leaf
length (L) appeared to be exponential (Fig. 3). The statis-
tical model

S' =expla+b L) (7)

was fitted to data from all solitary plants (both short- and
long-day) to obtain the parameter estimates d=0.16 (SE
= 0.61) and b=0.15 (SE=0.021). We also fitted this
exponential function separately to the short- and long-day
solitary plants, and found no significant difference be-
tween the slopes of the best-fit lines for the two light
treatments considered separately (F=2.11; df=2, 58;
p=0.13). For subsequent analyses, we therefore con-
sidered the short-day plants as equivalent to very large
long-day plants; the former effectively increased the
length of the tails of the fecundity and size distributions
of the latter.

We similarly fitted Eq. 7 to data from all densely-
grown plants, irrespective of the number of neighbors per
plant. The estimated parameters were d=0.46 (SE=
0.19) and 5=0.074 (SE=0.0039). The intercept (4) did
not differ significantly between solitary and dense plants,
but the slope () for high density plants was significantly
smaller than for solitary ones. This result substantiated
the qualitative observation that for a given maximum leaf
length L, solitary plants produced more siliques than
dense ones (Fig. 3). This result also indicated that for
plants of a given leaf length, there was an apparent effect
of competition on fecundity over and above the effects of
rosette diameter alone. The observation that leaves of
high-density plants were not flat, but were inclined <30°
from the horizontal does not affect these results. For
leaves at maximum observed inclination (30°), their hori-
zontal projection would be Lcos(30°) =0.87L. If all of the
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Points shown are number of neighbors within a I-cm neigh-
borhood (@) and a 6-cm neighborhood (+). Points for neigh-
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(—) 2cem () 3em (---); 4 cm (——); 5 cm (—...—); 6 cm
(=--). Bottom: comparisons between three methods for fitting
the relationship between n, and L. Three lines are shown for
each of the six neighborhood radii (1, 2, ..., 6 cm), indicated to
the left of each set of three lines. The loess smooth (——) and the
step-wise regression (----) models consider individual plants to
be points that fill no area, while the third model (-----) considers
plants to occupy finite circular areas (>0 cm?) and estimates
number of neighbors as a density function. See text for details.

longest leaves in the high-density population were ori-
ented at 30°, » (Eq. 7) would change to 5/0.87=0.085,

which is still much smaller than the slope estimated for

the solitary plants (0.15). As leaf angle — 0°, » — 0.074.

In the preceding analyses, we used length of longest
leaf as a metric for plant size, since it directly measures
rosette diameter (=2L) (see below — Separating out the
effects of plant size alone from neighborhood effects).
Although the relationship between §' and L (Fig. 3) ac-
corded well with how we expected competition to affect
plant size and reproduction, the amount of residual var-
iation in the model using L alone was large. We therefore
examined the behavior of the model with the addition of
biomass in the size term. This procedure also facilitated
direct comparisons with PS.

The relationship between biomass and fecundity ap-
peared to be linear (Fig 3), so Eq. 4 was fitted using SAS
PROC REG. Parameter estimates for solitary plants were
4=7.6 (SE=4.5), and h=156 (SE =19), while estimates
for high density plants were 4=0.29 (SE=0.43), and
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h=710 (SE=14). Surprisingly, high density plants pro-
duced significantly more siliques than did individually-
grown plants of similar masses (Fig. 3). The residual
sums-of-squares for the biomass model (Eq. 4, RSS=
1137.4) was smaller than that for the leaf-length model
(Eq. 7, RSS=3139.8). A model combining both leaf
length and biomass is

S'=expla+b Ly+d w (8)

This model (RSS=1137.4) fitted equally as well as the
biomass only model (Eq. 4). Unlike our results using L as
a measure of plant size, the results using biomass as a
measure of plant size did not illustrate a negative effect of
competition on plant fecundity, in contrast to the assump-
tions of PS. Therefore, we continued to use L as a mea-
sure of plant size in our attempt to differentiate between
effects of plant size and effects of neighbors on fecundity.

Separating out the effects of plant size alone
from neighborhood effects

The contrast between the null hypothesis and the general
alternative hypothesis — that the relationship between
neighbors and fecundity was not a spurious correlation —
was tested in two different but complementary ways: (a)
by estimating the relationship between plant size and
number of neighbors (see Fig. 2D); and (b} by comparing
the fecundity of plants grown individually to the fecun-
dity of plants in the dense flats that lack neighbors in a
fixed radius. We report results of analyses done using the
number of neighbors at the end of the experiment. Mor-
tality was <5% in all dense flats, and analyses using
number of neighbors immediately following germination
yielded similar results.

Because real plants occupy space in proportion to their
size, we expected that larger plants would have fewer
neighbors for predefined neighborhoods of fixed radii.
The relationship (a) between plant size and number of
neighbors was estimated in three different ways. First,
non-parametric regression (loess smoothing: Cleveland
1981, Efron and Tibshirani 1991) was used to examine
the form of the relationship between leaf length, L, and
the number of neighbors within a given radius, n, (Fig. 4).
Non-parametric regression estimates the predictive rela-
tionship between two variables, without requiring an a
priori specification of the form of that relationship (e.g.
linear or quadratic). There was no apparent relationship
for r=1 cm (Fig 4). At other neighborhood radii, the
relationship appeared to change at leaf lengths around 30
mm. At leaf lengths <30 mm, the regression line is nearly
flat (slope =~ 0); at larger leaf lengths, the slope of the
regression line was <0. To test whether the slope changed
at some break point, we fitted the following break-point
regression model:
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if L <x
if L2>2x

v+b (L—x)
L= )

y+by (L—x)

This procedure estimated the break-point (x) at which the
slope changes, the height of this break point (y), the slope

of the regression line for L <x, and the slope for L > x.
The results of this non-linear regression were in close
agreement with the loess smoothing, indicating a break-
point near »=30 mm and a y that increased significantly
with r (Fig. 4).

Finally, if a plant were considered to occupy a fraction
p of a circle with radius p in a neighborhood of radius r
then the area that could be occupied by neighbors is
w(r’= pp?). The expected number of neighbors in a
similar area in the high flats was then given by dmw
(r?=pp?), where d was the average plant density in these
high density flats (Ripley 1981, Upton and Fingleton
1985). The parameters d and p were estimated by a
non-linear regression of the observed number of neigh-
bors within each of the 6 radii on leaf length. The pre-
dicted lines from this model (Fig. 4) were in close agree-
ment with both the non-parametric and the breakpoint
models.

All three regression models — loess, break-point, and
non-linear — yielded predicted values of n, with little
variance over a large range of L (Fig. 4). This result was
in marked contrast to the large amount of variance in n,
actually observed (Fig. 4), and illustrated that there was
little difference, at least for Arabidopsis, in considering
plants as points or plants as actual space-fillers in this
neighborhood analysis.

To illustrate further the contrast between the null hy-
pothesis and the general alternative hypothesis (contrast
b, above), we compared the fecundity of plants grown
individually with the fecundity of densly-grown plants
lacking neighbors within a fixed radius. Our null hy-
pothesis states that the relationship between the number
of neighbors and plant fecundity in dense stands should
be the same as the relationship between the number of
potential neighbors and fecundity for plants grown alone.
Statistically, we tested this hypothesis by determining if
the distribution of silique production of plants grown
alone was identical to the distribution of silique produc-
tion of densely-grown plants where n, =0. These distribu-
tions are illustrated in Fig. 5. Contrasts could only be
performed for r= {1, 2, 3 cm}, as there were no plants in
the dense flats which had n,=0 for r=4 cm. These
distributions were not significantly ditferent (Table 1) for
any of the neighborhood sizes, and we could not reject
this null hypothesis. We note that because of small sam-
ple sizes for =2 cm (n=14) and r=3 cm (n = 3), that the
statistical power was low for these tests.

Curiously, similar results were not obtained for either

Table 1. Results of Kolmogorov-Smirnov goodness-of-fit tests for distributions shown in Fig. 5.

Contrast S’ L w

D P D P D P
Solitary vs dense (n,=0) 0.18 0.24 0.68 0.0001 0.53 0.001
Solitary vs dense (n,=0) 0.22 0.47 0.71 0.0001 0.38 0.07
Solitary vs dense (1;=0) 0.49 0.51 0.78 0.06 0.38 0.80
OIKOS 71:2 (1994) 233



Table 2. Estimates of constants ¢ and ¢, in Egs 2 and 3 for
densely-grown plants®.

Biomass Fecundity
r {cm) ¢ (sg)? RSS ¢, (SE)® RSS
1 0.366 (0.067) 7922 0317 (0.071) 5421
2 0.232 (0.039) 7619 0.174 (0.039) 5377
3 0.131 (0.027) 7879 0.089 (0.025) 5511
4 0.092 (0.024) 8060 0.057 (0.019) 5591
5 0.049 (0.015) 8387 0.031 (0.012) 5802
6 0.025 (0.009) 8640 0.014 (0.006) 5801

“n = 651 plants pooled over 3 flats.
bestimate of ¢ and ¢, # 0 (P <0.05) for all r.

distributions of L or w (Fig 5, Table ). These results
indicated that, for a given plant diameter or biomass,
plants with no neighbors within neighborhoods of 1 and 2
cm in a dense population had leaf length distributions that
differed from similarly sized plants grown alone (Fig. 5).
The median L of plants with no neighbors in each of these
two neighborhoods was greater than the median L of
plants grown alone (Table 1). Conversely, the median w
of dense plants with no neighbors within 1 cm was
significantly less than the median w of plants grown alone
(Fig. 5, Table 1).

Biologically, these results indicated that there were
some effects of neighbors up to 2 cm distant on plant
shape and mass, but these neighbors appeared to have had
no detectable effects on target plant fecundity. In light of
our analyses of the effects of neighbors on rosette diame-
ter, and its effects on target plant fecundity (see Observed
relationships between density, size, and fecundity,
above), our results show that leaf length as a predictor of
plant fecundity under-represented the magnitude of
neighborhood competitive effects and consequently over-
estimated plant fecundity. On the other hand, biomass as
a predictor over-represented the magnitude of neighbor-
hood competitive effects and underestimated plant fecun-
dity. This result appears to be a consequence of inter-
active changes in the relationships between plant size,
plant fecundity, and number of neighbors.

The results of the analyses illustrated in Figs 3 and 4
indicated that an increase in number of neighbors reduced
fecundity of target plants in dense stands. These results
also indicated that in comparing the performance of
plants in dense stands with plants grown alone, the over-
whelming difference — attributable to neighborhood inter-
actions — was a change in biomass and leaf length (Fig. 5,
Table 1). Unfortunately, the very low variance in pre-
dicted n, (Fig. 4) precluded quantification of the magni-
tude of competitive effects on fecundity over and above
their effects on plant size (the shaded region of Fig. 2D).
When applied to similarly-sized plants grown alone, this
predictor for n, produced virtually no variation in the
distribution of predicted S' that could be compared with
observed values for plants grown alone. We could, how-
ever, investigate further the effects of neighbors on plant
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size and fecundity in dense stands (comparisons between
the two alternative hypotheses).

Neighborhood effects on size and fecundity

Plants with many neighbors were small, but plants with
few neighbors were either small or large (cf. Goldberg
1987). The variability in the relationship between n, and
w was much larger than that found by Silander and Pacala
(1985) for the same species grown under similar condi-
tions. If a hyperbolic model (Eq. 2) was fitted to the
biomass data, significant effects of neighbors were ob-
served at all radii (Table 2), although the estimate of the
competitive effect (c) declined with increasing radius
(Table 2). The number of neighbors similarly reduced
significantly fecundity at all neighborhood sizes (Table
2), and there was considerable variation in fecundity
among plants with the same number of neighbors (Fig. 6).

Some of the variation in fecundity among plants with
the same number of neighbors can be explained by plant
rosette diameter (Fig. 6). The joint relationship among
plant diameter, number of neighbors, and fecundity can
be portrayed graphically by grouping plants into quintiles
of leaf length (L). The smallest plants (quintile 1) had few
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Fig. 6. (Top) Relationship between the number of neighbors
within 3 cm and fecundity. The line indicates a fitted hyperbolic
regression (Eq. 3) through all points. (Bottom) Relationship
between number of neighbors within 3 cm and fecundity, il-
lustrating the change in this relationship with changes in plant
diameter. Lines indicate fitted hyperbolic regressions (Eq. 3) for
each quintile of leaf length: 8-21 mm (—); 22-28 mm (---+);
29-33 mim (---); 34-38 mm (-—-); 39-55 mm (——). @
plants with leaves <21 mm (smallest quintile); + plants with
leaves >38 mm (largest quintile). Points for other quintiles
(intermediate in position and variance) not shown.
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Table 3. Weighted® residual sums of squares for fecundity models.

Equation JLy g(L) df Neighborhood radius r (cm)
no.
1 2 3 4 5 6

3 fitted constant l+cn 2 5421.5 5377.2 5511.6 5591.5 5697.0 5801.2

7 exp (a+bL) 1 2 3139.8 3139.8 3139.8 3139.8 3139.8 3139.8
104 exp (a+bL) 1+cn 3 3055.2 3058.4 3087.3 3107.1 3120.1 3138.8
124 exp(a+bL) grouped® 7 2936.9 2919.0 2927.4 29452 2965.2 2992.0

(1+¢.n)

“ Variance weights are always 1/L. 648 high density plants used in the analysis.

" Refers to equation numbers in text.

¢ In the exponential model, fitted parameters were d = 0.46, b = 0.0738.
4 All reductions in RSS of model 12 relative to model 10 are statistically significant (P <0.05).
¢ Estimators based on groupings according to quintiles of L. See text for details.

to many neighbors and produced almost no siliques (Fig.
6). As L increased, the relationship between n, and §'
became more negative (Fig. 6). For other values of r
between 1 and 6 cm, the pattern was qualitatively similar.

We modelled the dependence of fecundity on both
rosette diameter and number of neighbors in each of the
following three ways:

S' = [expla+b L)]/(1+c¢ n,) (10)
S'=all/(1+c¢c, n,) (11
S' = [expla+b L)/ (1 +c. ny) (12)

These models differ in whether rosette diameter affected
the fecundity of plants with no neighbors (Eqs 10 and 12)
and whether rosette diameter affected the response to
neighbors (Eqs 11 and 12). Eq. 10 describes the case
where fecundity depends on rosette diameter, but the
coefficient ¢, which measures the effects of neighbors, is
constant. The coefficient ¢; in Eqs 11 and 12 allow the
effects of neighbors to depend on plant size. All three
models are special cases of the general model (modified
from Eq. A2 [Appendix 1]):

S = flly/gL) (13)

where g(L) # 1. The differences in fit among the models

can be tested by comparing residual sums-of-squares for
nested models.

PS assumed that the relationship between number of
neighbors and fecundity was a linear function of plant
biomass. In other words, the function g(L), which scales
the effects of neighbors on fecundity, was a constant (i.e.
either Eq. 7 or 10 would provide an adequate fit). This
hypothesis was tested by dividing plants into groups
based on plant size and testing whether the effect of
neighbors (the ¢, coefficient) was the same in each group.
We defined five groups based on leaf length. To equalize
the number of individuals in each size group, we used
quintiles of leaf length to assign individuals to a group:
(quintile 1: leaf length from 5 to 21 mm (X=17.5);
quintile 2: 22-28 mm (X =25.7); quintile 3: 29-33 mm
(x=31); quintile 4: 34-38 cm (X=35.9); quintile 5:
39-55 mm (X =42.9).

Eq. 3, which in the notation of Eq. 13, has a constant
numerator term (S,..,) and constant denominator crowd-
ing coefficient ¢, has the largest RSS at all neighbor radii
(Table 3). When f(L) was set as the exponential function
(Eq. 10), there was a significant improvement in the fit of
the model at all r (Table 3). The fit was further improved
by allowing the crowding coefficient ¢ in the denomina-
tor g(L) to vary according to leaf length quintile (Eqs 11,
13; Table 3). These analyses were repeated using a linear
function of biomass to express plant size effects on fecun-

Table 4. Weighted® residual sums of squares for fecundity predictors based on w.

Equation S = df Neighborhood size (cm)
no.

1 2 3 4 5 6
4 a+bw 2 1137.4 1137.4 1137.4 1137.4 11374 1137.4
2 w/(l+cn,) 2 5421.0 5377.0 5511.0 5591.0 5697.0 5801.0
5¢ (a+bw)/(1+cn,) 3 1108.4 1098.2 1082.5 1094.0 1104.6 1100.6
Sed (a+bw)/(1+¢;n,) 7 1100.2 1086.4 1075.8 1081.2 1088.4 1083.5

* Variance weights are always 1/L. 648 high density plants used in the analysis.

b Refers to equation numbers in text.

¢ All reductions in RSS of model with ¢ estimated for separate quintiles of L (last model above) relative to model with ¢ estimated

from all plants pooled are statistically significant (P <0.05).

4 Modification of €q. 5 to include estimators based on groupings according to quintiles of L. See text for details.
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dity (Table 4). The results were qualitatively the same:
the competitive effect of neighboring plants depended on
the size of the target plant. In other words, the path
diagram of Fig. 1C fitted the data significantly better than
did PS, which assumes no effect of target plant size. Note
that because the number of potential neighbors is related
to both rosette diameter and biomass (Figs 1B, 1C, 2C), it
might seem at first glance that removing their effects also
would remove the effects of potential neighbors. How-
ever, this is true only when the relationship between
biomass or diameter and neighbors is linear, while we
found that for Arabidopsis this relationship is nonlinear
(Fig. 4).

Covariance of number of neighbors, plant size,
and plant fecundity

Fig. 7 illustrates the covariance between plant size, si-
lique production, and the number of neighbors within 3
cm (n3). The relationship between plant size and fecun-
dity for each of five quintiles of n; (quintiles: 0-11;
12-19; 20-24; 25-31; 32-64 neighbors within 3 cm) is
portrayed graphically by superimposed peeled convex
hulls (Barnett 1976). The convex hull of a set of points
defines the boundary of those points; peeling a convex
hull reduces its sensitivity to bivariate outliers. To peel a
convex hull, a convex hull is computed, then the points
that lie on the hull are deleted and a new hull is com-
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puted. The resulting peeled hull better describes the ori-
entation and variability of the bulk of the data (Barnett
1976). Ellison (1993) provides additional details on con-
struction and interpretation of convex hulls.

Fig. 7 illustrates thrice-peeled convex hulls that de-
scribe the ranges of observed §' and L for plants with
varying n;. This figure illustrates that there was added
variance in §' and L associated with decreases in n,, but
the hulls were not nested. In other words, although the
joint variance in $' and L changed with the magnitude of
n;, this change in variance was not one-to-one. This is a
graphical illustration of the additional effects of number
of neighbors on fecundity over and above their effects on
plant size alone.

Statistical contrasts were performed as described
above for regression models using length of longest leaf
as the size metric and testing whether regression coeffi-
cients were the same for all plants regardless of number
of neighbors, or whether the regression coefficients
varied with n,. Since the relationship between L and §'
was exponential, a non-linear generalized ANCOVA was
used to test whether coefficients of the regression line
predicting fecundity from length of longest leaf were the
same for all groups (quintiles) of neighbors. Two regres-
sion models were fitted to these data, using SAS PROC
NLIN with the Marquardt direction-finding algorithm:

Sy =expla+b L)) + ¢; (14)

§'; = expla;+b; Ly) + 7 (15)
where §; is the fecundity of plant j in the i’th group, L, is
the length of that plant’s longest leaf, a and q; are in-
tercepts, b and b, are slopes, and € and T are error terms.
Eq. 14 fits a common slope and intercept to all groups,
while Eq. 15 fits separate intercepts and slopes to each
group. Eq. 15 fitted the data significantly better than Eq.
14 (RSS for Eq. 14=3139.8; RSS for Eq. 15=2936.9,
F=3.72, P=0.0003).

Fig. 7 illustrates the same results for biomass (w). The
results presented for 3 cm neighborhoods are qualita-
tively similar for all other neighborhood radii <5 cm;
predictions of fecundity (or fecundity predictors) using
predicted plant mass W (RSS=1137.4) were less precise
than fecundity predictors derived from observed plant
mass w (RSS =1100.2) (F=4.82, P <0.0001). The model
using biomass in the fecundity predictor also provided a
significantly better fit than the model using leaf length.

Concluding remarks

In sum, our results indicate that neighborhood competi-
tion significantly affects plant population dynamics in
monocultures. The effects of neighbors on target plants
were apparent in plant biomass and diameter changes, as
well as changes in plant fecundity relative to plants
grown in the absence of competition. Previous models of
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neighborhood competition in plant populations have ei-
ther assumed that neighbors affect fecundity only through
their effects on plant biomass, or have subsumed the
effects of neighbors on plant biomass within their effects
on plant fecundity. We have illustrated that neighbors
affect plant shape, biomass, and fecundity simultaneously
and that there are effects of neighbors on plant fecundity
independent of their effects on plant shape and biomass
alone. Further investigations into allometric changes in
plant size and shape as a function of neighbors (ct. Gib-
son et al. 1992), and independent effects of neighbors on
plant fecundity are necessary in order to accurately model
neighborhood dynamics in plant populations.
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Appendix 1 — Formal definition of the model

This model for neighborhood competition models can be
expressed formally as follows:

Let §' denote plant fecundity; M denote plant size (e.g.
mass, amount of space occupied, etc.); p; denote an indi-
vidual plant within a set of interacting (competing) plants
{P}; n, denote the number of neighbors within N, a
neighborhood of fixed radius r around p;.

For arbitrary functions f and g and 4, and arbitrary
operators & and &:

S' = fAiM) (for plants grown individually) (A1)
S'= fiM) D g(f(M),n.) @ hin,)

(for plants grown in dense stands) (A2)

where fiM) expresses the effect of plant size alone on
seed production; g(f(M),n,) expresses effects of n, neigh-
bors on fecundity resulting from their effects on plant
size; and h(n,) expresses any additional direct effects of
n, neighbors on seed production, independent of their
effects on plant size. In Silander and Pacala’s (1985)
neighborhood model the functions fand g of Eq. A2 were
not explicitly included; their effects were subsumed
within 4. In contrast, in the most recent formulation of
this model (Pacala and Silander 1990), the function & =
identity function (i.e. has no effect).

In terms of this formal model, the null hypothesis
suggested would be supported if VN,: r € {R} (the set of
neighborhood radii), g(f(iM,n,) = the identity function.
The null hypothesis would be rejected if IN,: r € {R},
g(f(M,n,) # the identity function. The first alternative
hypothesis would be supported if VN: re {R},
g(ftM,n,) is a non-zero function that increases with »,, but
h(n,) = the identity function (e.g. 0 if & is additive; 1 if
& is multiplicative). The second alternative hypothesis
would be supported if 4(n,) was not an identity function.
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