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Abstract

Context Forests throughout eastern North America

continue to recover frombroad-scale intensive land use

that peaked in the nineteenth century. These forests

provide essential goods and services at local to global

scales. It is uncertain how recovery dynamics, the

processes by which forests respond to past forest land

use, will continue to influence future forest conditions.

Climate change compounds this uncertainty.

Objectives We explored how continued forest recov-

ery dynamics affect forest biomass and species

composition and how climate change may alter this

trajectory.

Methods Using a spatially explicit landscape simu-

lation model incorporating an ecophysiological

model, we simulated forest processes in New England

from 2010 to 2110. We compared forest biomass and

composition from simulations that used a continuation

of the current climate to those from four separate

global circulation models forced by a high emission

scenario (RCP 8.5).

Results Simulated forest change in New England

was driven by continued recovery dynamics; without

the influence of climate change forests accumulated

34 % more biomass and succeed to more shade

tolerant species; Climate change resulted in 82 %

more biomass but just nominal shifts in community

composition. Most tree species increased AGB under

climate change.

Conclusions Continued recovery dynamics will

have larger impacts than climate change on forest

composition in New England. The large increases in

biomass simulated under all climate scenarios suggest

that climate regulation provided by the eastern forest

carbon sink has potential to continue for at least a

century.
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Introduction

Northeastern Unites States’ forests are part of one

of the largest forested biomes in North America.

These forests provide critical goods and services at

local to global scales, including timber, tourism,

water filtration, and carbon sequestration (Schwenk

et al. 2012; Blumstein and Thompson 2015), and

are representative of aggrading mesic temperate

forests worldwide. Northeastern forests continue to

recover from a long period of intensive agricultural

clearing and lumbering that peaked in the late

nineteenth century (Thompson et al. 2013). Despite

the pervasive influence of many novel agents of

global change, recovery dynamics, the processes by

which forests respond to past disturbance including

accrual of aboveground biomass (AGB) and turn-

over toward long-lived shade tolerant tree species,

continue to be the dominant process driving forest

change in the region (Thompson et al. 2013; Eisen

and Plotkin 2015; Wang et al. in press). Whether

future patterns of forest change will continue to be

driven by the legacy of historical land-use under

changing climate is not well understood.

Climate change has the potential to alter the

current recovery trajectory. Global circulation mod-

els (GCMs) agree that climate of the Northeastern

US will become increasingly warmer, but future

patterns of precipitation are less clear (Ning et al.

2015). Possible direct effects of future climate

change include increased growth due to longer

growing seasons (IPCC 2013; Keenan et al. 2014),

decreased growth in the warmest months due to

greater respiration and evapotranspiration (Buer-

mann et al. 2013), and shifts in tree species ranges

as they respond to shifts in the isotherms to which

they are adapted (Farnsworth and Ogurcak 2015).

Indirect effects of climate change, such as changing

disturbance regimes and CO2 fertilization (Ollinger

et al. 2008) will also impact forest composition and

function.

We also expect regional variation in the

response of recovery dynamics to climate change,

associated with forest composition, age, latitude

and topographical position. Northeastern forests are

characterized by large spatial heterogeneity in the

occurrence of forest types, largely corresponding to

climate and disturbance gradients (Cogbill et al.

2002; Foster et al. 2006). Individual tree species

within forest types are expected to respond differ-

ently to forest recovery dynamics and climate

change given their life history traits (e.g. shade

and thermal tolerance). Uncertainty remains about

the fate of regionally critical tree species, especially

those predicted to be vulnerable to future condi-

tions (e.g. sugar maple, Acer saccharum) (Gavin

et al. 2008; Iverson et al. 2008).

Temperate forest trees are long lived and resilient

and their response to climate change can be delayed

by centuries (Davis and Botkin 1985). Forecasting

changes in northeastern forests requires an approach

that can incorporate multiple processes operating at

different scales. Unlike niche models (Iverson et al.

2008) that do not incorporate physiological, succes-

sion and dispersal processes, physiologically-based,

spatially-explicit mechanistic models are well

designed to evaluate forest response interactions

with climate (de Bruijn et al. 2014; Gustafson et al.

2014). By increasing the use of mechanistic links

between tree physiology and climate drivers, such

models have increased robustness for study of the

response of forested landscapes to the novel climate

conditions of the future (Gustafson 2013). To date,

most physiologically based spatial models aggregate

tree species into functional groups and may there-

fore miss important species-level responses to

climate change, which are often important determi-

nates of ecosystem function and services (Chandler

et al. 2012).

In this study we simulated forest recovery dynamics

as they are affected by projected climate change

throughout New England (Fig. 1). There is concern

that northeastern forests will be unable to sustain

current ecosystem services under climate change

(Dukes et al. 2009; Mohan et al. 2009; Tang and

Beckage 2010). Our regional-scale, species-level

simulations provide an understanding of future critical

ecosystem services. This research will inform for

example, the potential future ability of northeastern

forests to sequester carbon. New England is an ideal

model system to examine these interactions because

the land-use history and initial patterns of recovery are

well known (Thompson et al. 2013). We addressed the

question: How will continued regional forest recovery

dynamics affect forest biomass and species composi-

tion and how might climate change alter this

trajectory?
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Methods

Study area

We simulated biomass and compositional change

throughout the 13 million hectares of forest within the

six New England states (Maine, New Hampshire,

Vermont, Massachusetts, Rhode Island, and Connecti-

cut; Fig. 1). Forests cover approximately 80 % of land

area and span a gradient of boreal forests in northern

Maine to oak-maple forests in southern New England

(Duveneck et al. 2015). Mean annual temperatures

Fig. 1 EPA level-IV

(numbered) ecoregions and

climate regions (colored)

within the New England

study area. Stars indicate net

ecosystem exchange

calibration sites with both

the Hemlock and EMS sites

represented by the Harvard

Forest star. Inset indicates

study area (blue) within

North American forests

(grey)
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range from 3 to 10 �C across a north to south gradient.

Mean annual precipitation ranges from 79 to 255 cm

with more precipitation at higher elevations (Daly and

Gibson 2002). The region was completely forested

until the seventeenth century, when two centuries of

logging and agricultural clearing removed more than

half of the forest cover and cut over most of the rest

(Thompson et al. 2013). Forest cover reached its nadir

in the mid-nineteenth century, after which widespread

farm abandonment and a reduction in the intensity of

harvesting initiated a century of natural reforestation

and forest growth. Although New England is a well-

documented example of a great forest transition, New

England’s land-use history is paralleled in many

regions of the world (Mather 1992).

Simulation model

We simulated forest change using the LANDIS-II v6.0

forest landscape model (Scheller et al. 2007) and a

mechanistic growth and succession extension (PnET-

succession) (de Bruijn et al. 2014) based on the PnET-

II ecophysiologymodel (Aber et al. 1995). LANDIS-II

is a spatially-interactive forest process model that has

been widely used to study northern temperate-boreal

forests. The PnET-Succession extension v1.0 (de

Bruijn et al. 2014; Gustafson et al. 2014) simulates

the competition of tree cohorts for light and water for

photosynthesis using ecophysiology algorithms

upscaled to a grid cell by integrating incoming

radiation and water consumption within stacked layers

of the canopy. Cohort biomass is used as a surrogate

for tree height to simulate canopy layers, which are

added when the variation in biomass among cohorts

exceeds a user-defined amount. Competition for light

is modeled by allocating incoming radiation though

each layer with a standard Lambert–Beer formula.

Varying climate scenarios are incorporated with

monthly precipitation, light, maximum and minimum

temperature at a monthly timestep. Growth is simu-

lated as a competition for light and water for

photosynthesis among all the cohorts on each grid

cell by integrating incoming radiation and water

within stacked layers of the canopy. Water balance

is calculated by tracking soil water within cells based

on precipitation, transpiration by cohorts, evaporation,

runoff, and percolation out of the rooting zone. Within

cells, cohorts compete for light and water where older

and larger (more biomass) cohorts receive higher

priority for resources. Growth increases with available

light, foliar N, and atmospheric CO2 concentration;

and decreases with age and departure from optimal

temperature. Production from net photosynthesis is

partitioned to biomass pools of wood, root, foliage,

and reserves (nonstructural carbon). Soil water and

subcanopy light also regulate monthly species estab-

lishment probabilities which stochastically determine

where new cohorts will regenerate.

We calibrated the model using data from six sites

by comparing simulated biomass dynamics on

individual 1 ha cells to long-term observations of

annual biomass from Howland Forest in Maine

(Hollinger et al. 2004), Black Rock Forest in New

York (Schuster et al. 2008), Hubbard Brook Forest

in New Hampshire (Battles et al. 2014), and the

Hemlock tower (Hadley and Schedlbauer 2002),

EMS tower (Urbanski et al. 2007), and Lyford plots

(Eisen and Plotkin 2015) at the Harvard Forest in

Massachusetts. At sites with eddy covariance flux

tower instruments (Howland, Hemlock, and EMS),

we also calibrated simulated monthly net ecosystem

exchange (NEE) to flux measurements of NEE. NEE

is a measurement of total carbon flux from the

atmosphere to the forest, but our simulations of

NEE do not include soil respiration. To account for

this discrepancy, we added seasonally observed soil

respiration as a proportion of ecosystem respiration

to simulated NEE based on observations at the

Harvard (Giasson et al. 2013) and Howland Forest

(Davidson et al. 2006) flux towers. For our simu-

lations of AGB at the landscape scale, we compared

observed AGB from US Forest Service Forest

Inventory Analysis (FIA) plots (Bechtold and Pat-

terson 2005) to simulated AGB of pixels represent-

ing FIA plots. Duveneck et al. (2015) described an

extensive validation of species composition used in

initial conditions across New England. As an

addition, we simulated 4118 1 ha cells where each

cell’s initial forest composition was a representation

of a single FIA plot using the same methods to

develop landscape initial communities (Appendix I

in supplementary material). We then compared

observed AGB to simulated AGB at model year

zero (spin-up values) using Pearson’s correlation

coefficient (r) and root mean squared error (RMSE).

Finally, we compared published estimates of total

forest AGB within each New England state
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(Bechtold and Patterson 2005) to modeled AGB,

aggregated for each New England state at year zero.

Experimental design

We simulated 100 years of forest dynamics

(2010–2110) and evaluated modeled live AGB and

compositional changes at 5 year time steps. We used a

250 m cell resolution resulting in[2 million active

forested cells. Because our goal was to better under-

stand the relative effect of continued recovery dynam-

ics and anticipated climate change on future forests,

we simulated natural gap-scale disturbances, but

excluded all other biological and anthropogenic dis-

turbance regimes (see Appendix I in supplementary

material).

We compared simulations that assume a continu-

ation of the current climate to simulations that depict

future climate change. Simulations that continued the

current climate used monthly 4 km gridded tempera-

ture and precipitation data provided by the parameter-

elevation relationships on independent slopes model

(PRISM; Daly and Gibson 2002) based on the period

spanning 1981–2013. PRISM uses a large network of

climate observations using additional spatial variation

such as elevation to calculate gridded climate vari-

ables. Simulations of future climate change used

downscaled climate grids developed based on a high-

emission representative concentration pathway (RCP

8.5) provided by the International Panel on Climate

Change (IPCC). There is considerable variation in

GCM projections of the RCP 8.5. We compared four

GCMs shown to most accurately simulate historical

climate in the region (Sillmann et al. 2013): commu-

nity climate system model v4.0 (CCSM4), community

earth system model v1—community atmosphere

model v5 (CESM1), Hadley global environment

model v2—earth system (HADGE), and the Max

Planck Institute earth system model—low resolution

(MPIMLR). For each climate scenario, we used 12 km

monthly downscaled projections of maximum tem-

perature, minimum temperature, and precipitation

obtained from the USGS Geo Data Portal (Stoner

et al. 2013) (see Appendix I in supplementary

material) as LANDIS-II inputs. For the current climate

scenario, we kept CO2 constant at 390 ppm. Under the

climate change scenarios, we used the RCP 8.5

projections of increasing CO2. We replicated each of

the five scenarios (current climate ? 4 GCM

projections) five times; however because simulated

disturbance were rare (see Appendix I in supplemen-

tary material), model outputs were virtually determin-

istic, so variability among replicates was extremely

low, only one replicate was used for the analysis

(Thompson et al. 2011; Duveneck et al. 2014).

To evaluate the effect of recovery dynamics and

climate change on biomass, we compared average

percent change in biomass of the current climate and

climate change scenarios from 2010 to 2110 within

Environmental Protection Agency (EPA) level-IV

ecoregions (Environmental Protection Agency 2012)

(Fig. 1). We compared changes in average AGB for

each of the 33 tree species and six forest types

throughout the 100 year time horizon. We also

mapped and compared changes in the proportion of

aggregated spruce-fir, northern hardwood, and pine

species to assess the spatial distribution and persis-

tence of forest types. We plotted these forest types as

red, green, blue (RGB) composite maps at year 2010

and 2110 with the current and as an example, the

HADGE climate change scenario. For all analyses we

used the R statistical software (R Core Team 2013)

and the Raster package for R (Hijmans 2014).

Results

Calibration

Calibration simulations showed high agreement in the

magnitude and timing of observed AGB and monthly

NEE at multiple scales (Fig. 2). At the Harvard Forest

hardwood flux tower, simulated NEE largely repro-

duced growing season dynamics, but underestimated

respiration during winter months (positive NEE)

(RMSE = 71.07 g m-2, r = 0.66). At the Harvard

Forest hemlock flux tower, simulated NEE largely

represented observed monthly NEE (RMSE = 54.92,

r = 0.63), however growing season growth (negative

NEE) was overestimated after 2010 when photosyn-

thetic activity began to decline due to an insect

infestation that is not incorporated in our simulations.

At the Howland Forest spruce flux tower, simulated

NEE largely captured monthly observed NEE, but

overestimated growing season NEE during a number

of years (RMSR = 40.88 g m-2, r = 0.57). Spin-up

AGB had moderate agreement with observed AGB

across 4118 FIA plots (RMSE = 6.71 kg m-2,
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r = 0.29). No validation bias was observed across

forest types. For individual New England states, total

simulated AGB was largely consistent with published

estimates of state total forest AGB (±30 %), but

overestimated biomass in Maine where greater

forested area was present.

Aboveground biomass response

Simulated forest growth under all climate scenarios

resulted in increases in AGB (Fig. 3). Under current

climate the average simulated AGB across New

England increased from 11.5 to 15.4 kg m-2 (34 %

increase). Under the high emission GCMs, the average

simulated AGB increased to 21.0 kg m-2 (82 %

increase). Overall, biomass gains were larger in the

eastern portion of the study region, especially gains

attributable to climate change. At the ecoregion scale,

the greatest increases in biomass from 2010 to 2110

were found in forests with the lowest initial biomass

(Fig. 3), which were also typically the youngest

(Appendix II in supplementary material).

Simulated species response to recovery dynamics

included increases in many moderately to highly

Fig. 2 Simulated monthly

net ecosystem exchange

(NEE) in three New England

sites with eddy-covariance

observations. Negative NEE

values indicate when more

carbon uptake is sequestered

into the forest than is

released to the atmosphere
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shade-tolerant species such as American beech (Fagus

grandifolia), red spruce (Picea rubens), and Eastern

hemlock (Tsuga canadensis) (Fig. 4). Under climate

change, enhanced growth of Eastern white pine (Pinus

strobus), sugar maple, and red maple resulted in

additional increases in simulated AGB. Spruce-fir

species [e.g., balsam fir (Abies balsamea), and red

spruce] with lower optimal temperatures for growth

(Appendix I in supplementary material), also resulted

in greater AGB under climate change scenarios.

Responses of other species are found in Appendix III

in supplementary material. Within forest types,

climate change resulted in a greater proportion of

pine abundance and less proportion of spruce-fir

(Fig. 5a). However, both pine and spruce-fir forest

types resulted in increases in AGB under climate

change (Fig. 5b). In addition, large increases in

northern hardwood AGB were simulated under cli-

mate change compared to current climate (Fig. 5b),

although the proportion of northern hardwood AGB

under climate change was very similar to current

climate (Fig. 5a). Across scenarios, less dominant

forest types experienced less biomass change under

climate change than more dominant species.

Fig. 3 Average simulated aboveground biomass (AGB) kg m-2 at year 2010 (upper left panel) and percent change in (AGB) from year

2010 to 2110 within ecoregions under different climate scenarios

Landscape Ecol (2017) 32:1385–1397 1391

123



Fig. 4 Mean aboveground biomass of dominant species simulated through time under five climate scenarios. Other species are found

in Appendix II in supplementary material
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Spatially, northern hardwood, pine, and spruce-fir

species changed similarly in proportional abundance

compared to current abundance (Fig. 6a) under both

current (Fig. 6b) and a future climate scenario

(Fig. 6c). Comparing current climate to climate

change at 2110 showed few differences in the spatial

dominance of forest types. For example, in both

current and climate change, spruce-fire persisted in

areas such as the high elevation White Mountains

(near the center of the New England landscape).

Likewise, species composition in areas originally

dominated by northern hardwood forest types in

southern New England stayed relatively constant

across a climate change scenario (Fig. 6).

Discussion

New England’s forests are accruing AGB at a rapid

rate and the simulations suggest that the regional

ecosystem will continue to serve as an important sink

for at least another century. Our results corroborate

other studies that suggest that these forests are still

recovering from colonial land-use and remain well

below their maximum biomass capacity (Hurtt et al.

2002; Thompson et al. 2011; Eisen and Plotkin 2015;

Wear and Coulston 2015; Wang et al. in press). This

has implications for critical local and global ecosys-

tem services including carbon sequestration, tourism,

habitat, biodiversity and the regional forest-based

industries. The largest potential increases in AGBmay

be in eastern New England where land use history,

climate, and soil properties have otherwise limited

growth. Under climate change, additional increases in

biomass accrual are expected in addition to those

increases expected from recovery dynamics.

Climate change effects on New England forests

Our simulations suggest that 100 years of climate

change will have modest effects on forest composi-

tion. Trees are both long-lived and slow to migrate

(Davis and Botkin 1985; Zhu et al. 2012); and many of

the individual trees currently on the landscape will

persist for the next 100 years. In addition, the dom-

inant tree species in New England are well north of

their southern range boundary and thus are resistant to

local extirpations due to shifting climatic conditions.

For example, recent evidence suggests that spruce-fir

species are not retreating in the New England moun-

tains, as once thought, but instead are expanding

downslope as they recover from intensive harvesting

at the beginning of the twentieth century (Foster and

D’Amato 2015). The stability of tree species distribu-

tions in New England demonstrated through mecha-

nistic modeling is a stark contrast from the large shifts

in tree species habitat that are derived from climate

niche models. This discrepancy has potentially sig-

nificant consequences when niche models are driving

management decisions about a future that cannot be

realized given the physiological and ecological pro-

cesses involved. Indeed, mechanistic simulations done

Fig. 5 Proportional (a) and
average (b) changes in
aboveground biomass by

forest type. NH Northern

hardwood, SF spruce-fir, PE

pine, AB aspen-birch, OK

oak, TC tamarack-cedar-

hemlock
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byWang et al. (in press) were not able to reproduce the

habitats portrayed in a niche model even after

simulating tree migration to year 2300, a full two

centuries longer than GCMs produce climate

forecasts.

Our mechanistic approach to modeling climate

change effects on species do suggest some species will

benefit more than others. For example, throughout

much of New England we projected large increases in

white pine, sugar maple, and spruce-fir species under

climate change. These increases are again in contrast

to climate niche models, which project decreased

future suitable habitat for these species (Iverson et al.

2008). Sugar maple is an important tree species with

strong economic and cultural ecosystem service value

to the region. Because sugar maple is a shade tolerant

species with a native range extending far to the south

of New England (Little 1971), the simulation inputs of

warmer temperatures, minor disturbance, and little

change in precipitation resulted in large increases in

biomass. Although spruce-fir species have lower

optimal temperatures than other species simulated

(Appendix I in supplementary material), longer

growing seasons, increased CO2, and low disturbance

Fig. 6 Spatial distribution

of northern hardwoods

(NH), spruce-fir (SF), and

pine (PE) forest types at year

2010 (a) and at year 2110

under current climate

(b) and the HADGE climate

change scenario (c). Red,
green, blue color

combinations represent

proportional distribution of

each forest type within each

pixel. Numbered insets map

locations are represented in

corresponding black boxes
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frequency resulted in greater AGB under climate

change. For these species, we expect that rising

temperatures will increase growth rates, but only to a

threshold, beyond which growth rates may decline

(Sendall et al. 2015; Gustafson et al. in prep.). In

addition, species are sensitive to stressors that we did

not simulate (e.g., timber harvest, acid rain, insect

defoliation and ice storms), which could cause decline

(Gavin et al. 2008; Bishop et al. 2015). Contrarily, we

did not simulate a temperature mediated response to

foliar nitrogen, which may increase growth under

warmer conditions (Fisichelli et al. 2015). Neverthe-

less, we believe that our simulations depict the major

physiological and dispersal processes that will deter-

mine tree species response to climate change and

therefore are more reliable than approaches based on

statistical distributions of climatic conditions within

species’ ranges. Nonetheless, we acknowledge that

climate projections under the RCP 8.5 scenario may

produce unforeseen effects stemming from processes

not included in this model (e.g., soil microbial activity,

invasive insects or extreme weather).

Modeling strengths and limitations

Although our results do not represent the full suite of

current and future processes affecting forests, we are

confident in our findings, not as predictions, but as

scenarios of plausible futures. By incorporating long-

term measurements of NEE and a large sample of

inventory plots, our calibration procedure provided

confidence that successional trajectories of common

New England forest types were moderately well

represented. Compared to other landscape simulation

modeling in the region (Scheller et al. 2011; Thomp-

son et al. 2011), our calibration was more intensive

(more data points) and our results showed similar

agreement with empirical NEE and AGB. However,

our calibration did not include every ecophysiological

process. For example, the overestimation of summer

month growth (negative NEE) for the hemlock eddy-

flux tower at Harvard Forest was likely caused by

damage from the hemlock woolly adelgid (Adelges

tsugae) (Albani et al. 2010) that became established at

the eddy-flux site. As PnET-Succession simulates

monthly climate data, we did not include individual

extreme weather events expected to be exacerbated by

climate change (e.g., individual storms, or freeze

events). These events have had, and will continue to

influence New England forests. Nevertheless, the

anomalies that we found can generally be explained,

and we have demonstrated that PnET-Succession was

successful at simulating New England forests under

current climate at multiple scales. PnET-Succession is

particularly strong because it does include climate

extremes better than most models, including other

variants of LANDIS that rely on average growth and

establishment rates at an annual or decadal time step.

The climate extremes that have the most effect on

structuring forests (e.g., droughts, heat waves, cold

winters) are robustly included at a monthly time-step.

Because our focus was on recovery dynamics and

the role of climate change, we did not explicitly

simulate forest harvesting or land use change, which

would almost certainly impact recovery dynamics

(Ordonez et al. 2014; Wear and Coulston 2015). The

recovery dynamics in our simulations continue pat-

terns of recovery from agricultural abandonment and

exploitive harvesting in the nineteenth century as well

as the recent land-use regime. Our initial conditions

represent modern forests as measured by inventory

plots. These forests are a product of the contemporary

land-use regime. One consequence of ‘‘turning off’’

the modern disturbance regime may be an overesti-

mate of the magnitude of recovery effects and an

underestimate of the climate effects. However, our

results are consistent throughout the region, even in

areas that are subject to little or no timber harvest or

other major disturbances such as federally-owned

forests in Vermont and New Hampshire and the

suburban forest of southern New England. We

acknowledge that land-use interactions with climate

change will play an important role in structuring future

New England forests and this is an important research

topic. Indeed, we are exploring additional interacting

drivers such as forest conversion (Ordonez et al.

2014), timber harvesting (Nunery and Keeton 2010)

and insects (Albani et al. 2010) that will likely have

larger impacts to New England forests than climate

change alone, and may interact with climate change in

unexpected ways.

We conclude that over the next century, recovery

dynamics will supersede climate change effects on

New England forests in terms of changes in tree

species composition. Most of the dominant tree

species and forest types are likely to persist, and some

will thrive over the next century. However, our results

do not speak to even longer-term effects when extant
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trees senesce and regeneration becomes more of a

driver under an altered climate.
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