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Exploratory Data Analysis and Graphic Display |
Aaron M. Ellison

2.1 Introduction . : o

You have designed your experiment, collected the data, and are now confronted
with a tangled mass of information that must be analyzed, presented, and pub-
lished. Turning this heap of raw spaghetti into an clegant fertiucine alfredo will
be immensely easier if you can visualize the message buried in your data. Data
graphics, the visual “display [of] measured quantities by means of the combined
use of points, lines, a coordinate system, numbers, symbols, words, shading,
and color” (Tufte, 1983:9) provide the means for this visualization.

Graphics serve two general functions in the context of data analysis. First,
graphics are a tool one can use to explore patterns in da(a prior to formal statistical
analysis (Exploratory Data Analysis, or EDA sensu “Tukey, 1977). Second,
graphics communicate large amounts of information clearly, concisely, and rap-
idly, and illuminate complex relationships within datasets. Graphic EDA yields
rough sketches to help guide you to appropriate, often counterintuitive formal
statistical analyses. In contrast to EDA, presentation graphics are final illustrations
suitable for publication. Presentation graphics of high quality can leave a lasting
impression on readers or audiences, while vague, sloppy, or overdone graphics
easily can obscure valuable information and engender confusion. Ecological
researchers should view EDA and sound presentation graphic techniques as an
essential component of data analysis, presentation, and publication.

This chapter provides an introduction to graphic EDA, and some guidelines
for clear presentation graphics. More detailed discussions of these and related
topics can be found in texts by Tukey (1977), Tufte (1983, 1990), and Cleveland .
(1985). These techniques are illustrated for univariate, bivariate, and classified
quantitative (ANOVA) data sets that exemplify types of data sets encountercd
commonly in ecological research. Samplc data sets are described briefly in Section
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2.3; formal analyses of three of the illustrated data sets can be found in Chapters
13 (univariate data set), 8 (predator-prey data set), and 3 (ANOVA data set).
You may find some of the graphics types presented unfamiliar or puzzling,
but consider them seriously as alternatives for the more common bar charts,
histograms, pie charts, etc. The majority of these graphs cannot be produced by
SAS or SAS/Graph, the statistical package used in many chapters in this volume,
Therefore, for each example, 1 describe in detail how it was constructed. All
figures in this chapter were produced with an IBM PS/2-70 computer and a
PostScript laser printer. I produced Figs. 2.8 and 2.9 with S-plus DOS version
2.0 (Becker et al., 1988; Chambers and Hastie, 1992), and the remainder (save
Fig. 2,1) using SYGRAPH version 5.0/ (the graphics module of SYSTAT:
Wilkinson, 1990). Examples of SYGRAPH code used to construct the figures
are given in Appendix 2.1.

2.1.1 Guiding Principles

The question or hypothesis guiding the experimental design should guide the
decision as to which graphics are appropriate for exploring or illustrating the
dataset. Sketching a mock graph, without data points, prior to beginning the
experiment usually will clarify experimental design and alternative outcomes.
This procedure also clarifies a priori hypotheses that will prevent inappropriately
considering a posteriori hypotheses (suggested by EDA) as a priori ones. Often
the simplest graph, without frills, is the best. However, graphs do not have to be
simple-minded, conveying only a single type of information, and they need not
be assimilated in a single glance. Tufte (1983) and Cleveland (1985) provide
numerous examples of graphs that require detailed inspection before they reveal
their messages. Besides the aesthetic and cognitive interest they provoke, complex
graphs that are data and information rich can save publication costs and time in
presentations. Regardless of the complexity of your illustrations, you should
adhere to the following four guidelines in EDA and production graphics:

1. Underlying patterns of interest should be illuminated, while not compro-
mising the integrity of the data. ,

2. The data structure should be maintained, so that readers can reconstruct
the data from the figure.

3. Figures should have a high data:ink ratio and no chartjunk—"graphical
paraphernalia routinely added to every display” (Tufte, 1983:107), in-
cluding excessive shading, grid lines, ticks, special effects, and unnec-
essary three dimensionality.

4. Figures should not distort, exaggerate, or censor the data.

With the increasing availability of hardware and software able to digitize
information directly out of published sources, adherence to these guidelines has
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become increasingly important. Gurevitch (Chapter 17; Gurevitch et al., 1992),
for example, relied extensively on information gleaned by digitizing data from
many different published figures to explore common ecological effects across
many experiments via meta-analysis. Readers will be better able to compare
published data sets that are represented clearly and accurately.

2.2 Graphic Approaches
2.2.1 Exploratory Data Analysis (EDA)

Tukey (1977) established many of the principles of EDA, and his book is an
indispensable guide to EDA techniques. You should view EDA as a first pass
through your dataset prior to formal statistical analysis. EDA is particularly
appropriate when there is a large amount of variability in the data (low signal-to-
noise ratio) and when treatment effects are not immediately apparent. You can
then proceed to explore, through formal analysis, the patterns 111ummated with
graphic EDA. RN

Since EDA is designed to illuminate underlying pattern in noisy data, it is
imperative that the underlying data structure not be obscured or hidden completely
in the process. Also, as EDA is the predecessor to formal analysis, it should not
be time consuming. Personal computer-based packages such as SYSTAT, S-plus,
and Sigma-plot permit rapid, interactive graphic construction with little of the
effort needed for formal analysis. Finally, EDA should lead you to appropriate
formal analyses and models. A common use of EDA is to determine if the raw
data satisfy the assumptions of the statistical tests suggested by the experimental
design (see Sections 2.3.1 and 2.3.4). Violation of assumptions revealed by EDA
may lead to use of different statistical models from those you had intended to
employ a priori. For example, Antonovics and Fowler (1985) found unanticipated
effects of planting position in their studies of plant competitive interactions in
hexagonal planting arrays. These results led to a new appreciation for neighbor-
hood interactions in plant assemblages (e.g., Czérdn and Bartha, 1992).

2.2.2 Production Graphics

Graphics are an essential medium of communication in scientific literature and
at seminars and meetings. In a small amount of space or time, it is imperative to
get out the message and fix it clearly and memorably in the audience’s mind.
Numerous authors have investigated and analyzed how individuals perceive dif--
ferent types of graphs, and what make ‘good’ and ‘bad’ graphs from a cognitive
perspective (reviewed concisely by Wilkinson, 1990; and in depth by Cleveland,
1985). It is not my intention to review this material; rather, through example, I
hope to change the way we as ecologists display our data to maximize the amount
of information communicated while minimizing distraction. '
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Cleveland (1985) presented a hierarchy of graphic elements used to construct
data graphics that satisfy the guidelines suggested in Section 2.1.1. (Fig. 2.1).
Although there is no simple way to distinguish ‘good’ graphics from ‘bad’
graphics, we can derive general principles from Cleveland’s ranking. First, color,
shading, and other chartjunk effects do not as a rule enhance the information
content of graphs. They may look snazzy in a seminar, but they lack substance,
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Figure2.1.. Ordering of graphic features according to their relative accuracy in rcprescni-
ing quantitative variation (after Cleveland, 1985). s e
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and use a lot of ink. Second, three-dimensional graphs that are mere extensions
of two-dimensional ones (e.g., ribbon charts, three-dimensional histograms, or
pie charts) not only do not increase the information content available, but often
obscure the message (a dramatic, if unfortunate set of examples can be found in
Benditt, 1992). These graphics, common in business presentations and increas-
ingly rife at scientific meetings, violate all of the suggested guidelines. Finally,
more dimensions often are used than are needed; e.g., “areas” and lines where
a point would do. Simken and Hastie (1987) discuss exceptions to Cleveland’s
graphic hierarchy. In general, when designing graphics, adhere to the Shaker
maxim: form follows function.

High-quality graphical elements can be assembled into effective graphic dis-
plays of data (Cleveland, 1985). First, emphasize the data. Lines drawn through
data points should not hide the points themselves. Second, data points should
never lic on axes themselves, as the axes can obscure data points. If, for example,
there are many points that would fall along a 0 line, then extend that axis beyond
0 (Fig. 2.6). Third, reference lines, if needed (which they rarely are) should be
deemphasized relative to the data. This can be accomplished with different line
types (variable thicknesses; dotted, dashed, or solid, etc.) or shading. Fourth,
overlapping data symbols or data sets should be clearly distinguishable. You can
increase data visibility and minimize overlap by varying symbol size or position,
separating datasets to be compared onto multiple plots, or changing from arithme-
tic to Jogarithmic scales. Exemplars include the jitter plot, which avoids overlap
of identical values (Fig. 2.3B), and spreading of responses 10 categories across
an axis (Fig. 2.12D). Fifth, the plot must be easily readable following reduction
for publication or when projected as a slide to a seminar audience. Finally,
Cleveland recommends using a full rectangular plot frame, not the more common
bottom axis/left axis only combination seen in many papers. This, together with
tick marks outside the plot frame (1) emphasize the data and (2) help the reader
accurately place individual data points. Tufte (1983) disagrees, as the extra axes
are an excessive use of ink and convey no information. Examples in this chapter
ilustrate most of these possibilities. In the final analysis, many of these rules
reflect not only insight into cognitive perception, but also aesthetic judgments by
you, the author.

From the above discussion, we could ask, isn’t all this too much trouble?
Should we dispense with graphs altogether in favor of tables? Because of their
conciseness, graphics are almost always preferable in oral presentations. Graphs
illustrate more clearly relationships among variables, and can display rapidly
multivariate information. However, where exact values are important (as in final
publications), tables are more precise. The need for precise tables has been
obviated by the increasing availability of digitizing software. When presenting
data graphically, however, you must present unbiased and uncensored data. A
discussion of what data should be provided, in either graphs or tables, follows in

Section 2.4.
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2.3 Examples
2.3.] Univariate Data: Frequency (Density) Distributions

Distributions of height, biomass, or other size metrics are often the primary
descriptor of populations or communities. As an example of size distributions, I
use a data set containing the number of leaf nodes of 75 Ailanthus altissima
plants. The experimental design and formal analysis of these data are given in
Chapter 13.

With univariate data, two questions are paramount: (1) how are the data
distributed (including summary statistics such as the mean, variance, median)
and (2) are the data normally distributed or can they be transformed to make them
amenable to parametric analyses? Investigators often explore these questions via
histograms or normality plots. '

A histogram is an example of a density plot; that is, what is illustrated in each
bar is the frequency, or density, of the values occurring in the dataset between
the lower bound and the upper bound of each bar. Histograms are commonly
confused with bar charts (see Section 2.3.4). The latter are used to illustrate some
summary measure (often the mean, sum, or percent) of all the values within a
given treatment category. Histograms of the Ailanthus data are shown in Fig.
2.2.

For three reasons a histogram is not the best method for answering the above
two questions. First, the raw data are hidden. In this example, there are 75 plants,
which have been divided into 12 biomass groups, or bins (Fig. 2.2A). It is
impossible to know, for example, if the third bar (range 1214 nodes) contains
10 observations of 12 nodes, 10 observations of 14 nodes, or any other of the
possible combinations of 12-14 nodes into 10 observations. Second, the division
into 12 bins is arbitrary; it was the default of the graphics program. One could
just as easily use 24 or 6 bins, both of which change the apparent shape of the
distribution (Figs. 2.2B,C) without conveying additional information. Third,
summary statistics cannot be computed from the data illustrated in the histogram.
Thus, a histogram does not enable one to answer key questions about univariate
data. In addition, histograms fall low on Cleveland’s hierarchy of graphic primi-
tives. Bars in a histogram use vertical lines, horizontal lines, and shading. in
concert to present information embodied in the single point indicated by the top
of the bar.

Tukey (1977) introduced the stem-and-leaf diagram as the simplest alternative
to the histogram (Fig. 2.3A). The main advantage of the stem-and-leaf diagram
is that the raw data are presented in toto. Summary statistics can be derived easily
from or incorporated into the figure. Nevertheless, stem-and-leaf diagrams suffer
visually from one of the same drawbacks as histograms: the number of bins is
arbitrary. Two other alternatives to histograms are jitter plots (Fig. 2.3B) and dit
plots (Fig. 2.3C). These two figures preserve the underlying data structure (all
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Figure 2.2. Histograms of the number of nodes per plant.of 75 surviving Ailanthus
altissima individuals grown in a 5 X 20 plant rectangular array. Each bar represcnts the
frequency or count (right axis) of observations within the bounds indicated by the ticks on
the x-axis, and the proportion of the total sample (left axis) represented by éach bar. The
three plots illustrate the variation in histogram presentation obtained by changing the bin
width: (A) default (bin width=4); (B) bin width=2; (C) bin width = 8. At the top of the
figure, a box plot (sce Fig. 2.4 for construction details) illustrates summary statistics and
a better indication of the true data distribution.
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values are presented), do not use arbitrary bins, and can be constructed quickly
without additional preparation (e.g., sorting) of the data set. Both plots permit
rapid assessment of density patterns and are simple to understand.

Stem-and-leaf plots and the density diagrams presented in Fig. 2.3 can be used
as simple alternatives to histograms. However, these plots do not convey clearly
some of the information that ecologiéls may want to communicate, and it is
difficult to compare the information in two or more of these plots. I suggest
the box-and-whisker plot (Tukey, 1977), often called simply a box plot, as a
presentation alternative to the univariate histogram (Figs. 2.2 and 2.4A). An
advantage of the box plot is that it provides more summary statistical information
than a histogram—it includes medians, quartiles, ranges, and outliers (extreme
variates)—in much less space and with much less ink. Box plot construction is
not dependent on arbitrary bins, so these plots do not exaggerate or distort the
data distribution. By notching the box plot (Fig. 2.12E), one can:easily add
confidence intervals so that plots of several distributions can be compared easily.

Wilkinson (1990; Haber and Wilkinson 1982) developed the fuzzygram (Fig.
2.4B), another alternative to the histogram. Fuzzygrams are histograms with
probability distributions superimposed on each bar. Consequently, fuzzygrams
present not only the data, but also some estimation of how realistically they
represent the actual population distribution. Such a presentation is particularly
useful in cohcert with results derived from sensitivity analyses (Ellison and
Bedford, 1991) or resampling methods (Efron, 1982; Dixon, Chapter 13). Haber
and Wilkinson (1982) discuss, from a cognitive perspective, the merits of
fuzzygrams and other density plots relative to traditional histograms. Histograms
(Fig. 2.2), stem-and-leaf plots (Fig. 2.3A), dit plots (Fig. 2.3C), and fuzzygrams
(Fig. 2.4B) can indicate possible bimodality in the data. Bimodal data, observed
commonly in plant ecology, are obscured by box plots and jittered density
diagrams.

Probability plots are common features of most statistical packages, and provide
a visual estimate of whether or not the data fit a given distribution. The most
common probability plot is the normal probability plot (Fig. 2.5A). Here, the
observed values are plotted against their expected values if the data came from
a normal distribution; if the data are derived from an approximately normal
distribution, the points will fall along a relatively straight diagonal line. There
are also numerical statistical tests for normality (e.g., Sokal and Rohlf, 1981;
Zar, 1984). If, for biological reasons, the investigator believes the data come
from a population with a known distribution different from a normal one, it is
similarly possible to construct probability plots for other dlstnbutlon functions
(Fig. 2.5B).

2.3.2 Bivariate Data: Examining Relationships Between Variables

Ecological experiments often explore relat'ionships between two or more continu-
ous variables. Two general questions related to bivariate data can be addressed
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Figure 2.3.  Alternative density plots that convey more information than a histogram.
(A) A stem-and-leaf plot. In this plot, each line is a stemn, and the each datum on a stem
is a leaf. The label for the stem is the first digit (starting part) of the number, followed
by the value of the leaf. On the first line, the stanting part is O and the only leaf is 8,
indicating a value of 08 nodes. On the second line, the starting part is 1, and there are
four leaves, indicating four data points: 10, 11, 11, and 11 nodes. The location of the
sample median (M) and upper and lower quartiles (H) are also marked on this plot. (B)
A jittered density plot. Each point is placed along the horizontal scale at the exact location
of its value. To keep points with equal value from overlapping, they are Iocated at random
heights above the x-axis. (C) A dit plot. Each point indicates an individual observation,
stacked up the y-axis at its location along the x-axis. In essence, a dit plot is a stem-and-
leaf plot with symbols substituted for leaves. ’ -
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Figure 2.4. Information-rich production alternatives to histograms. (A) A box-and-
whisker plot. The vertical line in the center of the box plot indicates the sample median.
The left and right vertical sides of the box indicate respectively the Jocation of the 25th
and 75th percentile of the data (lower and upper quartiles, or hinges). The absolute value
of the distance between the hinges (obtained by subtracting the value of the lower quartile
from the value of the upper quartile) is the hspread. The whiskers of the box extend to
the last point occurring between each hinge and its inner fence, a distance 1.5 hspreads
from the hinge. Two kinds of outliers can be distinguished on a box plot. Points occurring
between 1.5 hspreads and 3 hspreads (the outer fence) are indicated by an asterisk (see
Fig. 2.12E). Points occurring greater beyond the outer fence are indicated by an open
circle. The various summary statistics are clearly seen in relation to the raw data, which
are overlain on this box plot as a symmetric dit plot. The distance encompassed by the
whiskers includes =90% of the data (Norusis, 1990). (B) A fuzzygram (Wilkinson, 1990).
This plot is a standard histogram (counts and proportions of each bin indicated by the
height of the vertical line), with a probability distribution superimposed on cach bar. The
shading of the bars is based on a gray-scale distribution according to the probability that
the ith observation will occur in that region: P; = P(p, > ), where p, = n/n is the sample
estimate of 7, (the expected proportion of a sample of n values from a continuous
distribution to fall in the ith bin of the histogram. The more likely that p, > ar;, the lighter
the bar. Consequently, for large sample sizes, the bars will appear in sharp focus, while
for small counts, the bars will be fuzzy. See Haber and Wilkinson (1982) for a discussion
of the cognitive perception of fuzzygrams.
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Figure 2.5. Probability plots of the Ailanthus data. (A) A normal probability plot. (B)-
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of In(s). See’Gnanadesikan (1977) for a general discussion of probability plots.
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with graphical EDA: (1) what is the general relationship between the two variables
and (2) what point(s) is (are) outliers—those points that affect disproportionately
the apparent relationship between the two variables? The answers to these questions
lead, in formal analyses, to investigations of the strength and significance of the
relationship (Chapters 6, 8, 9, and 10). Scatterplots and generalized smoothing
routines are illustrated here for exploring and presenting bivariate data. Extensions
of these techniques to multivariate data are presented in Section 2.3.3.

Bivariate data sets can be grouped into two types: those where there is a priori
knowledge as to which variable ought to be considered independent, leading one
to consider formal regression models (Chapters 8 and 9), and those where such
a priori knowledge is lacking, leading one to examine correlation coefficients,
and subsequent a posteriori analyses. The functional response of- Notonecta
glauca, a predatory aquatic hemipteran, presented experimentally with varying
numbers of the isopod Asellus aquaticus is used to illustrate the ﬁrst type of data
set; these data are described in detail in Chapter 8. For the latter” type of data, I
use a dataset consisting of the height, dlameter at breast height (dbh), “and distance
to nearest neighbor of 41 trees in a 625 m’ plot within an =75-year-old mixed
hardwood stand in South Hadley, Massachusetts (A. M. Ellison, unpublished
data). Data sets of this type are commonly used to construct forestry yield tables
(e.g., Tritton and Hornbeck, 1982), and have been used to infer competitive
interactions among trees (e.g., Weller, 1987) and forest successional dynamics
(e.g., Hom et al., 1989).

For both exploration and presentation, scatterplots are the most straightforward
way of displaying bivariate data (Fig. 2.6A). However, scatterplots are merely
a display, they do not necessarily reveal pattern. Figure 2.6A illustrates clearly
this idea. Three functional response curves (Holling, 1966; Juliano, Chapter 8)
could be fit to these data, and it is not clear from the scatterplot itself which one
would best fit the data. EDA is particularly useful for dealing with these data, which
show high variability and no obvious best relationship between the two variables.

Recent computer-intensive innovations in smoothing techniques (reviewed by
Efron and Tibshirani, 1991) have expanded the palette of smoothers developed
by Tukey (1977). Basically, to construct a smoothed curve through the data, a
best-fit line is constructed through a subset of the data, local to each point along
the x-axis. This process is repeated for each point, and a smooth line is constructed
by connecting up the intersections of each local regression line. The result of this
process, using lowess (robust locally weighted regression: Cleveland, 1979; Efron
and Tibshirani, 1991), is shown for the predator-prey data in Fig. 2.6B. In this
case, 50% of the data were used to construct each segment of the smoothed curve.
That is, to construct the first segment, the response data from 0 = N, =< 50 were
used; to construct the second segment, the response data from 1 < Ny = 51 were
used, etc. The apparent type 11l functional response observed in the smoothed
curve is supported by the formal analysis of these data (Chapter 8). The lack of
underlying assumptions about the distribution and variance of the data and the
ability to elucidate pattern from within very noisy data are two advantages of
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smoothing over traditional regression techniques. Disadvantages of smoothing
are that relative weighting of data used for each segment needs to be specified in
advance, usually with little or no rational basis for the decision. Moreover,
statistical comparison of different smoothed curves is virtually impossible. Fi-
nally, with the exception of Tukey’s {1977) 3R smoother based on medians,
virtually all smoothed curves require sophisticated software (e.g., SYSTAT,
Stata, Statistica, Minitab, and S-Plus; see Ellison, 1992 for a review) and fast
computers for accurate construction.

Smoothers are used appropriately only when there is clear a priori knowledge
of an independent variable and a corresponding dependent variable or variables.
When this is not the case, other exploratory techniques are more appropriate
for examining relationships between variables. In addition, smoothing does not
provide information about potential outliers in the data set. For examining correla-
tions between variables, and to search a posteriori for outliers, influence plots
and convex hulls are useful exploratory tools.

A scatterplot of the relationship between tree height and stem'diameter (A. M.
Ellison, unpublished data) is illustrated in Fig. 2.7A. The raw data are shown,
and there appears to be an apparent outlier (a 30-m-tall tree with a dbh > 70
cm). In an influence plot of these data (Fig. 2.7B), the size of each point becomes
directly proportional to the magnitude of the change its removal would have on
the Pearson correlation coefficient (r) between the two variables. By overlaying
a bivariate 50% confidence ellipse, it becomes obvious that outlying points have
greater influence on r than do points within the ellipse.

In an influence plot of the Jogarithmically transformed data (Fig. 2.7C) the
apparent outliers have all but disappeared (the large outlier in Fig. 2.7B now has
an influence on r of only .01), and the data are better distributed for formal
analysis. Fig. 2.7D supports this notion. The outer ellipse is a 95% confidence
ellipse centered on the sample (dbh and height) means, with the ellipses’ major
and minor axes equal in length to the unbiased sample standard deviations of
height and dbh, respectively. The orientation of the ellipse is determined by the
sample covariance. All of the points, save the apparent outlier, fall within this
confidence ellipse. For comparison, the inner ellipse is a 95% confidence ellipse
with axes computed from the standard errors of the means of each variable and
centered on the sample centroid—a graphic illustration of the real difference
between the standard deviation and the standard error (see Section 2.4).

Convex hulls and subsequent peeled convex hulls (Barnett, 1976) are useful
exploratory tools when the distribution underlying the data is not normal or not
known. Convex hulls illustrate order in bivariate or multivariate data, and are
used to distinguish distinct groups, outliers, and general shapes of multivariate
distributions (a detailed discussion is given in Barnett, "1976). Peeled convex
hulls are essentially bivariate smoothers. Figure 2.8 illustrates a convex hull and
a subsequent peel around the same data set illustrated in Fig. 2.7. The initial hull
(Fig. 2.8A) describes the boundaries of the data—it encompasses the full range
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29



(@]
w
éﬁ'
i__
T &
)
L
T &
(@)
o N
w
. O
\E/ﬁ‘
I._.
T &
O
BE|
T &
(]

DBH (cm)

Figure 2.8. A convex hull (A and B, solid linc) and a depth 2 peel (B, dotted linc)
around the tree size data. The hull is constructed by determining which points are furthest
from the centroid of the data, and joining those points to form a polygon enveloping the
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of variation in the data set. The peeled hull, referred to as “peeled to depth 2"
(Fig. 2.8B) includes all but the most extreme values of the dataset (compare the
points outside the peeled hull of Fig. 2.8B to the points with strong influence on
r in Fig. 2.7B). This process can be repeated ad infinitum, but normally does not
proceed beyond depth 3. This is analogous to Tukey’s (1977) running median
(3R) smoother, extended in two dimensions. Like smoothers, convex hulls are
constructed most easily with pencil and paper, or fast, interactive computer
software (S-Plus). Convex hulls are useful for highlighting pattern within noisy
data, and make no assumptions about the underlying distribution of the data.

Bivariate plots suitable for EDA are also suitable for final presentation. In
preparing these plots for publication, however, there are several conventions
often observed in the literature that should be dropped in favor of clarity of
presentation. First, it is common in scatterplots to always start each.axis at the
origin (0,0). In fact, closely adhering to the actual range of the data when scaling
axes is far more useful and informative than always including 0, especially if the
extreme value of either variable is << 0 or >> 0. Restricting the: values on the
axes to just beyond the extreme values of the data improves clarity and highlights
pattern. Axis breaks do not always help, and changing the relative scaling after
an axis break usually hinders accurate perception of the data, and can stymie
future digitizers.

2.3.3 Extensions of Bivariate Techniques to Multivariate Data Sets

For data sets that include a number of continuous variables, it may not be clear
which, if any, pair(s) of variables should be subjected to bivariate correlation or
regression analysis, or whether you need to resort to multivariate techniques
(Chapter 9). Three-dimensional plots (e.g., Fig. 2.1 1A) are often used to examine
and illustrate higher dimensional data. While aesthetically pleasing, and easy to
produce with current graphic software, accurate interpretation and digitizing of
these graphs depend on the perspective and orientation of the plot.

The scatterplot matrix, whose origins are shrouded in mystery, provides an
alternative exploratory and presentation tool for higher dimensicnal data. A
symmetrical scatterplot matrix of the tree data is shown in Fig. 2.9. This is simply
a plot of all possible bivariate combinations of the variables in the dataset. Plots
above the diagonal have x- and y-axes transposed relative to those below the
diagonal, which frees the investigator from preconceived notions of “dependent”
and “independent” variables. One can, of course, apply the bivariate exploratory
techniques described above to each of the scatterplots within the matrix. The
possible addition of density plots of each variable along the diagonal gives the
investigator a simultaneous feel for the distribution of individual variables (Ellison
and Bedford, 1991). The final construction provides an information-rich, but
rapidly comprehensible picture of the overall dataset.
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Figure 2.9. A scatterplot matrix of the tree size data. This plot illustrates bivariate
relationships between all possible combinations of variables in a multivariate dataset. The
variable name in the boxes along the diagonal corresponds to x-axis variable of plots below
the diagonal, and y-axis variables above the diagonal.

2.3.4 Classified Quantitative Data: Alternatives to Bars and Pies

Classified quantitative data are common in many experimental situations. This
type of data set consists of responses of a given parameter to discrete treatments.
Such experiments may be analyzed by ANOVA (Chapters 3 and 4), and the
results expressed in terms of the significance of treatment effects and/or interaction -
effects. Data from these types of experiments often-are not explored prior to
formal analysis, although the univariate techniques described in Section 2.3.1
are appropriate for examining the data structure of individual treatment groups.
The exception to this generalization are common tests of the critical assumptions
of ANOVA: homoscedasticity (variances among treatment groups are equal) and
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normal distribution of residuals within treatment groups. In particular, failure to
test for homoscedasticity is one of the most common statistical errors (Fowler,
1990b), and heteroscedastic (unequal variances) data can complicate or compro-
mise results obtained from ANOVA (Sokal and Rohlif, 1981).

To illustrate EDA and graphical presentation of classified quantitative data, I
use data from Potvin (Tables 3.2 and 3.3) that examine effects of genotype (the
classifying variable) on fresh mass of Plantago major, and the interaction effects
of bench position and genotype on stem dry mass of Helianthus annius grown
in a latin square design. In each of these data sets, there is only one response
variable: plant mass. More complex data sets include responses of several vari-
ables to multiple levels of a given treatment. As an example of this latter type of
data set, I use data from Ellison et al. (1993). We measured a number of growth
and morphological characteristics of Nepsera aquatica (an herbaceous species of
disturbed areas in tropical wet forests) in response to varymg lxoht levels (2, 20,
and 40% of full sunlight). "

Spread (some measure of variance) vs level (mean, medxan ‘etc.) plots (Nor-
usis, 1990) are a rapid, graphic way to examine the within- and between-treatment
group variances, and give clues as to appropriate data transformations to bring
heteroscedastic data into line. Norusis (1990), modifying the technique of Box
et al. (1978), suggests plotting the natural log of the interquartile distance (i.e.,
the hspread; Fig. 2.4A) vs the natural log of the median for each treatment group.
An appropriate transformation of the data to remove dependency of the spread
on the level is then given as 1 minus the slope of the linear regression line fit to
the spread vs level plot. Figure 2.10A illustrates a spread vs level plot for
Potvin's Plantago data. Note that the raw data are not homoscedastic; the variance
increases with the mean. Following Norusis (1990) and Box et al. (1978), the
slope of the regression line for this plot is 1.71, suggesting that the data be

-transformed by raising each observation to the —0.71 power. After such a
transformation, the spread vs level plot (Fig. 2.10B) illustrates that the strict
dependency of spread on level no longer exists, and the data are somewhat more
suitable for ANOVA (the variances are no longer correlated with the mean,
although they are still not equalized). Plant size data are often subject to logarith-
mic transformations to equalize variances within treatment groups. A log transfor-
mation of these data does about as well as the negative exponential transform in
equalizing these variances (Table 2.1). Box and Cox (1964) and Zar (1984)
provide detailed methods on determining the “best” transformation to be used on
heteroscedastic data. Such transformations may not make biological sense, but
keep in mind that the role of transformations is to bring your data in line with the
assumptions and requirements of the statistical model(s) you are testing.

Graphic EDA can also be used to examine interaction effects in data. An
example is illustrated in Fig. 2.11 for Potvin’ sHelmmhusdata In thisexperiment,
Potvin illustrates how position on a greenhouse bench interacts with genotype to
determine plant mass. The top figure illustrates the relative small size of genotype
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1990). See text and Table 1.1 for further explanation.
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Table 2.1. Variance (s%) of n = 7 Observations Per Genotype of Plantago Fresh
Mass’

Variance
Negative exponential
Genotype Mean Untransformed Log transformation transformation (y°>"")
1 0.198 0.006 0.179 1.245
2 0.309 0.034 0.440 1.798
3 0.109 0.008 0.151 0.710
4 0.298 0.029 0.354 1.302
5 0.412 0.039 0.196 0.392

*Variances are shown prior to transformation, following transformation by natural logarithms, and
following transformation by the negative exponential suggested by the spread vs level plot (Fig.
2.10). :

A and the relatively large size of genotype E. Although a scatterplot matrix might
have made this pattern clearer, there is no real point to ploifi_ng row X column,
or row X genotype, or column X genotype when the point is'to illustrate the row
« column interaction effect on genotype. The lower figure, a contour plot of the
top one, illustrates the clear “hot-spot” in the upper left corner of the bench. As
interaction effects often involve visualizing data in more than two dimensions,
you can use many of the techniques normally applied to multivariate data in the
exploration of interactions.

Classified quantitative data are presented poorly in the ecological literature.
These problems are illustrated with the data of Ellison et al. on resource allocation
and morphological responses to light by Nepsera (Fig. 2. 12). The most common
ways of presenting classified quantitative data are bar charts, separated or stacked
(Figs. 2.12A,B), and pie charts (Fig. 2.12C). Separated bar charts (Fig. 2.12A),
where a single bar represents the results of a single treatment, suffer from the
same problems as histograms. The bars themselves use a lot of ink—horizontal
lines, vertical lines, shading of bars of arbitrary width—to convey information
about only a single point at the top of the bar (compare Fig. 2.12A with 2.12D).
Stacked bar charts (Fig. 2.12B), where treatment groups are divided into subsets
and the groups are compared against one another, are virtually unintelligible and
never should be used. In this example, the percent allocation to leaves, roots,
and stems sum to roughly 100% (allowing for error and missing values). Figure
2.12A (bars side-by-side) at least clearly illustrates the relative allocation to each
part. It is not so simple, on the other hand, to determine the relative allocation
in Figure 2.12B. Because we use 0 as our reference point, the first guess would
be that the allocation to roots in 2% light is =70%, and that to stems 100%, when
clearly this cannot be true. However, it is difficult to, determine visually the
beginning point of any, of the stacked segments beyond the lowest one. Although
measures of variance can be placed clearly on side-by-side bar charts, error bars
cannot be placed on stacked bar charts (see Section 2.4). Shadings, hatching,
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and other chartjunk used in bar charts also can interfere with accurate perception
of the data and decrease the data:ink ratio. Pies share all of the problems of
stacked bar charts, and none of the advantages of side-by-side bar charts. I can
think of no cases in which a pie chart should be used.

There are several alternatives to bar charts and pie charts. Plots in which the
mean value of the response variable is plotted as a single point, along with some
measure of error, clearly illustrate the same data as in a bar chart with greater
clarity and less data ink (Fig. 2.12D). Sets of box plots better illustrate the
underlying data structure and convey more information with less ink and confu-
sion (Fig. 2.12E). These box plots have been “notched” (McGill, et al. 1978) to
show 95% confidence intervals. Polar category plots (with or without error bars;
the latter are shown in Fig. 2.12F) are the minimalist alternative to bar charts,
and are a visually comparable substitute for pie charts. These polar category plots
illustrate the response of eight measured variables to the three light enivironments
and clearly convey overall differences between treatment groups.

2.4 A Word about Error Bars

Any reported parameter must include a measure of the reliability of that parameter
as well as the sample size. For example, sample means, whether reported graphi-
cally or in tables, must be accompanied by the sample size and some estimator
of the variance. Error bars on graphs must be correctly identified. Three kinds of
error bars are seen commonly in the ecological literature: standard deviations,
standard errors, and n% confidence intervals. Note that strictly speaking, the first
is the sample standard deviation. The second, more properly referred to as the
standard error of the mean, is an estimate of the accuracy of the estimate of the
mean. We compute it as the standard deviation of a distribution of means of
samples of identical sizes from the underlying population (see Zar, 1984:31 for
a complete description). Thus, calling error bars simply standard deviation bars
confounds the two. Measures of error are used to calculate n% confidence inter-
vals. We can compute easily confidence intervals of normally distributed data
from the standard error of the mean (Sokal and Rohlf, 1981). For other distribu-
tions, approximations of confidence intervals can be computed using bootstraps,
jackknifes, or other resampling techniques (Efron, 1982; Dixon, Chapter 13). All
of these measures require information about sample size, which must be reported
to ensure accurate interpretation of results.

Figure 2.11.—Continued position on the x-y plane permits more accurate perception of
the true height along the z-axis of each point. The lower figure is a contour plot, with
intensity of shading indicating the biomass at a particular row X column location on the
bench. These contours were determined by a negative exponential smoothing routine,
where the influence of neighboring values decreases exponentially with distance. Shading .
density increases with biomass. '
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Figure 2.12. Six alternative presentations for presenting classified quantitative data.
Data presented are from an experiment examining the effect of three different light levels
(2, 20, and 40% of full sun) on growth, resource allocation, and morphology of Nepsera
aquatica. Each treatment consisted of 20 individually potted plants, harvested after 6
months of growth (Ellison et al., 1993). (A) A side-by-side bar chart illustrating percent
allocation to leaves, roots, and stems by plants in each light treatment. Height of the bar
indicates mean percent allocation, and error bars indicate | standard deviation of the mean.
(B) A stacked bar chart illustrating the same data. (C) Pic charts illustrating the relative
resource allocation in the three light environments (dark shading: 2% light; intermediate
shading: 20% light; no shading: 40% light). Note that it is not possible to place error bars
on stacked bar charts or pie charts. (D) Simple category plot of the data illustrated in
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Figure 2.]2.—Continued Fig. 2.12A. Each point represents the mean percent allocation
to leaves (circles), roots (squares), and stems (triangles); error bars are 1 standard
deviation. (E) Notched box plots of the data. Box plot construction as in Fig. 2.4A. Plots
are “notched” to illustrate 95% confidence intervals. Where the box reaches full width on
either side of the median indicates the limits of the confidence interval. (F) Polar projections -
of category plots (also known as star plots) of the response of eight measured parameters
to the three light treatmcms._.’l‘hé radius of the circle is equiva}enﬂ {o the y-axis of a
rectangular plot; the distance from the center of the circle to each vertex of the polygon
is the mean rcquhéc of each '\'/z{riable to the treatment. Variables arc arranged cquidistantly
around the pcrimétcf of the circle (equivalent to the r-axis of a rectangular plot). One
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In general, error bars are useful only when they convey information about
confidence intervals. Typically, in the ecological literature, means are plotted
along with error bars illustrating one standard error of the mean. For suitably large
n, or for samples from a normal distribution, one standard error bar approximates a
68% confidence interval. This conveys little information of interest, since we are
accustomed to thinking either in terms of 50, 90, 95, or 99% confidence intervals.
Further, most ecological samples are small, or the underlying data distributions
are unknown. In those cases, error bars representing one standard error of the
mean convey no useful information at all. In keeping with the guidelines for
graphical display presented at the beginning of the chapter, I suggest that sample
standard deviations or 95% confidence intervals be your error bars of choice. Two-
tiered error bars (Cleveland, 1985) that display both quantities are an excellent
compromise. Meta-analysis (Gurevitch, Chapter 17) requires sample standard
deviations, and if they are reported together with sample size, permit rapid
calculation of confidence intervals, standard errors, or most other measures of
variation. In the end, the choice of error bar reported lies with you:: It is most
important that they be identified accurately. Note that if you transforined your
data prior to analysis, your calculated standard deviation will be symmetrical
relative only with respect to the transformed mean. If you present the results
back-transformed (as is common practice), the error bars should be asymmetric.

2.5 Concluding Remarks

Ecologists traditionally have used a limited palette of graphic elements and
techniques for exploring and presenting our data. We need to refocus our vision
to grasp new or unfamiliar graphic elements and techniques that will permit clear
communication of our data. We can now use available computer hardware and
software with expanded EDA and presentation capabilities to display our results
accurately, concisely, and in aesthetically pleasing ways (Ellison, 1992). We will
improve our comprehension and appreciation of data by using many of the graphic
techniques presented in this chapter, just as we can increase our appreciation of
the diversity of pasta entrées with a trip to a fine [talian restaurant.
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Appendix 2.1

N

SYGRAPH program code to create Figs. 2.2, 2.5, and 2.12.

USE ' <\PATH\FILENAME.FILETYPE >’ /specifies data file/
SYGRAPH ‘ /executes Sygraph/
OUTPUT=PRINTER /directs output to printer/
MODE PRINTER=POS1/LPT1 /defines printer port/
TYPE=STROKE choosés character set/
CS=1.1 specifies character size/
THICK=1.2 /specifies line thickness/
JFig. 2.5/

BEGIN /To place multiple plots on a single page, the
commands must be bracketed by BEGIN and END

statements. Everything between these two

keywords will appear on a single page. /

ORIGIN =1.125IN,4.75IN /location of 1st plot on the page/
PPLOT NODES/NORM,SHORT, /normal probability plot/

SMOOTH =LINEAR,STICK,
HEIGHT =3IN,WIDTH =3IN,
XLABEL="NUMBER OF NODES’,
SYMBOL=2,FILL=0,SIZE=.75

WRITE "A'/HEIGHT =10PT, /plot label/
WIDTH = 10PT,X=0.1IN,Y=2.75IN

ORIGIN=1.125IN,0.75IN /location of 2nd plot on the page/

PPLOT NODES/WEIBULL,SHORT, /Weibull probability plot/

SMOOTH =LINEAR,STICK,
HEIGHT =3IN,WIDTH =3IN,
XLABEL ='In(NUMBER OF NODES)',
YLABEL = 'In(WEIBULL QUANTILESY',
SYMBOL=2,FILL=0,SIZE=.75
WRITE '8'/HEIGHT = 10PT, /plotlabel/
WIDTH=10PT,X=0.1IN,Y=2.75IN g
END N /end of page/
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USE ' <\PATH\FILENAME.FILETYPE>'

BEGIN

ORIGIN=0.125IN,7.85IN

BOX NODES/XLABEL="",
AXES=0,SCALE=0,WIDTH=4IN,
HEIGHT=2IN,MIN =6,MAX =34

ORIGIN=0.125IN,6.25IN

DENSITY NODES /HIST,
HEIGHT =3IN,WIDTH =4IN;
XLABEL=""YLABEL=""

WRITE 'A"/X=0.1IN,Y =1.35IN,
HEIGHT = 10PT,WIDTH=10PT

ORIGIN=0.125IN,3.25IN

DENSITY NODES/HIST,BWIDTH =1,
HEIGHT =3IN,WIDTH =4IN,
XLABEL="'"YLABEL=""

WRITE 'B'/X=0.1IN,Y=2.1IN,
HEIGHT = 10PT,WIDTH=10PT

ORIGIN=0.125IN,0.25IN

DENSITY NODES/HIST,BWIDTH =4,
HEIGHT =3IN,WIDTH =4IN,
XLABEL="'"YLABEL=""

WRITE 'C*'/X=0.1IN,Y=1.35IN,
HEIGHT =10PT,WIDTH = 10PT

WRITE 'NUMBER OF NODES'/
Y =-0.75IN X =.8IN,
HEIGHT =13PT,WIDTH=13PT
WRITE 'PROPORTION PER BAR'/
Y =2.75IN,X=-.85IN,
HEIGHT = 13PT,WIDTH=13PT,
ANGLE=90
. WRITE "COUNT’ /X =4.625IN,
Y =4.635IN,HEIGHT = 13PT,
WIDTH =13PT ,ANGLE =270
END

/Fig. 2.2/

choose new data file/

start page production/

/location of box plot on the page/
/construct box plot; note that

plot widths, and data ranges
match for all plots on this page/

localion of Fig. 2.2A/
construct histogram/

/location of Fig. 2.28/
/construct histogram; note the
" bin width is specified with

the Bwidth option/

/plot late!l/

[location of Fig. 2.2C/
/construct histogram; specify bin width/

/x-axis label; specifies
location of label crigin,
and character size/
/left y-axis label/

/specifies 90° label rotation/
/right y-axis label/



USE ' <\PATH\FILE1.FILETYPE >"
BEGIN

ORIGIN=0.75IN,6IN

BAR LEAVES,ROOTS,STEMS*TREAT/
FILL=1,4,7, ERROR=SDLVS,

© SDROOTS,SDSTEMS,AXES =2,
YMIN =10,YMAX =50,

" XLABEL ="LIGHT LEVEL

(% OF FULL SUNY',

YLABEL ='PERCENT ALLOCATION’,
WIDTH =2.75IN,HEIGHT = 1.85IN,
LEGEND =2.35IN,1.35IN

WRITE "A’/X=0.1IN,Y = 1.75IN,
HEIGHT =8PT,WIDTH=8PT

ORIGIN =0.75IN,3.25IN

BAR LEAVES,ROOTS,STEMS*TREAT/
FILL=1,4,7,STACK,
AXES =2, YMIN =0,YMAX = 100,
XLABEL ='LIGHT LEVEL

(% OF FULL SUNY)',

YLABEL ="PERCENT ALLOCATION’,
WIDTH = 2.75IN,HEIGHT = 1.85IN,
LEGEND =2.35IN,1.35IN

WRITE 'B'/X=0.1IN,Y = 1.75IN,
HEIGHT =8PT,WIDTH = 8PT

Cs=32

ORIGIN =0.75IN,0.5IN

PIE AVG2*PARTS/SORT,
WIDTH =0.75IN,HEIGHT =0.75IN,
FILL= 0.35

WRITE 'C'/X=0.1IN,Y = 1.75IN,
HEIGHT =8PT,WIDTH =8PT

ORIGIN = 1.75IN,1.375IN

PIE AVG20*PARTS/SCRT,
WIDTH =0.75IN,HEIGHT =0.75IN,
FILL= 0.1

ORIGIN =2.75IN,0.5IN

PIE AVG40*PARTS/SORT,
WIDTH =0.75IN,HEIGHT =0.75IN,
FiLL=0

END
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/Fig. 2.12/
/select first data file/
/start 1st page production/

/location of Fig. 2.12A/
/construct bar chart/
/choose fill pattern/
/specify error bars/
/choose y-axis range/
< /axis labels/

/size of plot - consistent for all plots on page/
/location of légend with respect to plot/
s IN-

/location of Fig. 2,128/
/construct bar chart/
/use STACK option for stacked bars/

/new character size 10 make pie chart
labels conform to other plots on page/
/location of 1st pie chart/

/construct 1st pie chart - 2% light/

/specifies density of pie's shading/

/location of 2nd pie chart/
/construct 2nd pie chart - 20% light/

/location of 3rd pie chart/
/construct 3rd pie chart - 40% light/

/no shading/
/end.of 1st page/
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USE '<\PATH\FILE2.FILETYPE >’ /choose new file/
BEGIN /begin 2nd page production/
ORIGIN=0.75IN,8IN /Fig. 2.12D is actually a composite of 3 overlaid

plots. Plots for roots, stems, and leaves are
constructed separately, placed at the same
{+.=ight) on the page, but the leaves plot is
moved !c", == d the stem plot is moved right relative
10 i"¢ ioots plot. Note the change in origin
location to accomplish this overlay./

CPLOT ROOTS*TREAT/SYMBOL=7, /plot roots vs light level/
FILL=1,AXES =2, YMIN = 10,YMAX =50, TN
ERROR=SDROOTS,WIDTH=2.75IN, Sy
HEIGHT =1.85IN,SIZE=1.75,

XLABEL="LIGHT LEVEL

(% OF FULL SUN)’
YLABEL ="PERCENT ALLOCATION,
ORIGIN=0.625IN,6IN ' /move left 1/8/
CPLOT LEAVES*TREAT/SYMBOL=2, /plot leaves vs light level/

FILL=1,AXES=0,YMIN=10,
YMAX=50,ERROR=SDLVS,

XLABEL=""YLABEL="", /no axes or axis labels to preserve overlay/
WIDTH =2.75IN,HEIGHT =1.85IN,

SCALE=0,SIZE=1.75

ORIGIN =0.875IN,6IN /move right 1/8" relative to roots plot/
CPLOT STEMS*TREAT/SYMBOL=3,

FILL=1,AXES =0,YMIN =10,

YMAX =50,ERROR=SDLVS,

XLABEL=""YLABEL="",

WIDTH=2.75IN,HEIGHT = 1.85IN,

SCALE=0,812E=1.75
WRITE 'D'/X=0.1IN,Y=1.75IN,

HEIGHT =8PT,WIDTH=8PT

WRITE 'LEAVES'/X=1.9375IN, /legend needs to be added on explicitly/
Y =1.8IN,HEIGHT =6PT,WIDTH=6PT

WRITE 'ROOTS'/X=2.0625IN,
Y =1.435IN,HEIGHT =6PT,WIDTH=6PT

WRITE 'STEMS'/X=2.1876IN,
Y =1.3IN,HEIGHT =6PT,WIDTH=6PT




USE '<\PATH\FILE3.FILETYPE>'
ORIGIN=0.75IN,3.25IN
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/choose new file/
/location of Fig. 2.12E/

/To construct this figure, dummy x-values were
placed in the data file to accomplish the offsetting
done with multiple plots in Fig. 2.12D. This was
done so that the 95% confidence intervals
specified with the Notch option would be
constructed correctly./

BOX PERCENT*TREAT/AXES =2,
XLABEL ='LIGHT LEVEL-

(% OF FULL SUNY',
YLABEL="PERCENT ALLOCATION’,
WIDTH=2.75IN,HEIGHT =1.85IN,
SCALE=-2,NOTCH,MIN=10

WRITE 'E'/X=0.1IN,Y=1.75IN,
HEIGHT=8PT,WIDTH=8PT

WRITE 'LEAVES'/X=0.1875IN,

Y =1.625IN,HEIGHT =6PT,WIDTH=6PT
WRITE 'ROOTS'/X=0.375IN,

Y =1.135IN,HEIGHT =6PT,WIDTH=6PT
WRITE 'STEMS’/X=0.5625IN,

Y =0.9475IN,HEIGHT =6PT ,WIDTH=6PT
WRITE *2."/X=0.375IN,Y =-0.125IN,

HEIGHT =6PT,WIDTH=6PT :
WRITE '20."'/X=1.3125IN,Y =-0.125IN, L

HEIGHT =6PT,WIDTH=6PT . R
WRITE '40.'/X=2.3125IN,Y =-0.125IN, i

HEIGHT =6PT,WDITH=6PT v

/Again, the legend was placed on manually, as
were the x-axis labels. Tick marks were
later erased by hand/

USE '<\PATH\FILE4.FILETYPE>" /Choose new file. Data files for polar category plots
needs to be arranged so that each star's ‘vertex' is
an individual case. To construct this plot, four
variables are needed in the file: treat$ - the label for
each vertex; avg2 - the response of the given
parameter (=label) in 2% light; avg20 - the response
in 20% light; avg40 - the response in 40% light. As
with Fig. 2.12D, Fig. 2.12F is a composite of 3 plots./

CS=1.8 /character size set to conform to previous plots/
ORIGIN=0.75IN,0.5IN
WRITE 'F'/X=0.1IN,Y =1.75IN,

HEIGHT=8PT,WIDTH=8PT

ORIGIN=0.6IN,.55IN

CPLOT AVG2*TREATS/AXES =2,
LINE=1,POLAR,NSORT,SCALE =2,
TICK=2,YMIN =0,YMAX =50,
SIZE=0,WIDTH = 1.25IN,
XLABEL=""YLABEL ='2% LIGHT",
HEIGHT =1.25IN

/plot of response in 2% light/
/the polar option gives the projection/
/the line option connects the vertices/

ORIGIN=2IN,1.25IN /plot of response in 20% light/
CPLOT AVG20*TREATS/AXES =-2,

LINE=1,POLAR,NSORT,SCALE=-2,

TICK=2,YMIN =0,YMAX =50,

SIZE=0,WIDTH=1.25IN,

HEIGHT =1.25IN,XLABEL="",

YLABEL='20% LIGHT"

ORIGIN=2.75IN,.15IN

CPLOT AVG40*TREATS/AXES =-2,
LINE=1,POLAR,NSORT,SCALE =-2,
TICK=2,YMIN =0,YMAX =50, b
SIZE=0,WIDTH=1.25IN, .
HEIGHT=1.25IN, XLABEL="",
YLABEL="'40% LIGHT" : : .

END A ~ Jend 2nd page/

/plot of response in 40% light/



